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Abstract

We present results of a study of the di¤erential equation governing the stationary
states of the two-dimensional planetary atmosphere and magnetized plasma (within
the Charney Hasegawa Mima model). We compare the results to the experimental
observations on a large scale vortical �ow observed in the Hyper-I device. The role
of the e¤ective Larmor radius is emphasized and the asymptotic stationary states
are characterized in terms of vorticity and of density pro�les close to adiabaticity.

1 Introduction

The complex processes of the plasma dynamics have imposed the development of powerful
statistical methods, able to provide better understanding, as well as tools for concrete
applications. In this spirit the works of R. Balescu represent an excellent reference, for
their systematic structure and for clarity [1], [2], [3]. In particular the statistical properties
of the test particle positions in plasma have led to a quantitative description of anomalous
transport in con�ned plasma [4]. These works also represent sources for the development
of new approaches, in particular in the study of processes found at the boundary between
the physics of plasma turbulence and plasma structures.
In most experimental situations plasma is in a turbulent state and may be described

as a large statistical system. There are however situations where the plasma exhibits very
regular �ow pattern or coherent structures, in a quasi-stationary state. Recently it has
been observed in a plasma column in magnetic �eld the formation of a large-scale regular
vortical �ow pattern which attains a stationary state. This state has been obtained in the
�High Density Plasma Experiment�device (Hyper-I ) [5] and the �ow has been measured
in detail. Since this experiment is well documented and plasma parameters have been
accurately measured, it may be taken as a reference case for the application of the theory
of asymptotically stationary two-dimensional �ows.
In the absence of dissipation the model of ion drift waves in a two-dimensional geometry

transversal to a strong magnetic �eld reduces to a set of two di¤erential equations for the
electrostatic potential � (or streamfunction  for the ion �uid velocity) and the density
n. From this, a further simpli�cation of adiabatic density response leads to the Charney-
Hasegawa-Mima (CHM) equation [6], [7]. Numerical simulations show that the stationary
states reached in relaxation are very regular and persist for a long time period [8], [9], [10],
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[11]. Most of these studies have concentrated on the identi�cation of small vortices, on the
scales of few Larmor radius, �s. The prototype is the dipolar vortex (modon) Larichev-
Reznik with an e¤ective diameter of few Larmor radii. However one should expect that
large scale organized �ows can form, with the dynamics being governed by the ion drift
wave model, in particular the CHM equation. The notations are as follows �s = cs=
ci,
where cs =

p
Te=mi is the sound speed (in m=s), Te is the electron temperature (in eV ),


ci = eB=mi is the ion cyclotron frequency (in s�1), e is the electric charge (in C), B is
the magnetic �eld (in T ) and mi is the ion mass (in kg).
In the ion drift wave model the Larmor gyration of ions plays the essential role. In

the unperturbed state it establishes an intrinsic space scale (the ion sound Larmor radius,
�s) which excludes the scale invariance of the theory. And, of equal importance, the
unperturbed state consists of a continuum of vorticity, given by the Larmor gyrofrequency,

ci. When there are perturbations which vanish at large distance, the total vorticity must
smoothly match the constant vorticity of the asymptotically far regions. Any vortical �ow
must be seen as an excitation developing on this background. We will call this background
a condensate of vorticity.
It is known that the asymptotic stationary states of the ideal Euler �uid attained

by relaxation from turbulent states are described by the sinh-Poisson equation. For
the Charney-Hasegawa-Mima equation it appeared to be much more di¢ cult to �nd the
equation governing the asymptotic stationary states [12], [13].
There is a deep reason for this. The presence of the condensate of vorticity and of

the intrinsic �nite length not only removes the space-scale invariance (typical for the ideal
Euler �uid) but also induces a �nite range of interaction between the plasma elements. To
understand this we have to remind that in the Euler �uid case the vorticity is connected
with the streamfunction by simply the Laplacean operator and the inverse appears as the
logarithmic interaction, i.e. a long range interaction. For the ion drift theory the vorticity
of any physically interesting �ow is actually placed upon the background of the Larmor
gyration, the condensate of vorticity. Only the part of the perturbed vorticity which
remains after substracting the background is directly invloved in physical processes and
this modi�es the operator: instead of the Laplace operator we now have the Helmholtz
operator,

�! �� k2

with k the inverse of the length scale. This operator leads to a �nite range interaction.
The origin of this short range interaction can be traced back to the presence of the
condensate which makes that any perturbation cannot propagate instantaneously, but
becomes e¤ectively heavy. This is however only part of the problem.

Before going further we specify our theoretical framework. We have developed a �eld
theoretical model for the point-like vortices with short range interaction, based on Chern-
Simons action for the gauge �eld minimally coupled to a nonlinear matter �eld, in SU (2)
algebra. It is possible to derive the energy as a functional that becomes extremum on
a subset of stationary states and presents particular properties. The general character-
ization of this family of states is their self-duality, which here means that the energy
functional becomes minimum because the square terms are all vanishing, leaving as lower
bound a quantity with topological meaning. A very detailed account of the derivation is
in Refs. [16], [19].
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The result is a set of equations parametrized by the solutions of the Laplacean equation
in two-dimensions.
The simplest of these equations is

� +
1

2p2
sinh (cosh � p) = 0 (1)

(where p is a positive constant). We have proved that this equation can explain known
results: the scatterplots of ( ; !) = (streamfunction, vorticity) obtained in experiments
[20] and the scatterplots obtained in numerical simulations [12] are very similar to the
nonlinear term of Eq.(1). We have also shown that this equation is able to describe the
large scale vortical �ows (typhoons) of the planetary atmosphere (see [17]), reproducing
the main characteristics of the �ow and determining quantitative elements in the range
which is consistent to the real situation.

We now add a short comment, mentioning the second part of the di¢ culty of identi-
fying the form of the equation at asymptotic stationarity.
In order to obtain self-duality (here expressed as the vanishing of the square terms

in the energy functional) within the non-Abelian theory one has to take the potential of
self-interaction of the scalar matter �eld (which actually represents by its modulus square
the density of point-like vortices) with a factor consisting of the square of this complex
scalar �eld, which generates a new minimum, this time at zero scalar �eld. The other
two minima are at the cyclotron frequency �
ci. This new symmetric minimum induces
a class of solutions (distributions of �ow vorticity) which are not topological. Although
there is a Higgs generation of mass (= the short range of the interaction between point
vortices) as in the Abelian-Higgs case of super�uids, the class of vortices is richer and a
clear relationship between the vorticity and the streamfunction could not be established.
Only the formalism of �eld theory for the model of point-like vortices interacting via

short range potential can provide the form of the equation (1).
In this work we report numerical investigation of this equation, carried out with the

objective to reproduce the experimental data of the large vortex �ow of the NIFS ex-
periment. We have considered that this large scale organized �ow cannot be simply
assimilated to a vortex of the CHM equation, as it is Larichev-Reznik modon. In con-
sequence the velocity is considered a factor that can in�uence the dynamics, in the way
which has been established for ion drift waves in sheared �ows. We have also taken into
account the e¤ect of the strong density gradient since it can modify, combined with the
translational velocity, the space scale of the problem, replacing the Larmor radius by an
e¤ective Larmor radius depending on these parameters. Since in the theoretical model
for the asymptotic stationary states there is only this parameter which is present, the
determination (with the help of the experiment) of this e¤ective space scale is an essential
prerequisite.
The results are summarised here.
The main parameters of the vortical �ow obtained by numerical solution of the equa-

tion (1) are in good agreement with the experimental values of the Hyper-I device reported
in [5].

1. The vorticity has a pro�le which is close to the experimental one and the magnitude
of the vorticity is close to the ion Larmor gyrofrequency.
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2. The tangential velocity has a pro�le which is similar to the experimental one. The
absolute magnitude is smaller than the ion sound speed.

3. The radial velocity has a magnitude comparable to the experimental one, but the
spatial (2D) distribution is more complex, without exhibiting a constant orientation
of the �ow toward the center of the plasma.

4. The plasma density is obtained from the application of the Ertel �s theorem; for our
numerical values of the vorticity which in the center are very close to 
ci we obtain
very low plasma density close to the center of the hole.

2 Parameters of plasma in the Hyper-I experiment

For the Hyper-I device (NIFS), we have indications on the values of the parameters from
the experiment. the gas is Helium (mi = �mp = 4mp). The space domain investigated
experimentally is of the order [�8:5; 8:5]� [�8:5; 8:5] in centimeters (Fig.2 of ref.[5]).
The magnetic �eld at the axis of the machine was in the range

B � 875:::1250 (Gs) (2)

The radial electric �eld in the transition zone : hole - bulk plasma

Er = 40 (V=cm) (3)

The ion gyrofrequency is


ci = 9:58� 103Z
B

�

�
s�1
�

(4)

where � = 4, B is measured in (Gs) and Z is the e¤ective ion charge in the experimental
condition and we assume Z = 1. For B = 1000 (Gs) we have 
ci = 2:395� 106 (s�1).
The measured sound velocity

cs = 3� 104 (m=s) (5)

and the measured maximum azimuthal velocity was of the same order

vphy�max � cs = 3� 104 (m=s) (6)

Knowing cs we have the constraint on the two parameters �s and 
ci

cs = �s
ci (7)

The variation from v� = 0 (in the center) to v�max (at r = a) takes place on a distance

aphy � 3� 10�2 (m) (8)

In a large volume with small gradients or no �ow we could take these as physical units,
fora process which is driven by the ion �uid

�i =
cs

ci

=
3� 104

2:395� 106 = 1:25� 10
�2 (m) (9)
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ci = 2:395� 106
�
s�1
�

(10)

cs = 3� 104 (m=s) (11)

In the present case they will be used below for the identi�cation of the appropriate range
to start the numerical integration of the di¤erential equation (1) and to obtain the ap-
propriate physical units.

3 Numerical range for searching solutions

The fundament of the analytical model is the ion drift waves in a strong magnetic �eld, in
the simplest two-dimensional geometry. Assuming uniform density and temperature, the
unperturbed state is a continuum of ions performing gyromotion, without any other mo-
tion. Two parameters are su¢ cient to describe this state: the frequency of the cyclotron
gyration 
ci and the Larmor radius �s. They are combined into a third physically useful
parameter, the sound speed cs.
The CHM equation describes the e¤ect of excited ion �uid motion over this back-

ground. The intrinsic space scale of the model is the Larmor radius �s. The alternative
description of this system consists of a discrete set of point-like vortices interacting via
the short range potential (the Stewart-Morikawa model).
On this basis it was possible to develop a �eld theory model as a continuum version of

the model of discrete vortices. Two elements are essential: the existence of a condensate
of vorticity (a constant value of the vorticity of the �uid motion at asymptotically large
distance on the plane, where any other perturbation has vanished) and the short range
of the potential. The �eld theory at self-duality reduces to a di¤erential equation for the
streamfunction. There is only one physical parameter in this equation, the space scale.
As we have said, the original framework indicates unequivocally that this length is the
Larmor radius �s, the intrinsic scale of the CHM equation, equivalently the short space
range of the potential of the interacting discrete vortices.

Physical states described by the CHM equation are inevitably more complex than
this basic framework. In particular the existence of a gradient of density and of a global
translational motion of the plasma modi�es the equation.
It has been shown that in certain circumstances the modi�cation induced by these

two physical elements: a drift velocity and a translational velocity are represented in the
theory to a rescaling of the Larmor radius.

We discuss in the following the arguments leading to an e¤ective rede�nition of the
elementary space scale in ion drift wave, using essentially the works of Horton and col-
laborators.
In studies of the planetary atmosphere (especially of the Red Spot of Jupiter) Petvi-

ashvili revealed the possible role of the scalar of KdV nonlinearity, of lower di¤erential
degree than the term of convection of the vorticity (or vector nonlinearity). This term
may become more important at large spatial scales and at later times (Mikhailovskya),
being therefore interesting for stationarity obtained from relaxation of the �uid turbulent
states. In plasma physics Lakhin et al. , Makino et al., Horton et al. and Spatschek et al.
have clari�ed the e¤ect of the temperature gradient and of the second space derivatives
of the density in the equation, showing that the equation can be reduced at stationarity
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to the Flierl-Petviashvili form. The existence of solitary vortices could not be proved.
However, it has been shown that monopolar vortices with non-solitonic nature (they are
slowly decaying by radiation emission) are possible when there is a higher space variation
of the density (or, equivalently, the space variation of the drift velocity vd (x; y)) and the
space variation of the temperature. The vortices are not exponentially localised.
Using multiple space and time scale analysis Spatschek et al. have shown that the

vortical �ow should be seen at scales of the order

�s
"

where " is the drift wave parameter
" =

�s
Ln

The derivation of the equation for a sheared �ow is made by Su, Horton, Morrison.
The spatial scale after assuming a drift wave ordering practically is an e¤ective (or

renormalized) Larmor radius

1

�2s
! 1

�effs
� 1

�2s

�
1� vd

u

�
We note here that the oredering adopted in that reference, u ' vd seems consistent with
the results of the experiments at NIFS. This is because it has been observed a rotation
velocity in the vortical �ow of the order of the sound velocity cs ' 4� 104 (m=s) . The
drift velocity is in the experiment measured close to the region of higher gradient of the
density (the transition region from the hole to the higher density)

vd =
�scs
Ln

(12)

It is observed that the decrease of the density takes place on few Larmor radii

Ln � �s

Then from Eq.(12)
vd � cs

The fact that from the experimental observation we have

u � cs

means that
1� vd

u
� 1

and the e¤ective Larmor radius �effs may be considerably greater than �s.
There are two di¢ culties which cannot be solved by a simple scale analysis. They

would possibly be solved by a major extension of the �eld theoretical model which has led
us to the di¤erential equation. The drift velocity is varying across the plasma section and
there is no unique factor which enhances �s . This means that there is a space varying scale
of interaction in the point-like vortex model (Stewart-Morikawa), and accordingly, the
Chern-Simons part of the Lagrangean should enter with a coupling constant � with space
variation. This space variation must be determined self-consistently when we provide
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physical information. Instead there is no need to consider a change of the condensate of
vorticity which remains 
ci. We will take a constant e¤ective Larmor radius.
The �eld theoretical model has not assumed a variation of the space scale. This should

be introduced in the expression of the Lagrangean density by a space dependence of the
coe¢ cient of the Chern-Simons term. In this case it is not clear if the self-duality condition
can be attained. Before this problem is clari�ed we may try to use the suggestion of the
plasma theory that the manifestation of the density gradient and plasma �ow is a modi�ed
space scale, a rescaled Larmor radius. Taking a constant scale will not change anything
from the equation. But all physical variables (superscript phy) will now be scaled to the
new space scale, the e¤ective Larmor radius. The Larmor gyration frequency is the same
as before.
The problem, especially when we intend to describe a concrete case (like the vortical

motion in the device Hyper-I at NIFS), is that the gradient of the density is in general
not constant across the section of the plasma and that the �ow has curved streamlines
and these elements cannot be captured into a simple rescaling of �s. On the other hand
we must recall that the essential of the CHM model is restrained to a space domain which
is dominated by lengths of the order of �s. When we know (from experiment) that the
scales are much larger, we can try to use for the identi�cation of the e¤ective Larmor
radius, a local slab approximation, with a constant density gradient (i.e. constant drift
velocity vd) and constant �ow velocity u directed alond the same direction as vd. The
experimental measuremets provide a clear range of values for these two velocities, and
our representative values are located in these ranges. After several numerical tests it
appeared possible to take the e¤ective Larmor radius as a parameter and scan the range
of its values until a �t to the experimental values is obtained. We now explain how this
is done in the numerical studies.
According to cited works, the e¤ective Larmor radius (in physical units, m) is intro-

duced as
1�

�effs
�2 = 1

�2s

 
1� vphyd

uphy

!
(13)

By de�nition
vphyd =

�scs
Ln

(14)

In the experiment it is seen that the decrease of the density toward the center of the hole
is rather sharp , on few Larmor radii. We will take formally

Ln = g�s (15)

where g is a factor of few units. This implies

vphyd =
cs
g

(16)

From the numerical solution of the equation we obtain the tangential velocity of the
vortical �ow, v�. In terms of the physical space unit, �effs and time unit, 
�1ci , it becomes

uphy � vphy� = v�
�
�effs 
ci

�
(17)

Now we will introduce a factor for the modi�cation of the Larmor radius

�effs = q�s (18)
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and we can rewrite Eq.(13)

1

q2
= 1� cs=g

v�qcs

= 1� 1

gqv�

From this equation we obtain

1

q
= � 1

2gv�
+

s
1

4g2v2�
+ 1 (19)

The experimental data (Fig.1 from [5]) suggests

g ' 2 (20)

since the Larmor radius is �s � 1:25� 10�2 (m) and the decay of the density takes place
in approximately 2:5 (cm). Then Ln ' 2�s.

1

q
= � 1

4v�
+

s
1

16v2�
+ 1 (21)

The other parameter which is immediately confronted to the experiment is the position
aphy of the maximum of the tangential velocity

aphy = a�effs
= aq�s

From experiment it is known that this distance is approximately

aphy � 3 (cm)
= 2:4�s

The second condition is then
2:4 = aq (22)

The numerical solution will provide the two values

(v�; a)

from which we determine q using Eq.(21) and compare with Eq.(22). The compatibility
will indicate that the choice of e¤ective space scale was adequate. At that moment we
have to make comparison between the full set of numerical results and the experimental
pro�les.
In summary, the physical units which will allow us to map the numerical solution

( ; !; v�; etc.) to the physical quantities are

unit of space = �effs = q�s

where
�s = 1:25� 10�2 (m)

unit of vorticity = 
ci = 2:395� 106
�
s�1
�

unit of streamfunction = �effs 
ci

unit of velocity = cs = 3� 104 (m=s)
The factor q remains to be determined from an optimum �t of the numerical and experi-
mental results.
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4 Numerical studies of the equation

4.1 Preliminaries to the numerical experiments

The structure of the function space representing the union of attractors for the various
solutions of this equation appears to be very complex. This immediately translates into
serious obstacles in the attempt to reach one of the presumed solution.
We use the code �GIANT A software package for the numerical solution of very large

systems of highly nonlinear systems�written by U. Nowak and L. Weimann [23]. The code
belongs to the numerical software library CodeLib of the Konrad Zuse Zentrum fur
Informationstechnik Berlin. The meaning of the abbreviation is: GIANT = Global
Inexact A¢ ne Invariant Newton Techniques and corresponds to the implementation of
the method proposed by Deu�hard (for many references see [23]).
All necessary description of the method, of the code and many studies of the nu-

merical precision and computer e¢ ciency are presented by Nowak and Weimann in the
documentation of the code.
The boundary conditions are dependent on the value of p. The physical model imposes

that the scalar function  remains nonzero at in�nity for p > 1. This means that we must
require that the boundary condition is one of the roots of the algebraic equation

cosh � p = 0 (23)

which can give the vanishing of the physical vorticity at in�nity. Then we impose

boundary condition  (r !1) =  
(1;2)
b (24)

= ln
�
p�

p
p2 � 1

�
The initial function is a symmetric pro�le taken as suggested by the monopolar solution

of the Petviashvili and Pokhotelov. The existence of a monopolar very robust (possibly
stable) solution is con�rmed by the numerical studies carried out by Boyd and Tan for the
Renormalized Long Wave equation, equivalent at stationarity with the Flierl-Petviashvili
equation. They also o¤er an analytical expression for the monopole as a series of forty
�ve terms. We take

 ini (x; y) = Aini [sech(kr)]
4=3 +  b (25)

where

kr =

r
x2 + y2

�2
; on 0 � x; y � Rp (26)

� =
xmax � xmin

2

1

d

The two parameters are : Aini = the initial amplitude of the streamfunction after nor-
malization to �2i
ci, and d = a factor of order 3:::6 such as � is a fraction from the plasma
radius Rp where the initial pro�le is approximately contained. The domain of integration
is quadratic

[xmin; xmax]� [ymin; ymax] (27)
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with the length of the sides L � xmax � xmin normalized to the unit if distance �effs . The
mesh is usually 51, 81 or 101 intervals on each side.
The parameter is chosen

p = 1

Another possible solution can be adopted as initial function, i.e. a single period of the
double periodic elliptic Weierstrass function, found as an exact periodic solution of the
FP equation [18]. This should be a valid con�guration at large spatial scales, but requires
a continuation to a decay type solution.
In the Appendix several possibilities are examined (within simple approximations)

to reduce the spectrum of the parameters of the numerical integration. The conclusion
at this moment can be formulated as follows: It is essential to retain the e¤ect of the
factor cosh � 1 at all higher orders. Otherwise, the truncations simply provide non-real
solutions.

4.2 Results of the numerical experiments

The following solution has provided the values

the maximum tangential velocity : v�max = 0:45

the radius where the maximum v� occurs : a = 1:5

From the �rst value we get using Eq.(21)

q = 1:7

and the RHS of the second condition, Eq.(22) is

aq = 1:5� 1:7 = 2:55

to be compared with the LHS of Eq.(22), 2:4. The match can be made even better.
The solution has been obtained with accuracy of 0:983 � 10�5 in 242 steps of Newton
iterations. The normalized range of spatial integration was [�4:1; 4:1] from which we
derive the physical spatial domain

L = 8:2�effs = 8:2� (q�s) = 8:2� (1:7�s)
= 8:2� 21:2� 10�3(m) = 17:38 (cm)

This is consistent with the Fig.1 and Fig.2 of [5].
The vorticity is also consistent with the experimental data, in magnitude and in the

spatial dependence (if we take into account the experimental error bars. It is more strongly
localised than in the experiment and this may be explianed by the absence of viscosity or
of inertial e¤ect in our model.

The radial velocity is less than in experiments

jvrj � 0:45� q � cs

and has a more complicated pattern, it is not always directed toward the center.
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Figure 1: The initialization,  ini(x; y).

Figure 2: The solution, the streamfunction  (x; y).
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Figure 3: The vorticity !(x; y). It is normalized with 
ci
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Figure 4: One of the test of quality of numerical solution; the vorticity pro�le is compared
to the pro�le of the nonlinear term in the equation (the lines are indiscernable one of the
other).
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Figure 5: The scatterplot ( ; !). The continuum line is the analytic nonlinear term.

Figure 6: The test of quality of solution: the ratio of ! to the nonlinear term.
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Figure 7: The contours of the streamfunction  and the velocity �eld.
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Figure 8: The radial component of the velocity, vr(x; y)
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Figure 9: The tangential component of the velocity, v�(x; y)
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Figure 10: The pro�le of the magnitude of the tangential velocity.
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Figure 11: Comparison between the theoretical results (solution of the equation 1 and the
experimental results (Fig.3 of ref.[5]): the vorticity.
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Figure 12: Comparison between the theoretical results (solution of the equation 1 and the
experimental results (Fig.4 of ref.[5]): the velocity.
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Figure 13: The density distribution as obtained by applying the Ertel theorem with the
vorticity determined from numerical solution. (Compare with the Fig.1 of ref.[5])

4.3 The density variation in the plasma vortex

This can be applied for the case we study, the atmosphere or the plasma in the linear
machine at NIFS. We have from numerical simulations that the vorticity is very peaked
and it is always negative (since we have the streamfunction positive with maximum in
the center)

! = � j!j
The Ertel�s theorem is

d

dt


ci � j!j
n

= 0

This suggests that, if the initial state is perfectly uniform and the streamlines are labelled
by a single constant then

n (r) = const (
ci � j! (r)j)
Therefore in the central region, the only one where the vorticity ! is non-vanishingly
small and negative, the density must be smaller than in the rest of the plasma or of the
typhoon.
This conclusion does not depend on the direction of the rotation of the plasma, in

the following sense. As described in the NIFS experiment, the direction of the rotation
of the plasma in the con�guration with the central hole could be reversed, by inversing
the sense of the magnetic �eld. However, we notice that in this case also the sign of
the gyrofrequency 
ci is reversed, due to the change of the sign of the magnetic �eld.
Therefore, there is an overall change of signs, for ! and for 
ci, but the relation remains

159



the same, which means that the desnity is reduced in the region where the vorticity is
concentrated.

5 Summary

We consider that the comparison with the experimental data is very encouraging, al-
though much numerical work is still needed. It appears possible to develop a theoretical
explanation for the large scale vortical �ow of the Hyper-I device (and of other vortical
�ows) on the basis of the theory of the asymptotic stationary states of the ion drift �uid.
This implies that the di¤erential equation (1) plays a major role in describing structures at
stationarity. A con�rmation of this role means that the plasma evolves to that particular
subset of states characterized by self-duality. This would be identical to the correspnding
tendency of the ideal �uids toward states described by the sinh-Poisson equation.

Naturally, it is not possible to expect a complete explanation of the present case, since
the model of stationary states is non-dissipative. It is clear that in Hyper-I (as underlined
in [5]) the viscosity is an important element of the dynamics.
Nevertheless, the con�rmation of the evolution of the plasma to the self-dual states

would be a far reaching result.

6 Appendix. Preliminary search for the initial para-
meters of the integration

The case with p 6= 1
The space derivatives that must be estimated for the Laplacean. ! = � will imply

! = � =
�2 

(�r)2

with
�r = a fraction of Rp

let us say, �r = 10. In this case, we should have numerically  � (�r)2 which is very
large. Introducing this value in the functions sinh and cosh would immediately lead to
intractable problems. Then we would look for much smaller values of  , and compensate
the large magnitude of (�r)2 by other means, for example by the factor 1= (2p2) of the
nonlinear term. This means that we should take

p � �r

Since this value of p is high, the boundary condition for  implies

 b = ln
�
p�

p
p2 � 1

�
is also high

 b ' � ln (2p)
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Suppose that the streamfunction above this boundary value is small��� e ���� j bj

Then we can treat perturbatively

�
�
 b + e �+ 1

2p2
sinh

�
 b + e � hcosh� b + e �� p

i
= 0

� e + 1

2p2

 
sinh b + e cosh b + e 2

2
sinh b

!

�
 
cosh b � p+ e sinh b + e 2

2
cosh b

!
= 0

Retaining the second order

� e + 1

2p2

�e sinh2  b + 3
2
e 2 sinh b cosh b� = 0

We recall that
cosh b = p

and

sinh b =

q
cosh2  b � 1

=
p
p2 � 1

Then
� e + 1

2p2
�
p2 � 1

� e + 3
2

1

2p

p
p2 � 1e 2 = 0

� e + 1
2

�
1� 1

p2

� e + 3
4

r
1� 1

p2
e 2 = 0

We note that the �rst two terms reduce the equation to the oscillator, if p > 1.
However, if p < 1 the equation becomes that of the modi�ed Bessel function,

K0

�
1

�i

1

2

�
1� 1

p2

�
r

�
� K0

�
r

�0

�
�0 � �i

1
2
(1� 1=p2)

The approximation has shown that the space decay of any solution takes play on a distance
which is replaced with a larger one, for p > 1. But for larger p the decay is on the Larmor
radius again. On the other hand our approximation has been done for large p > 1. The
solution is then an oscillation, for small e .
We also note that the presence of p2 at the denominator is without e¤ect for compen-

sating the large magnitudes of (�r)2 that appears in the Laplacean.
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The case with p = 1
In this case we will assume that  is a small quantity compared with unity. The

boundary condition is

cosh b � 1 = 0
 b = 0

Then
� +

1

2
sinh (cosh � 1) = 0

is approximated as

� +
1

2
 
 2

2
= 0

� +
1

4
 3 = 0

In one dimension we have
d2

dx2
 +

1

4
 3 = 0

with solution
 =

�

x

d

dx

�
� �

x2

�
+
1

4

�3

x3
= 0

2�
1

x3
+
1

4

�3

x3
= 0

or
� =

p
�8

therefore again imaginary.

On the other hand, for large  we have

� +
1

2
exp (2 ) = 0

which is the Liouville equation. This equation is equivalent to an approximative form
(for large j j) of the sinh-Poisson equation, with the meaning that any trace of the factor
cosh �p has disappeared. We cannot use such approximation, since the term cosh �p
represents the physical e¤ect of the condensate of vorticity, the basic element of the model.
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