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Abstract
A Hamiltonian map is constructed in which both the polar axis and the boundary

of the plasma cannot be crossed upon iteration. Phase portraits of the new map are
quite di¤erent comparing with tokamap phase portraits. In particular, the Golden
KAM exists up to K � 4 in contrast to tokamap where the Golden KAM plays
no special role. It is found that di¤erences in the predictions of the tokamap and
bounded tokamap might become signi�cant in those cases when processes at plasma
periphery are studied.

1 Introduction

Magnetic �eld lines in plasmas can be regarded as trajectories of Hamiltonian systems.
For the �eld line tracing two methods can be applied: i) integration of the trajectory
and ii) mapping of the trajectory. The latter is a modern technique for the Hamiltonian
system. It is more than an order of magnitude faster than the integration. A properly
chosen mapping procedure always conserves the main �ux preserving property of the
magnetic �eld, which is important for a correct reproduction of the long-term behaviour
of �eld lines in stochastic regions.
Symplectic maps for many Hamiltonian problems have been extensively used during

the last four decades. A systematic theory of these maps with many illustrative examples
can be found in the recent book [1].
In this work we address a speci�c question: what are the consequences of the physical

condition that the boundary of the plasma cannot be crossed. To answer this question,
we reexamine the so called tokamap [2, 3, 4].
The paper is organized as follows. A short description of the tokamap is given in

Sec. II. In Sec. III we introduce the physical bound on the magnetic �ux and derive the
so called bounded tokamap. In Sec. IV we compare phase portraits and KAM barriers
of the tokamap and the bounded tokamap. Appendix is devoted to the calculation of
�xed points and their stable and unstable manifolds of the bounded tokamap. Finally, a
summary and the conclusions are presented in Sec. V.
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2 The Tokamap

Mappings are constructed as iterative symplectic maps, representing a global picture of a
tokamak cross section at the toroidal angle 'k = 2�k (mod 2�). The generating function
of the mapping is de�ned as follows:

�F ( k+1; �k) = �
K

(2�)2
h ( k+1) cos 2��k (1)

and the mapping itself is given by the expressions

 k =  k+1 +
@�F ( k+1; �k)

@�k
= (2)

=  k+1 +
K

2�
h ( k+1) sin (2��k) ;

�k+1 = �k +W ( k+1) +
@�F ( k+1; �k)

@ k+1
= (3)

= �k +W ( k+1)�
K

(2�)2
h0 ( k+1) cos (2��k) :

Here  is the magnetic �ux, � is the poloidal angle, and W is the winding number; its
inverse q = 1=W is called the safety factor. The real, positive parameterK is called the
stochasticity parameter. It measures the strength of the perturbation.
Choice of the function h ( ) in the form

h ( ) =
 

1 +  
(4)

yields the following map:

 k+1 =  k �
K

2�

 k+1
1 +  k+1

sin 2��k; (5)

�k+1 = �k +W ( k+1)�
K

(2�)2
1

(1 +  k+1)
2 cos 2��k: (6)

The speci�c form of the map (5) and (6) is known as the tokamap. It is compatible
with the toroidal geometry and describes the global behavior of magnetic �eld lines in
tokamaks.
In form (5), the map is nonlinear; it possesses two solutions  k+1 for given( k; �k).

The following choice of the unique root provides the �nal de�nition of the tokamap:

 k+1 =
1

2

�
P ( k; �k) +

q
[P ( k; �k)]

2 + 4 k

�
; (7)

where the function P ( ; �) is de�ned as

P ( ; �) =  � 1� K

2�
sin 2��: (8)
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It is easily checked that in this mapping the magnetic �ux is a de�nite positive number.
If  0 > 0 then  k > 0, i.e.

 � 0: (9)

It should be noted that Eq. (8) violates the global invariance ( k = 0 )  k+1 = 0)
if K
2�
sin (2��k) < �1. As a consequence in the tokamap global chaos appears forK=2� > 1.
The upper limit

 � 1; (10)

which means that plasma boundary cannot be crossed, is not imposed. For this reason
the tokamap can be directly used in the ergodic divertor problem [5] where magnetic �eld
lines may go outside the last magnetic surface ( = 1).
Properties of the tokamap and of its various modi�cations have been studied in detail

[1, 2, 3, 4]. Several applications, e.g., investigation of magnetic reconnection during the
crash stage of the sawtooth instability [6] and stochastic transport of magnetic �eld lines
[7] are known.
The question arises what are the consequences of condition (10), should it be imposed

into a mapping in those cases when the physical problem is such that the physical bound
really exists, e.g., is given by a limiter or the wall?

3 The bounded tokamap

It is rather obvious that the important property of the tokamap Eq. (9) (�the polar
axis cannot be crossed�[2]) is related to the boundary condition h (0) = 0 following from
Eq.(4). By analogy the limit (10) requires another boundary condition h (1) = 0. The
two conditions can be simultaneously satis�ed if instead of Eq.(4) we take the function
h ( ) e.g., in the following form

h ( ) =  (1�  ) : (11)

Such a choice yields the following map:

 k =  k+1 +
K

2�
 k+1 (1�  k+1) sin (2��k) ; (12)

�k+1 = �k +W ( k+1)�
K

(2�)2
(1� 2 k+1) cos (2��k) : (13)

In form (12), the map is nonlinear. We rewrite it in the following form:

 k =  k+1 +Dh( k+1); (14)

where

D =
K

2�
sin (2��k) (15)

In order to consider a continuous map valid on the polar axis  = 0, the wall  = 1
and in the region 0 <  < 1 we choose in (14) the root

 k+1 =
1 +D �

q
(1 +D)2 � 4D k
2D

: (16)
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It can be easily checked that the global invariance ( k = 0 )  k+1 = 0 and
 k = 1 )  k+1 = 1) holds if K=2� < 1.
In order to avoid numerical di¢ culties in calculations, when D becomes very small,

we rewrite (16) in the equivalent form

 k+1 =
2 k

1 +D +
q
(1 +D)2 � 4D k

: (17)

Equations (13) and (17) constitute the bounded tokamap.

4 Phase Portraits

We �rst reproduce some typical phase portraits of the tokamap [2] and the revtokamap
[3] using the known expressions for the winding number

W ( ) =
w

4
(2�  )

�
2� 2 +  2

�
(18)

for the tokamap and
WR ( ) = w

�
1� a (c � 1)2

�
(19)

for the revtokamap. Here

a =
w � w0
w

; c = 1 +

�
w � w1
w � w0

�1=2
(20)

The winding number (18) is a monotonously decreasing function of  , while the wind-
ing number (19) possesses a maximum which corresponds to a reversed sheer (s =
[ =q ( )] dq ( ) =d ) con�guration.
Some typical phase portraits of these two maps are shown in Figs. 1a and Figs.

2a respectively. It is seen in Fig.1a that trajectories to a signi�cant extent lie outside
the physical region  � 1. This tendency increases with increase of the stochasticity
parameter K. It can be seen in Fig.2a that even for small values of the stochasticity
parameter K = 2 and K = 4, in revtokamap trajectories leave the physical region. This
is related to the fact that WR ( ) changes sign when  > 1.
In Figs. 1b and Figs. 2b we show the corresponding phase portraits of the bounded

tokamap and bounded revtokamap.
In bounded tokamap (Fig.1b) we observe that stochastization begins at the physical

boundaries, as is clearly seen for K = 6. Here two chaotic layers separated by barriers
are formed in the vicinity of  = 0 and  = 1. It is obvious that the phase portraits of
the revtokamap and the bounded revtokamap (Fig.2) are also quite di¤erent.
Summarizing we can say that

� The tokamap/revtokamap is a Hamiltonian map, depending on parameter K, under
which an initially positive radial coordinate  remains always positive, and the polar
axis is a barrier that cannot be crossed.

� The bounded tokamap/revtokamap is a Hamiltonian map, depending on parameter
K, under which radial coordinate  may vary only in the physical range 0 �  � 1,
and that the polar axis  = 0 and tokamak wall  = 1 are globally invariant.
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Figure 1: (a) Tokamap and (b) Bounded tokamap regular and chaotic orbits. Here the
following initial conditions have been used: twenty points along  axis and two points
along � axis. The parameter w = 1 in Eq. (18). The number of iterations N=5000.
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As next we consider the winding number which is typical for the ASDEX Upgrade
tokamak [8]

W =
1

0:8 + 2 
(21)

In Fig. 3a we show some tokamak phase portraits and in Fig. 3b some bounded
tokamak phase portraits obtained with this winding number. It is evident that raising
the stochasticity parameter gradually increases stochasticity albeit signi�cantly slower
than in the tokamap.
Note, that for the ASDEX Upgrade tokamak the number and nature of �xed points

of the tokamap and the bounded tokamap are the same (for details see the Appendix).
It is convenient to discuss di¤erences in the phase portraits of the bounded and un-

bounded models in terms of Kolmogorov-Arnold-Moser (KAM) barriers.

Figure 2: (a) Revtokamap and (b) Bounded revtokamap regular and chaotic orbits. The
parameters w0 = 1=3, w = 2=3, w1 = 1=6 in Eq. (20). Other conventions as in Fig. 1.

From classical theory of chaos, it is expected that the most resistant KAM tori cor-
respond to surfaces where the safety factor q is equal either to the Golden number or at
least to noble numbers de�ned by a continuous fraction expansion

[a1; a2;a3; : : : ; aj] = a1 + 1= (a2 + 1= (a3 + 1= � � �+ 1=aj)) (22)
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Here the Golden number has a simple coding:

G � 1 + 1

1 + 1
G

=

p
5 + 1

2
=

= [1; 1; 1; 1; : : : 1] = 1:61803399 : : : : (23)

It is known that the most robust KAM barrier in the standard map [9] is indeed the one
corresponding to safety factor q = G, or the winding number W = 1=G, which is called
the golden KAM.
Solving the cubic equation (18) for the tokamap

1

G
=
w

4
(2�  )

�
2� 2 +  2

�
(24)

with w=1, we �nd that the golden KAM is located at  � 0:316. Solving the quadratic
equation (19) for the revtokamap

1

G
= w

�
1� a (c � 1)2

�
(25)

we �nd that there are two golden KAM barriers located at  � 0:278 and  � 0:621, and
solving the linear equation (21) for the ASDEX Upgrade

1

G
=

1

0:8 + 2 
(26)

we �nd that the golden KAM is located at  � 0:409.
It is evident from Fig. 1a that in the tokamap, the golden KAM is not the most

robust KAM barrier [2]. Also in the revtokamap (Fig. 2a), the two golden KAMs are
not the most robust KAM barriers. The situation is di¤erent in the bounded tokamap,
as illustrated in Fig. 4. It can be seen that the Golden KAM at  � 0:316 exists at least
up to K = 4:5.
The picture is more complicated in the case of the bounded revtokamap, as seen in

Fig. 5.
In this case the equation (25) has two roots:  � 0:621 and  � 0:278. It is interesting

that the �rst observed KAM can be attributed to the �rst root, but the location of the
second observed KAM with good accuracy can be described by the equation

5G+ 2

8G+ 3
= w

�
1� a (c � 1)2

�
: (27)

Let us now consider the winding number corresponding to ASDEX Upgrade (26). The
results are shown in Fig. 6.
It is evident that the golden KAM located at  � 0:409 is present in the tokamap,

albeit it is relatively quickly destroyed at K < 4, due to the drift of the trajectories to
the nonphysical region.
As noted above, it can be said that in the tokamap and revtokamap trajectories

systematically drift into unphysical region  > 1. Such a drift can be regarded as a strong
perturbation shifting the most robust KAM surfaces far beyond the physical region, to
noble numbers more distant from the golden number G. For example, in [4] the irrational
number [4; 2; 1; 1; :::] = 4:382 has been studied.
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Figure 3: (a) Tokamap and (b) Bounded tokamap phase portrait with Eq. (21).
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Figure 4: Golden KAM for Bounded tokamap nearW = 1=G, EQ. (24). Initial conditions:
�0 = 0 and  0 = 0:30; 0:31; 0:32; 0:33; 0:34. The number of iterations N = 10000.

Figure 5: Golden KAM for the bounded revtokamap near W = 1=G, Eq. (25). Initial
conditions: �0 = 0 and  0 = 0:61; 0:62; 0:63; 0:65; 0:66. The number of iterations
N = 10000.

94



Figure 6: Golden KAM for tokamap near W = 1=G, Eq. (26). Initial conditions: �0 = 0
and  0 = 0:39; 0:40; 0:41; 0:42; 0:43. The number of iterations N = 10000.

5 Conclusions

We have shown how a simple Hamiltonian map can be constructed in which magnetic �eld
lines are not allowed to cross the plasma boundary. Phase portraits of the new map are
quite di¤erent comparing with tokamap phase portraits. In particular, we �nd that in the
bounded tokamap the Golden KAM exists up to K � 4 in contrast to tokamap where the
Golden KAM plays no special role. In the case of the winding number (28), considered as
an example, the number and the nature of the �xed points of the tokamap and bounded
tokamap are the same. The situation may be di¤erent for other forms of the winding
number. It is obvious that di¤erences in the predictions of the tokamap and bounded
tokamap might become signi�cant in those cases when processes at plasma periphery are
studied.
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7 Appendix: Fixed Points

We now address the question whether the new form of the function h ( ) given by Eq.
(11) changes the locations of �xed points in the bounded tokamap in comparison with the
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tokamap [2]. To be speci�c, we con�ne ourselves to the winding number which is typical
for ASDEX Upgrade tokamak (27), albeit allowing for a free parameter u

W =
1

u+ 2 
(28)

Fixed points of a mapping are de�ned as

 k+1 =  k =  ; �k+1 = �k = �: (29)

The study of �xed points should be completed by a linear stability analysis. A very
simple stability criterion is based on the residue, de�ned as follows in terms of the trace
of the matrix M de�ning the latter map [10]:

R =
1

4
(2� TrM) (30)

The �xed point around which the map is linearized is said to be linearly stable whenever
0 � R � 1.
It has been found [2] that in the tokamap for wm � w � wM , there are two unstable

X �xed points on the polar axis: X1 = (0; �1) andX2 = (0; �2). Here

wm = 1� (2�)�2K; (31)

wM = 1 + (2�)�2K: (32)

These points are bifurcation points: for w = wm the �xed points merge at � = 1=2, and for
w = wM they merge at � = 0. For w below wm, or above wM , the �xed points disappear.
In addition to these �xed points forwm � w < wm + 1, there is exactly one elliptic

�xed point Y= ( 1; 1=2) within the physical domain, and for wM < w < wM + 1 there is
exactly one hyperbolic �xed point Y2 = ( 2; 0) within the physical domain.
Fixed points of the revtokamap are signi�cantly more complicated. They are listed in

Table I of [3].
In order to �nd �xed points, we substitute Eq. (29) into Eqs. (12) and (13). As a

result, we obtain the equations

h ( ) sin (2��) = 0; (33)

W ( )� K

(2�)2
h0 ( ) cos (2��) = 0: (34)

The resulting residue is given by the expression

R = �K
4
�

A+ K
(2�)2

B

1 + K
2�
h0 ( ) sin (2��)

; (35)

where

A = W 0 ( )h ( ) cos (2��) ; (36)

B = (h0 ( ))
2
sin2 (2��)� h ( )h00 ( ) cos2 (2��); (37)

and h00 ( ) = �2.
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7.1 Roots of equation h ( ) = 0

There are two roots:  = 0 and  = 1. Let us examine �rst the root  = 0. Taking into
account that W (0) = w = 1=u, we obtain the condition

G (�;K;w;m) � w � K

(2�)2
cos (2��)�m = 0; (38)

where m is any integer, positive, zero, or negative.
Allowing for the experimental uncertainty in the value of the parameter u in Eq. (28)

of the order 0:7 � u � 1:0, we obtain a rather narrow interval of allowed w values:

0:5 � w � 1:5: (39)

Taking m = 1, we reproduce the result obtained in [2]. Equations G (1=2; K; wmin; 1) = 0
and G (0; K; wmax; 1) = 0 determine the two values:

wmin = 1�
K

(2�)2
; (40)

wmax = 1 +
K

(2�)2
: (41)

There are two X �xed points for wmin � w � wmax and K � 2�, which are unstable,
because the corresponding residue is negative

R = � K2

4(2�)2
sin2 (2��)

1 + K
2�
sin (2��)

: (42)

We now consider the case  = 1. Substituting this value into Eq. (34) and taking into
account that W (1) = w� = w=(1 + 2w), we obtain the condition

S (�;K;w;m) � w� +
K

(2�)2
cos (2��)�m = 0: (43)

It follows from Eq. (39) that the parameter w� is small and, consequently, Eq. (39) has
no physical solutions.

7.2 Roots of equation sin (2��) = 0

There are two roots: � = 0 and � = 1=2. Let us �rst consider the root � = 1=2.
Substituting it into Eq. (35), we obtain the equation

F1 ( ;K;w;m) � W ( ) +
K

(2�)2
h0 ( )�m = 0: (44)

Examining the behavior ofW ( ) in the interval 0 �  � 1 and taking into account the
fact that jh0 ( )j � 1, it is not di¢ cult to notice that only the value m = 1 is of interest.
The sum W+ (1) = W ( ) + K

(2�)2
h0 ( ) as a function of  monotonically decreases from

W+ (0) = w+ K
(2�)2

toW+ (1) = w�� K
(2�)2

. Consequently the equation F1 ( 1; K; w; 1) = 0
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has only one root in the physical region, if w + K
(2�)2

> 1, but w� � K
(2�)2

< 1. The second
inequality is irrelevant, if we consider wvalues of the order of unity. In other words, for

w > wmin = 1�
K

(2�)2
(45)

there exists the �xed pointY1.
For � = 1=2 the residue R can be easily evaluated:

R =
K

4
h ( )W 0

+ ( ) (46)

for  =  1. It can be readily seen thatR � 0, becauseW 0 ( ) < 0 and, henceW 0
+ ( ) < 0.

Thus, the �xed point Y1 is unstable.
Substituting � = 0 into Eq. (35), we obtain the equation

F2 ( ;K;w;m) � W ( )� K

(2�)2
h0 ( )�m = 0: (47)

Taking into account Eq. (39), we consider again only the case m = 1. The quantity
W� ( ) = W ( )� K

(2�)2
h0 ( ) monotonically decreases as a function of  from W� (0) =

w� K
(2�)2

toW� (1) = w�+ K
(2�)2

. It is evident that the equation F ( 2; K; w; 1) = 0 has only

one root, if w � K
(2�)2

> 1, but w� + K
(2�)2

< 1. The second inequality again is irrelevant.
For

w > wmax = 1 +
K

(2�)2
(48)

we obtain the �xed point Y2 with the corresponding residue

R = �K
4
h ( )W 0

� ( ) : (49)

Here the sign of the function W 0
� ( ) is not �xed. However, if the root  2 of the equation

W� ( 2) = 1 is used and the conditions are searched for which R = 0, W 0
� ( 2) = 0,

one can easily show that there are no roots when the bounds (39) are imposed. In other
words, the inequality W 0

� ( 2) < 0 holds, which means that the �xed point Y2 is stable.
The conclusion can be drawn that with imposed bounds (39) characteristic for the

ASDEX Upgrade tokamak the number and nature of �xed points of the tokamap and
the bounded tokamap are the same. This means that the physical upper limit (10) does
not generate any new �xed points. This is related to the fact that the function (28) is
monotonous. The situation is di¤erent in the case of the revtokamap, where the function
(25) has a local maximum.
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