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1 Introduction

The transport intermittency is a topic of current interest in both the exper-
imental and theoretical studies of the tokamak plasma [1]. An intermittent
rate of transport cannot be directly derived in the standard, di¤usive, ap-
proach to the energy and particle transport. The most common ideas in
this �eld associates the (anomalous) transport to the instabilities which have
evolved into a statistically stationary state of turbulence. The regime of
transport is then stationary and no �uctuations of the rates can be accomo-
dated in this model.
There are however recent proposal for the source of intermittency, mainly

related to the model of avalanches as in sand-pile-like systems. Irregular
bursts of the transport rates are also observed numerically in a model of
the ion-temperature gradient driven turbulence with a boundary condition
imposed as a heat �ux from the core region toward the con�nement region
[2].
Random destabilization of plasma modes. Stationarity obtained from

� saturation of turbulence at equal rates of growth and dissipation (in a
spectral cascade); or, alternatively

� random sequence of rise and decay of plasma instabilities [4]; short
bursts of transport, at random; self-suppression of transport: the other
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attractors, like in many dynamical systems described by di¤erential
equations with di¤erent behaviours according to the initialization in
the basin of a particular attractor.

Competition of transport mechanisms [3]. Mixing of the properties of the
transport mechanisms.
Numerical simulation with �uctuating di¤usion coe¢ cient [4]. Statistical

properties of the outgoing �uxes of particles and energy.

2 Shear length and the transport rate

If the transport is determined by the drift modes, then the radial extension of
these modes gives a measure of the e¤ectiveness of the elementary di¤usion
event. But the radial extension is dependent on the radial position of the
resonance of the mode parallel velocity with the ion thermal velocity. This
general connection is more complicated in the case of toroidally induced drift
branch [5].
It is believed that the transport rate is strongly dependent on the shear

parameter (see [6]).
The di¤usion coe¢ cient is, in the simplest (mixing length) approximation,

� =
L2r
� c

(1)

where Lr is the characteristic radial length of the mode and � c is the corre-
lation time. In general Lr is connected to the linear extension of the mode.
This is very often considered to be of the order of �s.
When we take into account the toroidal geometry, the perturbed electro-

static potential is written as a superposition of poloidal harmonics coupled
by the toroidicity e¤ect . This comes from the presence of the drift veloc-
ities in the particle trajectories, giving a shift !D in the resonance of the
propagator. But !D is more than a simple shift in frequency. It has a non-
trivial dependence on the parallel and perpendicular particle velocities, which
complicates the integration over the velocity space. In addition it contains
spatial variables, since the drifts are due to the gradient of the magnetic
�eld and to the curvature. The dependence of !D on the poloidal angle �
imposes a radical change in the linear treatment of the mode stability. This
comes from the combination which arises from the poloidal harmonic expan-
sion exp(im�) and the trigonometric functions present in !D. The simple
presence of the function cos � generates, for every harmonic m� terms of in-
teraction with neighbouring harmonics (m+ 1) � and respectively (m� 1) �.
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This has nothing to do with the nonlinear or turbulent interaction between
the modes due to the nonlinearity. Now, the particularity of this situation
consists of the following: the harmonics (m� 1) � are located on di¤erent
magnetic surfaces, i.e. they are associated with di¤erent radial coordinates.
This makes the linear problem nonlocal in x (or r) and two-dimensional. The
solution is the ballooning representation of the modes.

If the overlap of the neighbouring harmonics is substantial, the harmonics
are strongly correlated and the harmonics have the tendency of oscillati-
tion at the same frequency !. But this is in contradiction with the fact
that each harmonic rotates on its resonant magnetic surface with the local
diamagnetic velocity. The result of these opposite e¤ects is a �nite radial
correlation length Lr.
If the di¤erences between the di¤erent values of the diamagnetic velocities

decreases, the number of harmonics which can be coupled increases and the
radial correlation length Lr also increases.
Experimental data. The ion thermal transport rate decreases with

increasing the shear (in the outer part of the discharge, where q > 1).
In order to determine Lr one must solve the two-dimensional eigenmode

equation for ITG mode. Result: strong dependence of the radial correlation
length on the shear.

3 Models

3.1 Electron drift instability

3.1.1 Electrostatic drift waves in the toroidal geometry

The electron-ion collision frequency exceeds the inverse transit time

�ei > !Te =
vthe
Rq

then the equations are: the continuity equation

@n

@t
+ nrkvke +r � (nv?e) = 0

and the parallel equation of motion

dvke
dt

+ �eivke = v2therk

�
jej'
Te

� n

�
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Here the perpendicular velocity is

v?e = vDe + vE

=
�r'� bn

B0
� Te
jejB0

bn�r lnB
composed of the E�B convection in the �eld of the wave and the electron
magnetic drift velocity.
The second equation (equation of parallel momentum conservation)

expresses the balance of the parallel electric �eld and the parallel gradient
of the pressure, with a contribution from electro-ion collisions (parallel vis-
cosity). This momentum balance allows us to obtain the parallel electron
velocity

vke =
v2the
�ei
rkh(r; �; '; t)

where h is the non-adiabatic part of the electron density �uctuation. The
equation for h is the equation of continuity with this replacement

@h

@t
� v2the

�ei
r2
k h+ vDe �rh�

�r'� bn
B0

�rh = (! � !�e)
i jej'
Te

3.2 ITG

3.2.1 The ion mode related to the ion-drift motions (rB and cur-
vature) !Di

Toroidicity induced modes and linear coupling of modes: (m� 1;m;m+ 1).

3.2.2 The ion mode related to the toroidicity

The ion polarization drift is important when the response of the density
is close to adiabaticity, since then (quasi-tridimensionality) the density has
aBoltzmann type pro�le along �led lines. the main nonlinearity, the con-
vection of the �uctuating �led by itself is suppressed and higher order non-
linearity are considered. Ballonning representation is the geometric method
required to correctly introduce the dependence of the �uctuation on the mag-
netic �eld.

Fluid treatment. Hydrodynamic equations for electrostatic slab model
(Lee and Diamond 1986)

@ni
@t

+r� (niv?i) +rk
�
nievki� = 0
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mini

�
@evki
@t

+ (vE �r) evki� = �enirk��rkPi + �ir2
kevki

@Pi
@t

+ (vE �r)Pi + �Pi
�
nievki� = 0

3.2.3 Other form of the equations

A similar form of the equation for the ITG eigenmode is obtained in the
ballonning representation in toroidal geometry. In this case the asymptotic
form of the function f (�) which is introduced by the balooning representation
is

f+ (�) = A+ exp

�
iqk?�bs!Ln
2"ncs

�2
�

with bs = rq0=q and "n = Ln=R. This is the condition of outward energy
propagation (radiation) identical to the asymptotic condition imposed for
the slab drift mode. The shear damping of these modes is e¤ective except
for strong toroidal localization in the bad curvature region of the torus. The
solution is

fn (�) = Hn (�n�) exp

�
�1
2
�n�

2

�
where

�n =
q!Ln
"ncs

�
2"nk?�cs
!Ln

�
1

2
� bs�� k2?�

2bs2�1=2 :
3.3 Two-dimensional structure of the ITG mode

The sensitivity of the radial extension to the shear is well edscribed in Ref.
[6].
The electrostatic potential is a superposition of poloidal harmonics:

� =
X
p

�p (x) exp [in'� i (m0 + p) � � i!t] (2)

where m0 = q (r0) n.
In the ballooning mode representation it is assumed that the neighbouring

poloidal eigenmodes �p have similar shape which are simply shifted by a
radial distance

1

nq0
(3)

which corresponds to the distance between two consecutive resonant surfaces.
(This should re�ect the presence of cos � and sin � in the expression of the
drift frequency !D).
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The global mode structure is given by a superposition of the harmon-
ics (several harmonics, labeled by the integer number p) with similar shape
modulated by a slowly varying envelope function

�p (x) = A (x) �0

�
x� p

1

nq0

�
(4)

The radial extent of the mode is dictated by the envelope function. The
eikonal representation

A (x) = exp

�
i

Z
kx (x

0) dx0
�
= exp

�Z
inq0�k (x

0) dx0
�

(5)

where the radial wavenumber kx has been normalized by nq0.
The solution of the global eigenmode equation will be obtained in two

steps:

� determination of the eigenmode structure along the �eld line, using
the ballooning formalism, and �nding an explicit expression for the
function �0.

� calculation of the envelope function A (x) i.e. of the global eigenmode.

Consider the Fourier transform of the function �0

�0 (x) =

Z b� (�) exp (�i�nq0x) d� (6)

which is inserted in the cuasineutrality condition

0 =
@2b�
@�2

+

�
!

!ti

�2� 1
�
+ !�i

!

1� !pi
!

++(k��i)
2 �1 + bs2 (� � �k)

2�� (7)

�!D
!
[cos � + bs (� � �k) sin �] b�0o

The local dispersion relation is obtained after imposing the boundary
condition b�0 vanishes exponentially j�j ! 1 (8)

the general form of the local dispersion relation

F (!; x; �k) A (x) = 0 (9)
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This equation is the result of the ballooning formalism applied in the ��rst
order�. Order means here to consider �k as a constant parameter (actually
it is taken equal to zero). The next order is obtained taking

�k = �i
1

nq0
d

dx
(10)

This is in contrast to the �local approximation�where the parameter �k and
the variable x are simply set to zero.
To �nd the explicit form of the enveloppe A (x) by solving the equation

F = 0, one should apply the WKBJ method. far from the turning points it
is possible to employ the eikonal representation for A (x)

A (x) = exp

�
i

Z
kx (x

0) dx0
�
= exp

�Z
inq0�k (x

0) dx0
�

(11)

where the parameter �k is expressed as a function of x from the local disper-
sion equation (9). The condition for turning points is�

@F

@�k

�����
�k=�T

= 0 (12)

and the radial position of the turning points xT is found by replacing �T
into the local dispersion equation (9). Close to the turning point we have an
analytical solution obtained by expanding F"�

@F

@x

�����
x=xT

(x� xT ) +
1

2

�
@2F

@�2k

�����
�k=�T

(�k � �T )
2

#
A (x) = 0 (13)

With the substitution of

�k = �i
1

nq0
d

dx
(14)

this equation becomes an Airy equation which can be solved. Connection
formulas are then used to obtain the global eigenmode. With boundary
conditions

jAj ! 0 for jxj ! 1 (15)

we obtain the condition of �quanti�cation�, i.e. the eigenvaluesI
nq0 x (�k) d�k = 2� (l + �) (16)

where x (�k) is obtained from the dispersion relation (9) and � a constant.
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3.3.1 General approach to solve the radial equation (i.e. deter-
mine A (x) )

It is assumed that the general form of the dispersion relation is

F = a (!) + f (x) + b (!) cos �k (17)

Here the function f (x) is associated with the radial (x) variation of the
diamagnetic velocity, i.e. of the temperature. The term cos �k is due to the
curvature.
There are two cases. If in the domain there is a point where

(@F=@x) = 0. Then one makes expansions around this point. In partic-
ular, the function

f (x) � x2

2L2
(18)

The point which gives the zero of (@F=@x) is taken the origin and one expand
around x = 0 and �k = 0. The dispersion relation becomes

a (!) + b (!) =
[�b (!)]1=2

nq0L
(l + 1=2) (19)

where from it is found

xT� = �L
"
[�b (!)]1=2

nq0L
(l + 1=2)

#1=2
(20)

The correlation length is

Lr = Re (xT+ � xT�) (21)

If there is no point where (@F=@x) = 0.

xT = �Lb (!)�
l

nq0
(22)

3.4 The bidimensional problem for the ITG in the case
with small shear

The variational method to determine the eigenmodes and eigenvalues.
The trial functions.
Dependence of the type

exp(�c=qbs) (23)

which is very sensitive to the �uctuations in shear.
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Consider the functional

H =

Z
 Lb�0dx (24)

where L is the oparator appearing in the dispersion relation. The conjugated
function  is �nally b�0 which gives the following form of the functional

H =

Z 1

�1
dx

24� @b�0
@�

!2
+

 
1
�
+ !�i

!

1� !pi
!

�
!

!ti

�2
+ (25)

+

�
!

!ti

�2
(k��i)

2 �1 + bs2 (� � �k)
2��

�!!D
!2ti

[cos � + bs (� � �k) sin �]

�b�20�
Now, for the toroidal branch there are �trial functions�

b�0 = �cos��2
�
� 2� + "=2

�� "=s
(� � �k) sin

�
�

2

��
exp

�
�� (� � �k)

2� (26)

For example, for the case where there is a point (@F=@r) = 0 the mode
is localized between the turning points

xT � 31=4
�
L0
nq0

�1=2�
1� 2"

3bs
�1=4p

2l + 1 exp

�
1

8"0

�
(27)

The �uctuations of the correlation length.

3.5 Drift waves and turbulence

About ions. The following model has been proposed by Carreras:

@eni
@t

+ eVxdn0
dx

+ eV �reni = �n0 �r? � eV? +rk � eVk

�
where the perpendicular ion velocity is due to the E�B motion and polar-
ization drift.
In these works the variation of the drift waves along the magnetic �led is

neglected
rk = 0

and the model becomes a cuasi-two-dimensional one.
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The model equation becomes

@

@t

�
1� �2sr2

?
�
n+ V�n

@n

@y
+

+D0
@2n

@y2
(the drive, e¤ective i� , or ik2yD0)

�LnD0

�
r?

�
@n

@y

�
� ez

�
�r?n (the E�B convection of the

nonadiabatic term)

+�scs (r?n� ez) �r?
�
�2sr2

?
�
n (the polarization nonlinearity)

= 0

where the normalized ion density is

n � en
n0

the ion diamagnetic drift velocity is

V�n =
cs�s
Ln

and the notation is introduced

D0 = �
p
"
(�scs)

2

LTLn�eff

Without the non-adiabatic electrons (the third: D0
@2n
@y2

and fourth:

�LnD0

h
r?

�
@n
@y

�
� ez

i
�r?n terms) the equation reduces to the original

Hasegawa-Mima equation. An energy sink can be modelled by adding a
hyperviscosity term in the model equation. This leads to a �nite band of
unstable drift modes with a high k cuto¤. Let�s note k? = k.
In Fourier space

i
@

@t
nk �

!�k + ik2yD0

1 + k2�2s
nk +

i

1 + k2�2s

�
NE�B
k +NPOL

k

�
= 0

where the nonlinearities are

NE�B
k = �i1

2
LnD0

X
k0+k00=k

[(k� k0) � ez]
�
k00y � k0y

�
nk0 nk00
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and
NPOL
k =

1

2
�scs

X
k0+k00=k

[(k� k0) � ez] �2s
�
k002 � k02

�
nk0 nk00

The linear dispersion relation i @
@t
= !k

!k = !
(0)
k + i


(0)
k =

!�k
1 + k2�2s

+ i
k2yD0

1 + k2�2s

which means that the term

k2yD0

1 + k2�2s
is the drive.

For comparison, Hasegawa-Mima equation, starting from the polarization
drift of the ions

@

@t

�
1� �2sr2

?
�
n+ V�n

@n

@y
+ �scs (r?n� ez) �r?

�
�2sr2

?
�
n = 0

where we can take the density to be adiabatic, which gives an equation for
the potential '. The problem is two-dimensional.
To examine the conserved quantities we ignore the drive and the sink

(damping). If only the polarization nonlinearity

NPOL
k = �scs (r?n� ez) �r?

�
�2sr2

?n
�

is retained the system has two conserved quantities :

the energy E =
1

2

Z
dV

�
jnj2 + �2s jr?nj2

�
=

1

2

X
k

�
1 + k2�2s

�
jnkj2

the enstrophy 
 =
1

2

Z
dV
����2sr2

?n
��2 + �2s jr?nj2

�
=

1

2

X
k

k2�2s
�
1 + k2�2s

�
jnkj2

The statistical mechanics prediction for the density �uctuation spectrum
in an equilibrium state


jnkj2
�
=

1

(1 + k2�2s) (a+ b k2�2s)

where a and b are Lagrange multipliers.
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The isotropic energy spectrum is

Ek = � k�s
�
1 + k2�2s

� 

jnkj2

�
=

� k�s
a+ b k2�2s

and the system pushes the energy to large scales.
The isotropic spectrum of the enstrophy is


k = k2�2s Ek =
� k3�3s

a+ b k2�2s

and the system pushes enstrophy to large scales. This is the dual cascade.
The energy going to the large scales is the inverse cascade.
When there is also the E�B nonlinearity

NE�B = �LnD0

�
r?

�
@n

@y

�
� ez

�
�r?n

the system has only one conserved quantity, the energy. The equilibrium
density �uctuation spectrum is


jnkj2
�
=

c

1 + k2�2s

When the electron�s motion along the �eld lines is much faster the par-
allel phase velocity of the drift waves, the electron response is adiabatic and
the E�B nonlinearity vanishes. The dynamics is dominated by the ion
polarization.
A change of the magnetic shear can transiently change the phase velocity

and the electrons aquire a distribution which is not Boltzmannian in the
parallel potential. The E�B nonlinearity can have a contribution.

4 Numerical simulations with local shear �uc-
tuation

The �uctuations of the output energy �ow at the tokamak plasma border have
been observed experimentally and in the frame of the di¤usive model of the
transport �ux they are associated to the change of the transport regimes and
the competition of the instabilities. A self-consistent model of this random
change of the transport regimes being di¢ cult to build, it appears useful to
study this problem by numerical simulations.
We have introduced a �uctuating di¤usion coe¢ cient in the balance equa-

tions and studied the statistical properties of the �uctuating plasma para-
meters. The �uctuations of the electron temperature and of the densities of
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impurities induce the �uctuations of the resistivity (calculated in the neoclas-
sical model) and of the current density. The volume integral of the current
density is less sensitive but the �uctuations are still present and as a conse-
quence we observe random changes of the parameter q and of bs.
The code solves the balance equations for energy, density and �elds [4].

The variables are: the electron and ion temperatures Te, Ti; the current
density j, the poloidal magnetic �eld B�, the toroidal electric �eld E', the
electron density ne, the radial pinch particle velocity Vr. The following equa-
tions are discretized on a one-dimensional space mesh (on the small radius)
and evolved in time by a semi-implicit scheme.

3

2
ne
@Te
@t

=
1

r

@

@r

�
r

�
�e
@Te
@r

+ nV Te

��
+Ej� 3

2
ne
Te � Ti
� ei

�Prad�Pion+P eadd
(28)

3

2
ni
@Ti
@t

=
1

r

@

@r

�
r

�
�i
@Ti
@r

+ nV Ti

��
+
3

2
ne
Te � Ti
� ei

� Pcx + P iadd (29)

j =
1

�0

1

r

@

@r
(rB�) (30)

@B�
@t

=
@E

@r
(31)

E = �j (32)

@ne
@t

=
1

r

@

@r

�
rD

@ne
@r

+ rneV

�
+ Sion (33)

V = Vpinch = const
E

B�

�r
a

�
(34)

The neutral�s density n0(r; t) provides the indirect control of the electron
density through the ionization term and also participates in the energy bal-
ance by ionization and charge-exchange. The radial pro�le is prescribed and
the time variation of the boundary value of the density is programmed. Al-
though it provides stationary pro�les of the density on the current plateau,
this simple model does not allow much freedom in the choice of density
regimes.
The impurities are considered in corona model for both light (Carbon,

Oxygen) and heavy (Iron, Wolfram, Molibden) atoms. The radial pro�les of
the total densities of these impurity atoms are prescribed. For Carbon and
Oxygen, the densities on the various ionization levels are calculated directly
with corona tables and for heavy ions using the polynomial �t of the global
e¤ects (Zeff , radiation, etc.). The resistivity is neoclassical and the particle
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pinch velocity has neoclassical form with an empirical value of the constant
coe¢ cient [7].
The electron thermal di¤usion coe¢ cient is modelled as:

�e = �MM + �RLW + e� (35)

where �MM (Merejkhin-Mukhovatov) = 1017
p
Te

qneR

�
r
R

�7=4
[7] and �RLW is

Rebut-Lallia-Watkins model. A particular advantage of using the semi-
empirical coe¢ cient �MM is that the numerical scheme is robust and allows
the study of the �uctuating plasma dynamics with not a very sophisticated
transport code. The sawtooth is simulated with a fast and high increase in
the heat di¤usion, which ensures the propagation of the heat from the cen-
tral region. To avoid the periodic discontinuities generated by the saw-teeth,
currently the function �e is corrected in the central region according to the
empirical prescription which requires to obtain the same radial pro�le of the
temperature as given on the average by the saw-teeth.

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

x 10 13

0.65

0.7

0.75

0.8

 s-hat vs. average density

ne (cm -3 )

Figure 1: Dependence of the shear parameter on the average density

The simulations have been performed in ohmic regimes with the parame-
ters of the Tore-Supra tokamak. In the absence of e�, a standard simulation
with total plasma current Ip � 1:4MA reaches a stationary plateau charac-
terized by Te(r = 0) � 1:4KeV , n � 3:5 � 1013 (cm�3), � e � 50ms. In the

37



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.16

1.17

1.18

1.19

1.2

1.21

1.22

1.23

s at r =4a/5

07  Jan 2000  12:18  AM

Figure 2: Shear parameter at 4a/5

discussion below, the changes in the magnitudes of the parameters induced
by e� will be compared to this reference discharge.
Fluctuations of the di¤usion coe¢ cient e�. The limitation of our

numerical scheme puts severe bounds on any attempt to realize the transport
almost exclusively during intermittent events, i.e. with vanishing background
di¤usion. Actually, this situation does not seem physically reasonable. In
our simulations, on the background di¤usion given by �0 = �MM + �RLW
we superpose an intermittent quantity representing e�. The time series of the
intervals where e� is switched on is dichotomic (a random discrete series of
0 or 1) and is noted Tdih . It is constructed with the following statistical
properties:

- Poisson distribution of the density of events over a �xed number of
time intervals during the discharge evolution; the duration of events is
randomwith uniform distribution of starting and ending times, however
respecting the condition of nonoverlapping for the e¤ective number of
events in every interval. This will induce signi�cant self-correlation
which replace, in our simulation, those of a more physical origin.

- Random choice (with uniform distribution) of the position of the max-
imum of e� over the radial region where e� 6= 0 (distance er to the plasma
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edge). This region corresponds approximatly to the con�nement region,
and is limitted by constant values (r1; r2). The function e� decays on
both sides of the maximum as the th function with widths representing
a fraction of the corresponding intervals, jer � r1;2j.

- Random amplitude: Gaussian distribution of the fraction of increase
above the local di¤usion coe¢ cient.

A particular realization of e� is obtained using random number gener-
ators with these distributions. The code runs on workstation (where the
simulations are prepared) and on the massively parallel Cray T3E where
the statistical ensemble of realisations of �uctuating di¤usive process e� are
generated and analysed with standard statistical methods.
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