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Abstract

Turbulence is one of the most challenging problems of classical

physics. With the emergence of super-computers, numerical experi-

ments are now available, giving some insights in this fascinating sub-

ject. However, despite the rapidly growing computational power, sim-

ulations of realistic fully turbulent flows in magnetohydrodynamics as

well as in hydrodynamics will remain out of reach of foreseeable com-

puters. Alternative approaches that mix numerical experiments and

modelling strategies have thus been designed and applied with some

success.

1 Introduction

The description of fluid turbulence has been a source of continuous “frustra-
tion” for physicists, mathematicians and engineers for more than a century.
Indeed, the famous Navier-Stokes equation for the evolution of a fluid is
known since the works of the French engineer Claude Navier and of the Irish
mathematician George Stokes in the 19th century. Nevertheless, solving this
equation when the fluid is in a turbulent state is recognised as one of the
most complex mathematical problems faced by today’s scientists. When tur-
bulence phenomena in plasma physics are considered, the situation is even
more complex for at least two reasons. First, instabilities are observed in both
the microscopic and the macroscopic scales of the plasma. Second, when con-
sidering the fluid limit, turbulence appears to affect both the velocity and
the electromagnetic fields.
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Here, we will focus our discussion on the problems met when considering
turbulence phenomena in the magnetohydrodynamic limit of an incompress-
ible plasma. In that case, the electric field may be eliminated from the
description and the equations, written with the magnetic field bi expressed
in Alfvén-speed units and the constant mass density rescaled to unity, read,

∂tvi = −∂j(vivj − bibj) + ν∆vi − ∂ip , (1)

∂tbi = −∂j(vjbi − vibj) + η∆bi , (2)

∂ivi = ∂ibi = 0 , (3)

where p is the sum of thermodynamic and magnetic pressures. It is obtained
by imposing the incompressibility of the velocity field vi; ν is the kinematic
viscosity and η is the magnetic diffusivity. For magnetohydrodynamic (MHD)
turbulence the numerical approach is of particular importance. Indeed, most
turbulent plasmas are either situated beyond direct experimental reach, e.g.,
star-forming clouds and the earth’s liquid core, or require rather expensive
setups like in fusion devices. The rapid growth of available computer power
has long been regarded as an alternative to the analytical approach of the
Navier-Stokes and of the MHD equations. However, it will be discussed in
section II that the computer time and the amount of memory required for
simulating all the details of turbulent systems are so prohibitive that only
weakly turbulent flows have been computed on available computers. Also, in
Section III, it will be pointed out that these difficulties have prompted the
development of approximate numerical methods in which modelling plays an
important role.

2 Direct Numerical Simulation of MHD tur-

bulence

Considering the difficulty to obtain exact or even approximate solutions to
the MHD equations in the turbulent regime, the numerical simulation is re-
garded as an alternative to the mathematical study. Unfortunately, so-called
numerical experiments are themselves rather limited on today’s computer.
This can be easily understood when considering the basic requirement for an
accurate direct numerical simulation (DNS) of the MHD equations. It is well
known that one of the effects of the viscosity is to prevent the development
of structures with a characteristic scale much smaller than the viscous length
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`ν. Variations of the velocity on scales smaller than `ν can thus be neglected.
Similarly, variations of the fluids on time scales much smaller than tν (the
characteristic time associated to the smaller scales) can also be neglected.

Without introducing any concept from the numerical analysis of the ve-
locity equation, we can already understand that a numerical experiment for
a conducting fluid will be accurate under, at least, two conditions. First, the
variables have to be known on locations separated by a distance of the order
of `ν. The number of points necessary for describing accurately the system
will thus be of the order of N ≈ (L/`ν)

3 where L is the characteristic length
of the physical domain that we want to simulate. Second, for each of these
points, the variables must be known every time step tν. The total number of
time steps is thus given by N ′

≈ T/tν where T is the total duration of the
experiment.

A simple dimensional analysis can be used to relates N and N ′ to the
Reynolds number Re = LU/ν = L2/(Tν) which quantifies the ratio between
the nonlinear convective term and the linear dissipative term in the velocity
equation. Here, U is a typical large scale velocity in the flow. The following
approximations can then be derived for Navier-Stokes turbulence [1]:

N ≈ R9/4

e , (4)

N ′
≈ R3/4

e . (5)

As a consequence, the total number of numerical operations needed in a
simulation increases according to N ×N ′ = R3

e, which is a huge number for
any realistic experiment. Turbulent flows commonly reach Re much larger
than 105. For such a value, the number of points in the simulation is already
N ≈ 1011 and the number of values required in a computation is even 10
times larger. Hence, about 1012 real numbers are needed for simulating a
flow at Re = 105. This corresponds to about 4 000 Gb of memory.

For conducting fluids, the ratio between the nonlinear convective term and
the linear dissipative term in the induction equation (2) is expressed by the
magnetic Reynolds number Rm = LU/η. Depending on the magnetic Prandtl
number ν/η, the numerical simulations of MHD flows can be even more
challenging for today’s computers. Nevertheless, DNS of turbulent MHD
flows with moderate Reynolds numbers are used more and more extensively
to explore the details of nonlinear interactions between the magnetic and the
velocity fields [2, 3]. When compared to real experiments, DNS have indeed
the major advantages of giving access to the complete spatio-temporal details
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Figure 1: Typical profiles of the kinetic (left) and magnetic (right) energies
along the inhomogeneous direction obtained using DNS of the MHD equa-
tions for the mixing layer.

Figure 2: Typical kinetic (left) and magnetic (right) energy spectra obtained
using DNS of the MHD equations for the mixing layer.

of the fields without any intrusive experimental probe. For instance, both the
energy spectrum in wave space and the energy profile in the position space
can be accessed simultaneously without difficulty. An example is shown
below for the MHD mixing layer [4].

In this problem, the velocity and magnetic fields initially correspond to
two homogeneous turbulent regions with different kinetic and magnetic en-
ergy connected through a transition region, the mixing layer. The study of
this flow allows to explore a situation which is simultaneously inhomogeneous
and non stationary. The DNS corresponding to Figures 1 and 2 are rather
modest in size : They have been performed with 1283 grid points. However,
much bigger simulation with up to 512 × 1024 × 512 grid points (i.e. more
than 250 millions grid points) are under progress.
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Figure 3: Comparison between profiles predicted by the DNS (diamonds) and
by the LES (dashed line) for the kinetic (left) and magnetic (right) energies
along the inhomogeneous direction in the mixing layer.

3 Large Eddy Simulation of MHD turbulence

From the discussion in the preceding chapter, it is obvious that high Reynolds
number MHD turbulence cannot be accessed by the DNS method. This
difficulty has prompted the development of approximate numerical methods
in which modelling plays an important role.

Amongst these approximate numerical approaches, the large-eddy sim-
ulation (LES) is considered as one of the most promising techniques. The
LES is based on a scale separation in which the variables describing the
largest structures of turbulence are computed directly while the influence of
the smallest structures is accounted for through a model. This scale separa-
tion is obviously motivated by the limitation of computer power. However,
it also corresponds to major differences in the behaviours observed at large
and small scales in a turbulent flow. Indeed, large scales usually contain the
main part of the kinetic and magnetic energy carried by the medium. Their
knowledge is often sufficient to characterize most of the properties of prac-
tical interest in a turbulent conducting fluid. Also, the large scales strongly
depend on the geometry of the flow and, as such, would require a case-by-
case modelling treatment. On the contrary, the small scales carry less energy
and behave in a fairly “universal” way. Their modelling seems thus easier
and more promising.

Within the framework of LES, the scale separation is achieved by applying
a filter to the evolution equations for both the velocity and the magnetic
fields. Traditionally, this filter is denoted by an overbar symbol and the
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Figure 4: Comparison between energy spectra in the mixing layer predicted
by the DNS (diamonds) and by the LES (dashed line) for the kinetic (left)
and magnetic (right) parts.

filtered MHD equations thus read:

∂tui = −∂j(ujui − bjbi) + ν∇2ui − ∂ip− ∂jτ
u
ji (6)

∂tbi = −∂j(ujbi − bjui) + η∇2bi − ∂jτ
b
ij (7)

Due to the nonlinearities, the filtered equations are not closed and they
contain terms that represent the effect of the small, filtered scales on the
large and numerically resolved scales. These terms are given by: τ u

ij =

(uiuj − uiuj) − (bibj − bibj) and τ b
ij = (uibj − uibj) − (ujbi − ujbi). In

order to close equations (6) and (7) , we need to model these terms and
the most traditional strategy is to use a turbulent viscosity model in the
filtered velocity equation and a turbulent magnetic diffusivity in the filtered
induction equation. Details about this method are given in Refs [4, 5].

In Figures 3 and 4 we compare numerical predictions from LES and DNS.
Without entering the details of the physics of the MHD mixing layer, we
can see that the agreement between the two numerical approaches is very
satisfactory taking into account that the DNS is more than hundred times
more time and memory consuming than the LES. It is also important to
note that the agreement is obtained for both physical space (energy profiles)
and wave space (energy spectra) predictions. According to the experience
gained in LES of Navier-Stokes turbulences, the LES could be considered as
a perfect tool for exploring high Reynolds number MHD turbulence.
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4 Conclusion

We have briefly reviewed two numerical strategies for exploring MHD turbu-
lence. The first one, usually referred to as the direct numerical simulation,
is based on the time and space discretization of the evolution equations for
both the velocity and the magnetic fields. As long as the numerics is correct,
a DNS provides a perfect tool for exploring all the details of the turbulent
fields. However, due to the very wide range of wavelengths that are excited in
turbulent flows, accurate DNS can only be achieved for moderate Reynolds
number flows.

An alternate approach, based on a scale separation between the energy
containing scales and the fluctuating small scales has been proposed for ex-
ploring large number Reynolds flows. This approach, referred to as large eddy
simulation, has been developed mainly in the context of the Navier-Stokes
equation [6]. However, recent applications of LES to MHD turbulence [5, 7]
have proved that this method is also very well suited for exploring turbulence
in conducting fluids.

It is a pleasure to acknowledge here the very positive influence of Professor
Radu Balescu on the development of the research in plasma physics and, in
particular, in the study of turbulent phenomena in plasmas.
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