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Abstract

A theoretical method to analyze the strong turbulence in far-nonequilibrium
plasmas is discussed. In this approach, a test mode is treated being dressed with
interactions with other modes. In this article, nonlinear dispersion relation of the
dressed mode and statistical treatment of turbulence is brie�y reviewed. Application
to the problem of abrupt onset oh global MHD mode is explained. Foundation based
on the Mori method (projection operator method) is also described. Analogue to
the method of dressed particle, which has given Balescu-Lenard collision operator
for inter-particle collisions, is mentioned.

1 Introduction

Plasmas have been one of the main subjects of modern physics. This is because
that almost all the matter, the presence of which is known to mankind, is in the plasma
state and the understanding of the physics of plasmas constitutes foundations for our
perception of the nature. In addition, plasmas have revealed challenging problems. One
important issue is that the charged particles in plasmas interact with others through the
long-range interaction of electromagnetic �elds which are at the same time governed by
the motion of plasma particles. This feature is known as the collective interactions. The
other stimulating issue is that the plasmas are often far-away from the thermodynamical
equilibrium. [In a standard terminology, one may use the words "thermal equilibrium"
and "thermal �uctuations" to describe the state which is equilibrated at a given tempera-
ture. In order to avoid the confusion of the �uctuation of thermal energy and �uctuations
at thermal equilibrium, the words "thermodynamical equilibrium" and "�uctuations at
thermodynamical equilibrium" are employed here.] Fluctuating electromagnetic �elds or
�uctuating component of plasma parameters are far from those predicted for the ther-
modynamical �uctuations and do not at all satisfy the equi-partition law. The strong
non-equilibrium nature of �uctuations comes from instabilities and turbulence, and in�u-
ences the nature of plasmas. In the preceding article [1], some aspect of turbulence theory
has been reviewed, highlighting the origin by Balescu and further evolution. This article
is an extension of it, with supplement of recent progresses in the approach of the dressed
test mode method..
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The collective nature of plasmas in�uences the collisions of charged particles.
The analysis of collisional process in plasmas is essential: this is because the inter-particle
collisions are the origin of irreversibility and dissipations. The rate of dissipation has a
basic importance for the analysis of the transport processes. This collective nature was
successfully formulated by Balescu [2] and Lenard [3], as is now known as Balescu-Lenard
collision operator. It has been clearly demonstrated that charged particles are "not alone"
in plasmas. When one particle encounters with the other, it is not a collision of "bare"
particles. In stead, each particle is dressed with interactions between many other particles
through electromagnetic �elds. The interaction between two "bare" particles is screened
by many other particles, and the collision is formulated as those between "dressed" par-
ticles. The inter-particle collision is an origin of the transport processes and this formula
has been a foundation of the analysis of transport coe¢ cients. For instance, the collisional
transport is basic to the cross-�eld transport in strongly-magnetized plasmas, which have
been intensively investigated for the motivation to realize controlled thermonuclear fu-
sion. The cross-�eld transport owing to the binary collision of charged particle is called
"classical transport" (or "neoclassical transport" in toroidal con�gurations) and has been
subject to long and intensive investigations. For this transport coe¢ cient, the monograph
by Balescu [4] provides a systematic deduction, and forms a �rm basis of plasma transport
processes, together with other literature [5].

Far-nonequilibrium property of plasmas has required a breakthrough in under-
standing the �uctuations. Instabilities, which are caused by inhomogeneities, boundaries,
or anisotropy of distribution function, drive �uctuations into the level which is much
higher than the thermodynamical equilibrium �uctuations. The subject of strong turbu-
lence has been a main issue in the plasma theory. In strong turbulence, the growth of
a mode that is labelled among a large number of excited modes is di¤erent from what
has been predicted by linear stability. Proper theoretical treatment of the interaction
of excited mode with other �uctuations has been (and will be) a central theme. (See
[6] for an illustrative description of the problem and [7] for the approach developed by
Balescu.) A method of dressed test mode in a strongly-turbulent magnetized plasmas has
been proposed [8]. Recent development of this method is reported brie�y in this article.

2 Model

2.0.1 Example for the case of reduced set of equations

The method of dressed mode is illustrated by use of an example of a reduced set of
equations. The reduced set of equations has the form

@

@t
f + L(0)f = N (f; f) + ~Sth (1)

where f denotes the set of �uctuating �eld variables. (See [9] for a survey.) For
instance, fT = (�; n) for Hasegawa-Wakatani model [10], fT = (�; J; p) for three-
�eld model [8], or fT = (n; �; �; vjj; pe; pi; Ajj) for Yagi-Horton model [11]. (�:
electrostatic potential, J : current along the strong magnetic �eld, p: pressure, n: den-
sity, etc.) These have been used for the study of nonlinear dynamics of resistive drift
mode turbulence, current-di¤usive mode turbulence, and for a comprehensive study of
many instabilities, respectively. The linear operator L(0) is an N � N matrix for the
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N��eld model and controls the linear modes. N (f; f) is the nonlinear terms, e.g.,
N (f; f) = �

�
r�2
? [�;r2

?�] ; [�; J ] ; [�; p]
�T
, for the case of fT = (�; J; p). The term

~Sth stands for the thermodynamical excitations induced by the interaction with a heat
bath.

Theoretical models have been developed to separate the nonlinear interaction
term into two terms:

N (f; f) = Ncoherent(f; f) + ~S (2)

where Ncoherent(f; f) is the coherent part, which changes with the phase of the test
mode, fk, ~S and is the incoherent part (noise part). Explicit forms of Ncoherent(f; f) and
~S are given by modelling. Various models for the coherent and incoherent parts have been
analyzed. For detailed discussion, see e.g. [9, 12, 13]. In the method of dressed test mode,
a test mode fk is chosen, and a following modelling is taken: The term Ncoherent(f; f) is
modelled as an e¤ectively-linear term of fk renormalizing nonlinear interactions with back-
ground turbulent �uctuations, and ~S is a random noise. Recently, authors has applied the
Mori method of projection operator [14] to separate a memory function and �uctuating
force in the nonlinear term [15]. By this extension, more �rm basis for the dressed test
method was given. A short illustration is presented in the appendix.

In an actual application of the dressed-test mode method to the plasma tur-
bulence, a couple of approximations are often used for analytic insight: a Markovian
approximation by which the memory function is replaced by a damping term, and a di-
agonalization approximation of Ncoherent(f; f). The diagonal terms in Ncoherent(f; f)
are approximated by the di¤usion terms with the turbulent viscosity (�N for ion viscos-
ity, �Ne for electron viscosity, and �N for thermal di¤usivity), or by the eddy-damping
coe¢ cients (
v for ion momentum, for 
e parallel electron momentum, 
p and for ther-
mal energy), as Ncoherent(f; f)k = (�Nr2

?f1; �Ner2
?f2; �Nr2

?f3)
Tor Ncoherent(f; f)k =

� (
vf1; 
ef2; 
pf3)Tk .
Within this diagonal approximation, the renormalized operator is given by

Lij = L(0)ij + 
i�ij (3)

and one has a renormalized reduced set of equations (with a thermodynamical noise
source) as

@

@t
fk + Lfk = ~Sk + ~Sth; k (4)

where k denotes the test mode [13,15].

2.1 Dressed modes

Equation (4) shows that the amplitude of the �uctuation jfkj becomes large in the
vicinity of the pole of the renormalized operator L. Thus the nonlinear dispersion relation

det (�I+ L) = 0 (5)

describes the characteristic feature of the turbulence, where I is a unit tensor, and
�� is the eigenvalue of the operator L. The sign of � is de�ned so that Re� is positive
when the test mode perturbation does not increase. The decorrelation rate is given by
Re�. This dispersion relation includes the (coherent part of) nonlinear interactions with
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back ground �uctuations, and the eigenmode corresponding to the nonlinear eigenvalue
is called dressed mode.

In order to solve the Langevin equation (4), an ansatz for a large number of
degrees of freedom in the random modes, N , is introduced. The renormalized term 
j
in L arises from the statistical sum from N components, so that its variation in time
becomes O(N�1=2) less than that of fk. Therefore, in solving fk, L is approximated to
be constant in time in the limit of N !1. The general solution is formally given as

f(t) =
X
m

exp (��mt) f (m)(0) +
Z t

0

exp [�L(t� �)] ~S(�)d� (6)

where ��m (m = 1; 2; 3::: and Re�1 < Re�2 < Re�3 < :::) represent the eigenvalues
of the renormalized matrix L. (f (m)(0) represents the initial value which is transformed
into a diagonal basis.)

2.2 Statistical theory

The incoherent part acts as a nonlinear noise. Taking an example of three-�eld model,
the statistical analysis is explained [13, 16]. The matrix exp [�L(t� �)] in equation (6)
are decomposed as

fexp [�L(t� �)]gij = A
(1)
ij exp [��1(t� �)]+A

(2)
ij exp [��2(t� �)]+A

(3)
ij exp [��3(t� �)] ;

where explicit forms of A(m) are given in [13]. By introducing a projected noise source,

S(m)(�) =
�
1; �ikjjk�2? (�
e � �m)�1 ; �iky�k�2? (�
p � �m)�1

�
�
n
~S(�) + ~Sth(�)

o
;

where � is the magnetic �eld gradient and the superscript (m) denotesm-th eigenmode,
one can estimate the noise source as


S(1) � S(1)
�
' C0
vA�211

D
f
(1)
1; k � f

(1)
1; k

E
+ thermal excitations,

where C0 is a numerical factor of the order of unity. With this estimate, the long time
average of the �uctuation amplitude is given asD

f
(1)
1; k � f

(1)
1; k

E
=
C0
v
2R�1

D
f
(1)
1; k � f

(1)
1; k

E
+ thermal excitations (7)

This is one form of extended �uctuation dissipation relation for the non-equilibrium
plasmas. In this formula, the e¤ects of turbulence are renormalized in 
v and �. The
formula R�1 = C0
v=2 describes the stationary state of strong turbulence.

3 Applications

3.1 Nonlinear instability and subcritical excitation

The method of dressed mode has been applied to interchange mode turbulence [8].
When there is a dissipation that impedes the free electron motion along the magnetic
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�eld line, the interchange mode becomes unstable. This mechanism allows the nonlinear
instability. When the electrons respond to the test mode (interchange mode) in the
presence of the back-ground turbulent �uctuations, electrons are dressed with reactions
from back-ground �uctuations. Electrons are �heavy�owing to the presence of turbulence,
and electrons do no longer freely cancel the charge separation associated with the mode.
There arises a nonlinear link of mechanisms that excites �uctuations: (1) �uctuations
impede the free motion of electrons through cross-�eld di¤usion, (2) this electron di¤usion
increases the growth rate (3) the increased growth rate further enhances the �uctuation
level. An explosive growth of �uctuations takes place until the �uctuation level becomes
high enough so that the ion viscosity stabilizes the mode. Plasma turbulence is self-
sustained, not necessarily being driven by linear instability [8, 17].

By use of this method, a subcritical excitation and anomalous transport in plasma
can be analyzed. A nonlinear marginal stability condition has been derived for current
di¤usive interchange mode (CDIM) as [18]

G0
s4=3

(�eN + �ec)
2=3 (c=a!p)

4=3

(�N + �c) (�N + �c)
1=3

= Fc (8)

where G0 is a normalized pressure gradient G0 = a2r ln p0 �r lnB and s is a magnetic
shear parameter, and the length, time, and the scalar and vector potentials are normal-
ized to the plasma radius a, poloidal Alfven transit time �Ap = a=�Ap = R=�A; Ba

2=R
and B�Aa2=R, respectively. A critical Itoh number Fc, is of the order of unity. (Su¢ x c
for �; �e; and � indicates the collisional transport process.) This formula shows that the
turbulence is self-sustained even in a linearly stabile region G0 < Gc. At the critical pres-
sure gradient G�, the turbulent transport coe¢ cient is subject to a subcritical excitation.
Figure 1 illustrates a theoretical prediction of �uctuation level as a function of pressure
gradient, G0. Explicit multifold form of electrostatic potential perturbation ~�(G0) is seen.
A subcritical excitation of turbulence is predicted to occur if G0 exceeds the critical value
G�. The subcritical excitation and self-sustaining of turbulence are con�rmed by direct
numerical simulations [19].

3.2 Turbulence transition and transition probability

The result of the current-di¤usive turbulence shows that the �uctuations have cusp
catastrophe owing to the two excitation mechanisms (i.e., inhomogeneity that induces
instability and thermodynamical excitations). The statistical transition can take place
among the turbulent states and the transition probability can be calculated.

The renormalized Langevin equation is reduced to the one for a course-grained
quantity [13]. The total �uctuating energy, which is the quantity integrated over some
�nite-size volume of size L, E �1

2

P
m

k2?�
2
k is taken as an examples. By introducing an aver-

age dissipation rate, ��2
P
�1; m
m

k2?�
2
k=E , the Langevin equation for the total �uctuating

energy is given as

@

@t
E + 2�E = g!(t) (9)
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Figure 1: Fluctuation level as a function of the pressure gradient. Strong turbulence exists
below the critical pressure gradient against the linear instability, G0 < Gc. Transition
to the turbulent state takes place at G0 = G�. On horizontal axis, G0; G� and Gc are
divided by s4=3a2=3��2=3�2=3c , � = c=!p[18].

where !(t) denotes the white noise and g2 = 4T̂ 
mE+
P
k

 
3P
j=1

A1gj;k

!2
k4?�

2
k. (gj;k: the

amplitude of ~Sk, ~Sj;k = gj;k!(t), and T̂ = 2�0B�2p kBT : the normalized temperature, 
m:
the mean decorrelation rate at thermodynamical equilibrium.) The associated e¤ective
potential S(E)

S(E) =
Z E 4�E

g2
dE (10)

is introduced. This renormalized potential plays a central role in the statistical prop-
erty of �uctuations. First, the probability density function (PDF) of �uctuation energy
in a stationary state is given by

Pst(E) = �Pg�1 exp f�S(E)g
The minima of S(E) denote the probable states. In the case that a hysteresis exists,

S(E) has multiple minima, separated by local maximum. Thermodynamical �uctuation
state (horizontal axis of Fig.1) and turbulent state (upper branch of Fig.1) are denoted
by A and B; the lower branch of Fig.1 that is an unstable marginal state is denoted by C.
Second, the transition probability between di¤erent turbulent state can be given by S(E)
[20].

The transition probability from the thermodynamical branch to the turbulent
state is given as

rA!B =

p
�C
mp
�

exp f�S(E)g (11)
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�C = Ed�=dE at E = EC . This is an extension of the Arrhenius law to the system far
from thermodynamical equilibrium. For the case of CDIM turbulence, the probability of
transition from thermodynamical �uctuation to the turbulent �uctuation is given, near
the critical gradient for linear instability G0 ' Gc, as

rA!B~

mp
�

��ec
2

��2b1
k
�4b1=3
0

�
T̂ 
m

3

16C0

�2b1=3�
1� G0

G0

��b1
(12)

where b1 =
�
k0
m=

p
316C0

�2=3
T̂�1=3 (L=a)2. Important feature is that the probability

is expressed in terms of the power law rA!B _ (1�G0=Gc)�b1.
The phase boundary for the ensemble average is given by the formula

S(EA) =S(EB) (13)

This is an extension of the Maxwell�s construction.
Comparison between the rules in the far-non-equilibrium system and those near

thermodynamical equilibrium is made in the table 1.
This method can be applied to various problems. Extensions to the cases with many

kinds of instabilities are presented in [21-23]. Statistical excitation of stable and long-
wavelength �uctuations has also been discussed, in conjunction with the nonlocal trans-
port processes [21]. The dynamics of the transition processes in plasma turbulence de-
scribed by the nonlinear stochastic equation is studied in detail. It was shown that inter-
mittent or global transitions between metastable states can appear [24]. The conditions
for the generation of these transitions and their statistical characteristics are determined.
Detailed survey of the problem is given in a recent review [25].
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Table 1: Comparison between the rules near thermodynamical equilibrium and in the
far-non-equilibrium system
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3.3 Onset of global modes

The method of dressed test mode can also be applied to the onset of global (MHD)
modes in the presence of background turbulence. Subcritical excitation for global MHD
mode by �uctuating force (owing to microscopic �uctuations) was analyzed [26], and a
lifetime of a state (free from the onset of subcritical global MHD perturbations) was
calculated [26].

The model is brie�y outlined here. A stochastic equation for the amplitude of
neoclassical tearing mode (NTM) has been derived. The model and basis are explained in
ref.26 and references therein. By taking into account of the �uctuating force on the global
NTM owing to the ambient microscopic �uctuations, the stochastic equation is given as

@

@t
A+ ��A = g!(t) (14)

where A � ~A�g
2R=Br3sq

0 is the normalized amplitude of the global (m;n) -Fourier
component of helical vector potential perturbation ~A� at the mode rational surface, r = rs,
� is the inverse of resistive di¤usion time � = �jj��10 r

�2
s �Ap = R

�1
M , where �jj stands for a

parallel resistivity, and RM is the Lundquist number (magnetic Reynolds number), ��
is the nonlinear growth rate (�� > 0 if unstable) and g!(t) is the random kick (by
ambient microscopic �uctuations) where g is the magnitude and !(t) indicates white-
noise. Note that the �uctuation force is not necessary to be a white noise but can be
coloured. Equation (14) is the stochastic equation for the global MHD mode which is
dressed by background microscopic turbulence. Here, the time is normalized to poloidal
Alfven transit time, �Ap = qR=vA (vA: Alfven velocity) and the length to rs.

An explicit form of the nonlinear growth rate is given by

�� = 2�A�1=2 � C1
W 2
1 + A

2
+

C2
W2 + A

(15)

within the neoclassical transport theory, where the �rst, second and third terms of
RHS stand for the e¤ects of current density gradient, polarization drift and bootstrap
current, respectively. The term W1 represents the cut-o¤ due to the banana orbit e¤ect,
and is modelled as W1 = �

2
br
�2
s , W2 represents the cut-o¤ determined by the cross-�eld

energy transport, and coe¢ cients C1 and C2 are given as C1 = 2abs�p"
1=2�2br

�2
s L

2
qL

�2
p

and C2 = 2abs�p"
1=2L2qL

�2
p . (�b is the banana width, Lq and Lp are the gradient scale

lengths of safety factor and pressure, respectively, " is the inverse aspect ratio and abs
is a numerical constant.) The parameter � controls the linear stability of tearing mode
when induced by the current density gradient. That is, the tearing mode is linearly stable
if �0 < 0. However, the mode can be nonlinearly unstable even if it is linearly stable.
Namely, when the amplitude A takes �nite values, �� can be positive even if �0 < 0,
because C1 and C2 can be positive. The marginal stability condition � = 0 can have three
solutions at A ' 0, A = Am and A = As (Am < As), where Am and As are the threshold
and saturation amplitudes, respectively. Near the linear stability boundary, �0 ' 0, they
can be estimated as Am = C1C�12 and As ' C22=4�02.

The transition from the state A ' 0 to the state A = As is the nonlinear onset of
the NTM (subcritical excitation). The transition from A = As to A ' 0 is the subcritical
elimination of the NTM. These nonlinear excitations can be induced by the �uctuating
force owing to the ambient microscopic turbulence. The transition probability from A ' 0
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Figure 2: Amplitude of NTM as a function of the plasma pressure. Solid line shows
the statistical average hAi. A thin dotted line indicates the threshold Am and satura-

tion amplitude As for the deterministic model. Normalized �p is C2=
�
��0W

1=2
1

�
, i.e.,

(2abs"
1=2Lqrs=�bLp(��0))�p. (Parameters are: W1 = W2, C1=2C2W1 = 1, �C2W1 = 5.)

[26]

to A = As (the excitation probability, rex) and that from A = As to A ' 0 (the decay
probability, rdec) are calculated by substituting Eq.(15) into Eqs.(10) and (11).

The long time average is given as hAi = (Asrex + hA0i rdec) (rex + rdec)�1. hAi
approaches to As if rex > rdec holds. It reduces to hA0i, if rex < rdec holds. The phase
boundary for the statistical average is determined by the condition rex = rdec. Apart
from a logarithmic dependence, the condition is given by S(As) = 0. Figure 2 shows the
statistical average hAi, together with threshold and saturation amplitudes (Am and As),
as a function of �p. hAi drastically changes across the condition �p = �p�, a formula of
which is derived from Eq.(13) [26].

The stochastic equation is formulated including the subcritical excitation mecha-
nism of NTM. The rate of transition and statistical average of amplitude are derived, and
the phase boundary in plasma parameter space, �p� or �0

� , is obtained. Linearly stable
systems are prone to nonlinear instability if S(As) < 0 holds. The formula is applied
to either cases of micro �uctuations or of other random MHD activities. Experimental
database for the presence of NTM must be compared with the result of phase boundary
derived from the statistical theory. The rate of stochastic transition depends on the mi-
cro�uctuation level and is evaluated for example cases. However, the boundary is given
by S(As) = 0 and is insensitive to the magnitude of micro �uctuations. It is plausible
that the stochastic transition without the trigger by large MHD events (e.g., sawtooth
or �sh-bone instabilities) can be observed in high temperature tokamak plasmas if the
condition �p > �p� is satis�ed.
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4 Summary

In this article, a brief review was made for a recent development of the theory of
plasma turbulence. Based on the previous article [1], which was dedicated to Prof.
Balescu, very recent progresses were explained. Property of turbulent plasma was for-
mulated by a method of dressed modes. The coherent part of nonlinear interactions was
included in a nonlinear dispersion relation, which allowed analyses of subcritical turbu-
lence or nonlinear saturation states. The incoherent part contributed to the stochastic
noise term, and a statistical theory was constituted. Two fundamental issues of plasmas,
i.e., the collective phenomena and non-equilibrium property, were investigated by this
method.

Two examples (subcritical excitation and onset of global MHD mode) were ex-
plained here. Other issue is the role of mesoscale �uctuations (e.g., zonal �ows), which
also have screening e¤ects on micro�uctuations. The turbulence dressed by mesoscale
�uctuations has been discussed in [28] in detail. In this article, the plasma inhomogeneity
is treated as a given control parameter. In reality, it evolves with turbulence. The struc-
tural formation and turbulent transport are discussed in literature and monograph [8, 9,
29]. Along this line of thought, a project Grant-in-Aid for Specially Promoted Research
"Research on Structural Formation and Selection Rules in Turbulent Plasmas" (S-I Itoh,
principal investigator) has been initiated from FY 2004 [30].

Starting from the concept of dressed particle, which was developed by Balescu,
research of far-nonequilibrium plasmas now includes the method of dressed modes. This
direction will provide a prosperous path to explore the further progress of modern physics.
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7 Appendix: Separation of Memory Function

A basis of the dressed test mode method, which is developed upon Mori method, is
brie�y explained in this appendix.

7.1 Mori�s principle and memory function

In the study of nonlinear equation

@fk=@t+ L(0)k fk =
X

0Mkpqfpfq = Nk (A1)

where
P 0 means that the summation is taken over p and q with constraints k = p+ q,

Mori has shown the methodology to deduce the memory function �k (s), by which Eq.(A1)
can be rewritten as

@fk=@t+ L(0)k fk = i
kfk +Rk(t)�
Z t

0

ds�k (s) fk (t� s) (A2)

where 
k is the nonlinear frequency shift and Rk is a rapidly-changing �uctuating
force term. (A boldface is not used for vector and tensor �elds for brevity of expression.)
The systematic method is as follows. The dynamical equation (A1) is rewritten as

@fk=@t = �fk (A3a)

� =
X
p

_fp
@

@fp
=
X
p

�
�L(0)p fp +Np

� @

@fp
(A3b)

The projection operators P and Q are introduced (P +Q =1). P represents the
projection

PY =


Y (t) f y (0)

� 

f (0) f y (0)

��1
f (0) (A4a)

where



Al (t)A

y
m (0)

�
� lim

T!1

1

T

Z T

0

dsAl (t+ s)A
y
m (s) (A4b)

By use of this projection operator, the memory function �k (s), the �uctuating force
term Rk(t) and nonlinear frequency shift 
k are given as

�k (s) =
D
Rk (t)Ry

k (0)
E 

f (0) f y (0)

��1
(A5a)

Rk (t) = exp (tQ�)Q Nk (A5b)

i
k =
D
_fkf

y
k

ED
fkf

y
k

E�1
(A5c)

respectively. The �uctuating force is orthogonal, i.e.,D
Rk (t) f

y
k (0)

E
= 0 (A5d)
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7.2 Evaluation of memory function by use of Mori�s principle

In the method of dressed-test mode, a renormalized dispersion relation has been
derived for any choice of test modes. In order to discuss a statistical basis of the eddy-
damping term in the dressed-test-mode method, the form of which has been assumed a
priori in I-V, the Mori method is applied to the interacting terms recurrently.

The nonlinear terms of equation (A1) include the contribution of other terms fk1,
which obeys a similar equation like Eq.(A1), i.e.,

@fk1=@t+ L
(0)
k1
fk1 =

X
0Mk1;p;qfpfq = Nk1 (A6)

We here introduce a notation N̂k1 by separating one term Mk1;k;qfkfq; (q = k1 � k)
out from Nk1 as

Nk1 = N̂k1 +Mk1;k;qfkfq (A7)

The Mori�s principle is applied to N̂k1, and N̂k1 is rewritten by use of the nonlinear
frequency shift, the �uctuating force term and the memory function as

N̂k1 = i
̂k1fk1 + R̂k1(t)�
Z t

0

ds�̂k1 (s) fk1 (t� s) (A8a)

where D
R̂k1 (t) f

y
k1
(0)
E
= 0 (A8b)

holds. In this equation, the notation ^ denotes the component without the contribution
from fk. Substituting Eqs.(A7) and (A8) into Eq.(A6), Eq.(A6) is rewritten as

@fk1=@t+ Ĥk1fk1 = R̂k1 (t) +Mk1;k;qfkfq (A9a)

with

Ĥk1fk1 = L
(0)
k1
fk1 � i
̂k1fk1 +

Z t

0

ds�̂k1 (s) fk1 (t� s) (A9b)

We next introduce a Green�s function as

@

@t
ĝk1 (t; t

0) + Ĥk1 (t) ĝk1 (t; t
0) = � (t� t0) (A10)

with ĝk1 (t; t
0) = 1, where � (t� t0) is the Dirac�s delta function. By use of ĝk1 (t; t0),

the solution of Eq.(A9a) is formally given as

fk1 (t) = �k1 (t) +

Z t

0

dt0ĝk1 (t; t
0)Mk1;�k2;kf�k2 (t

0) fk (t
0) (A11a)

with

�k1 (t) = ĝk1 (t; 0) fk1 (0) +

Z t

0

dt0ĝk1 (t; t
0) R̂k1 (t

0) (A11b)

where we write k2= k� k1. In Eq.(A11a), �k1 (t) represents the response against the
�uctuating force terms which are originated from N̂k1 .
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We assume that the time-scale separation is relevant. That is, the �uctuating
force term R̂k (t

0) (R̂k1as well) is very rapidly changing in time and so is �k1 (t) which
is the response against R̂k1, and the observed quantities such as the correlation function
hfk (t) f�k (t0)i change in a time scale which represents the observed evolution of the
system. In the mutual interaction between drift waves, a nonlinear force from a pair of
modes changes faster than the correlation time of a test mode. In addition, number of
pairs which contribute to the nonlinear force of the test mode is of the order of L2��2i
(�i: ion gyroradius, L: characteristic scale length of global inhomogeneity). Therefore the
total nonlinear force is considered to change rapidly in comparison with the correlation
time of the test mode. The time-scale separation which is employed here means that the
rapidly varying quantities like R̂k (t

0) is homogenous in time, within a time scale that
describes the temporal change of hfk (t) f�k (t0)i. Under this circumstance, homogeneity
of rapidly varying �uctuating force is used and the correlation functions are written as

hfk1 (t) f�k1 (t0)i = Ck1 (t� t0) (A12)

With this argument, the correlation function hfk1 (t) ��k1 (t0)i is replaced by hfk1 (t) f�k1 (t0)i.
The argument which gives Eq.(A11) provides a similar expression for fk2. Sub-

stituting these expressions into Eq.(A6) and so on, Eq.(A1) is rewritten as

@fk=@t+ L(0)k fk =
Z t

0

dt0
nX

02Mk;k1;k2Mk2;k;�k1 ĝk2 (t; t
0)Ck1 (t� t0)

o
fk (t

0) + R̂ (A13)

This is a stochastic equation for the dressed test mode. In this equation, the �rst term
in the RHS sands for the memory function, and the �uctuating force is given as

R̂ =
X

0Mk;k1;k2�k1�k2

+

Z t

0

X
0dt0Mk;k1;k2Mk2;k;�k1 ĝk2 (t; t

0) f�k1 (t) f�k1 (t0)� hfk1 (t) f�k1 (t0)ig fk (t0)

+

Z t

0

X
0dt0Mk;k2;k1Mk1;k;�k2 ĝk1 (t; t

0) f�k2 (t) f�k2 (t0)� hfk2 (t) f�k2 (t0)ig fk (t0)

+
X

0mk;k1;k2

Z t

0

dt0ĝk2 (t; t
0) f�k2 (t

0) fk (t
0)

Z t

0

dt00ĝk2 (t; t
00) f�k1 (t

00) fk (t
00) (A14)

In previous work, only the �rst term in the RHS of Eq.(A14) was kept for the expression
of R̂. Thus, the systematic application of the Mori method has given a corrections to
the �uctuating force, clarifying the boundary of the previous intuitive derivation for the
�uctuating force.

A recurrent relation for the Green�s function is derived from Eq.(A13). From
Eq.(A13), the equation for the Green�s function of the k2-mode is successively introduced
as�

@

@t
+ L(0)k2

�
ĝk2 (t; t

0)�Z t

0

dt00
nX

0Mk2;k3;k4Mk4;k2;�k3 ĝk4 (t; t
00)Ck3 (t� t00)

o
ĝk2 (t

00; t0) = � (t� t0) (A15)
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7.3 Continued fraction expressions

When the homogeneous approximation in time holds, g(t; t0) = g(t� t0), the Laplace
transformation is introduced as

Gk2 (p) =

Z t

0

d� exp(�p�)ĝk2 (�) (A16)

and is given as

Gk2 (p) =
1

p+ L(0)k2 �
P 02Mk2;k3;k4Mk4;k2;�k3Uk3;k4 (p)

(A17)

where Uk3;k4 (p) is a Laplace transform of the function ĝk4 (s)Ck3 (s). When the change
of the Green�s function is faster than the decay of the correlation function, the term
Uk3;k4 (p) in Eq.(A17) is given as Uk3;k4 (p) = Ck3Gk4 (p), and Eq.(A17) takes a form

Gk2 (p) =
1

p+ L(0)k2 �
P 02Mk2;k3;k4Mk4;k2;�k3Ck3Gk4 (p)

(A18)

The turbulent memory function � (�) for the dressed test mode is evaluated from
Eq.(A13). Its Laplace transform �� (p) is given, under the assumption which is used for
deriving Eq.(A18), as

�� (p) =
X

0Vk;k1;k2Gk2 (p) (A19)

where

Vk;k1;k2 �Mk;k1;k2Mk2;k;�k1Ck1 (s = 0) (A20)

Similarly, the continued fraction expression is obtained as

��k (p) =
X

0 Vk;1;2

p2 +
P 0 V2;3;4

p4+

0BBB@P 0 V4;5;6

p6+
P 0 V6;7;8

p8+

�P 0 V8;9;10
p10+:::

�

1CCCA
(A21)

where pn = p+ L(0)kn and (k; 1; 2; :::) is an abbreviation of (k; k1; k2; :::).
The eddy damping rate ��0;kj , at which the dressed test mode of kj decays due to

turbulent damping, has a relation with the Laplace transform ��kj (p) as

��0;kj =
��kj (p = 0) (A22)

kj = (k; k1; k2; :::) : The expression for ��0;kj by use of the continued fraction is deduced

from Eq.(A21). In the case of the matrix operator L(0)k , the least-stable eigenvalue �k is
used in the continued fraction as
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��0;k (p) =
X

0 Vk;1;2

�
(0)
k2
+
P 0 V2;3;4

�
(0)
k4
+

0BBBBBBBB@
P 0 V4;5;6

�
(0)
k6

+
P 0 V6;7;8

�
(0)
k8

0B@+P 0 V8;9;10

�
(0)
k10

+::::

1CA

1CCCCCCCCA

(A21)

Equation (A23) provides the formula for the eddy-damping rate for the dressed test
mode. Using this renormalized response function, the �uctuation spectrum is obtained as
is explained in the main text.
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