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Abstract

The basic notions and statements of conservation laws of differential equations are reviewed.
The main attention is paid to constructive methods of finding conservation laws for general systems
of differential equations, which are not Euler–Lagrange equations of a functional and, therefore, do
not admit application of the symmetry approach based on the Noether theorem. Recently intro-
duced notions of equivalence of conservation laws with respect to Lie symmetry groups for fixed
systems of differential equations and with respect to equivalence groups or sets of admissible trans-
formations for classes of such systems are considered. To construct conservation laws, we develop
and apply a modification of the most direct method, which is effective to construct both local and
potential conservation laws, especially, in the case of two independent variables. Classification of
potential conservation laws of diffusion–convection equations with respect to the associated equiv-
alence group and exhaustive list of locally inequivalent potential systems corresponding to these
equations are adduced as an example on calculation of complete hierarchy of potential conservation
laws. More details are presented on simpler classification of local conservation laws of variable
coefficient diffusion–reaction equations.

1 Introduction

After the Emmy Noether’s remarkable paper [19] had become well-known, a number of authors
searched for conservation laws using the symmetry approach based on the Noether’s results. In
view of the generalized Noether’s theorem [20], there exists one-to-one correspondence between the
non-trivial generalized variational symmetries of some functional and the non-trivial conservation laws
of the associated Euler–Lagrange equations, and any such symmetry is a generalized symmetry of the
Euler–Lagrange equations.

The Noether’s approach has a number of advantages. It reduces construction of conservation
laws to finding symmetries for which there exist a number of well-developed methods, and complete
description of necessary symmetry properties is known for a lot of systems of differential equations.
However, this approach can be applied only to Euler–Lagrange equations that form normal systems
and admit symmetry groups satisfying an additional “variational” property of leaving the variational
integral invariant in some sense [20]. The latter requirements lead to restriction of class of systems
that could be investigated in such way.

At the same time, the definition of conservation laws itself gives rise to a method of finding
conservation laws. Technique of calculations used in the framework of this method is similar to the
classical Lie method yielding symmetries of differential equations [11, Chapter 6]. As mentioned in
the above reference, such algorithmic possibility was first employed by P.-S. Laplace [15] for derivation
of the well-known Laplace vector of the two-body Kepler problem. Following tradition from group
analysis of differential equations, we may call this method direct and distinguish four its versions,
depending on the way of taking into account systems under investigation. (See e.g. [1, 2, 5] and
Section 5 of this paper for more details as well as [30] for comparison of the versions and their
realizations in computer algebra programs.) In the present paper we use the most direct version based
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on immediate solving of determining equations for conserved vectors of conservations laws on the
solution manifolds of investigated systems.

Let us note that there exist other approaches for construction of conservation laws which differ from
the Noether’s or above direct ones, are based on exploitation of symmetry properties of differential
equations and can be applied to non-Lagrangian systems. Thus, W.I. Fushchych and A.G. Nikitin [9]
proposed to calculate directly bilinear combinations of solutions of motion equations, which are con-
served in time by virtue of symmetries of these equations. It is possible in such way to find conservation
laws corresponding to non-geometric symmetries.

To classify conservation laws, instead of the usual equivalence relation on their set (more exactly,
on the set of conserved vectors) we use the natural and more general notions of equivalences of
conservation laws with respect to Lie symmetry groups for fixed systems of differential equations and
with respect to equivalence groups or sets of admissible point (or contact) transformations for classes
of such systems. Results of classification up to these equivalences are more comprehensible, especially,
if a whole class of systems is studied and blend with the framework of group analysis.

In [5] an ingenious procedure of branching iterations for finding nonlocal (potential) conservation
laws of diffusion equations was proposed. Namely, on each iteration they use a conservation law from
the previous iteration (one conservation law for one iteration) to introduce a potential and to construct
the extended potential system. Then they study local conservation laws of the potential system, which
are, generally speaking, nonlocal (potential) conservation laws for the initial equation. To the best of
our knowledge, it was the first paper where the idea of hierarchy of potential systems and associated
conservation laws is presented in an explicit form.

The iteration procedure was generalized in [24] by admitting dependence of conserved vectors on
different finite number (from one to the maximum possible that) of new potentials on each iteration.
The idea of a similar approach was adduced in [29] and was formalized in the form of notion of
universal Abelian covering of differential equations [7, 25, 27]. Such approach naturally results in the
questions on some independence of employed potentials. That is why, we also discuss the notions of
linear dependence of conservation laws and of local dependence of potentials in detail.

2 Basic definitions and statements

In this and the next sections we give basic definitions and statements on conservation laws, following
the spirit of the well-known textbook [20] in general outlines. Then we formulate the notion of
equivalence of conservation laws with respect to transformation groups, which was first introduced
in [24]. This notion is a base for modification of the direct method of construction of conservation
laws, which is applied in section 7 for exhaustive classification of local conservation laws of equations
from class (9).

Let L be a system L(x, u(ρ)) = 0 of l differential equations L1 = 0, . . . , Ll = 0 for m unknown
functions u = (u1, . . . , um) of n independent variables x = (x1, . . . , xn). Here u(ρ) denotes the set of
all the derivatives of the functions u with respect to x of order no greater than ρ, including u as
the derivatives of the zero order. Let L(k) denote the set of all algebraically independent differential
consequences that have, as differential equations, orders no greater than k. We identify L(k) with the
manifold determined by L(k) in the jet space J (k).

Definition 1. A conserved vector of the system L is an n-tuple

F = (F 1(x, u(r)), . . . , F
n(x, u(r)))

for which the divergence Div F := DiF
i vanishes for all solutions of L, i.e., DivF

∣∣
L= 0.

In Definition 1 and below Di = Dxi denotes the operator of total differentiation with respect
to the variable xi, i.e. Di = ∂xi + ua

α,i∂ua
α
, where ua

α and ua
α,i stand for the variables in jet spaces,

which correspond to derivatives ∂|α|ua/∂xα1
1 . . . ∂xαn

n and ∂ua
α/∂xi, α = (α1, . . . , αn), αi ∈ N ∪ {0},

|α|: = α1 + · · ·+ αn. We use the summation convention for repeated indices and assume any function
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as its zero-order derivative. The notation V
∣∣
L means that values of V are considered only on solutions

of the system L.

Definition 2. A conserved vector F is called trivial if F i = F̂ i + F̌ i, i = 1, n, where F̂ i and F̌ i are,
likewise F i, functions of x and derivatives of u (i.e. differential functions), F̂ i vanish on the solutions
of L and the n-tuple F̌ = (F̌ 1, . . . , F̌n) is a null divergence (i.e. its divergence vanishes identically).

The triviality concerning the vanishing conserved vectors on solutions of the system can be easily
eliminated by confining on the manifold of the system, taking into account all its necessary differential
consequences. A characterization of all null divergences is given by the following lemma (see e.g. [20]).

Lemma 1. The n-tuple F = (F 1, . . . , Fn), n ≥ 2, is a null divergence (Div F ≡ 0) iff there exist
smooth functions vij (i, j = 1, n) of x and derivatives of u, such that vij = −vji and F i = Djv

ij.

The functions vij are called potentials corresponding to the null divergence F . If n = 1 any null
divergence is constant.

Definition 3. Two conserved vectors F and F ′ are called equivalent if the vector-function F ′ − F is
a trivial conserved vector.

The above definitions of triviality and equivalence of conserved vectors are natural in view of the
usual “empiric” definition of conservation laws of a system of differential equations as divergences
of its conserved vectors, i.e. divergence expressions which vanish for all solutions of this system.
For example, equivalent conserved vectors correspond to the same conservation law. It allows us
to formulate the definition of conservation law in a rigorous style (see e.g. [31]). Namely, for any
system L of differential equations the set CV(L) of conserved vectors of its conservation laws is a
linear space, and the subset CV0(L) of trivial conserved vectors is a linear subspace in CV(L). The
factor space CL(L) = CV(L)/CV0(L) coincides with the set of equivalence classes of CV(L) with
respect to the equivalence relation adduced in Definition 3.

Definition 4. The elements of CL(L) are called conservation laws of the system L, and the whole
factor space CL(L) is called as the space of conservation laws of L.

That is why we assume description of the set of conservation laws as finding CL(L) that is equivalent
to construction of either a basis if dim CL(L) < ∞ or a system of generatrices in the infinite dimensional
case. The elements of CV(L) which belong to the same equivalence class giving a conservation law F
are considered all as conserved vectors of this conservation law, and we will additionally identify
elements from CL(L) with their representatives in CV(L). For F ∈ CV(L) and F ∈ CL(L) the
notation F ∈ F will denote that F is a conserved vector corresponding to the conservation law F . In
contrast to the order rF of a conserved vector F as the maximal order of derivatives explicitly appearing
in F , the order of the conservation law F is called min{rF |F ∈ F}. Under linear dependence of
conservation laws we understand linear dependence of them as elements of CL(L). Therefore, in
the framework of “representative” approach conservation laws of a system L are considered linearly
dependent if there exists linear combination of their representatives, which is a trivial conserved vector.

3 Characteristics of conservation laws

Let the system L be totally nondegenerate [20]. Then application of the Hadamard lemma to the
definition of conserved vector and integrating by parts imply that divergence of any conserved vector
of L can be always presented, up to the equivalence relation of conserved vectors, as a linear combi-
nation of left side of independent equations from L with coefficients λµ being functions on a suitable
jet space J (k):

Div F = λµLµ. (1)

Here the order k is determined by L and the allowable order of conservation laws, µ = 1, l.
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Definition 5. Formula (1) and the l-tuple λ = (λ1, . . . , λl) are called the characteristic form and the
characteristic of the conservation law Div F = 0 correspondingly.

The characteristic λ is trivial if it vanishes for all solutions of L. Since L is nondegenerate, the
characteristics λ and λ̃ satisfy (1) for the same F and, therefore, are called equivalent iff λ − λ̃ is a
trivial characteristic. Similarly to conserved vectors, the set Ch(L) of characteristics corresponding
to conservation laws of the system L is a linear space, and the subset Ch0(L) of trivial characteristics
is a linear subspace in Ch(L). The factor space Chf(L) = Ch(L)/Ch0(L) coincides with the set of
equivalence classes of Ch(L) with respect to the above characteristic equivalence relation.

The following result [20] forms the cornerstone for the methods of studying conservation laws,
which are based on formula (1), including the Noether theorem and the direct method in the version
by Anco and Bluman [1, 2].

Theorem 1 ([20]). Let L be a normal, totally nondegenerate system of differential equations. Then
representation of conservation laws of L in the characteristic form (1) generates a one-to-one linear
mapping between CL(L) and Chf(L).

Using properties of total divergences, we can exclude the conserved vector F from (1) and obtain
a condition for the characteristic λ only. Namely, a differential function f is a total divergence, i.e.
f = Div F for some n-tuple F of differential functions iff E(f) = 0. Hereafter the Euler operator E =
(E1, . . . ,Em) is the m-tuple of differential operators

E
a = (−D)α∂ua

α
, a = 1,m,

where (−D)α = (−D1)α1 . . . (−Dm)αm , α = (α1, . . . , αn) runs the multi-indices set (i.e., αi∈N∪ {0}).
Therefore, action of the Euler operator on (1) results to the equation

E(λµLµ) = D
∗
λ(L) + D

∗
L(λ) = 0, (2)

which is a necessary and sufficient condition on characteristics of conservation laws for the system L.
The matrix differential operators D∗λ and D∗L are the adjoints of the Fréchet derivatives Dλ and DL,
i.e.

D
∗
λ(L) =

(
(−D)α

(
∂λµ

∂ua
α

Lµ

))
, D

∗
L(λ) =

(
(−D)α

(
∂Lµ

∂ua
α

λµ

))
.

Since D∗λ(L) = 0 automatically on solutions of L then equation (2) implies a necessary condition for
λ to belong to Ch(L):

D
∗
L(λ)

∣∣
L= 0. (3)

Condition (3) can be considered as adjoint to the criteria DL(η)
∣∣
L= 0 for infinitesimal invariance of

L with respect to evolutionary vector field having the characteristic η = (η1, . . . , ηm). That is why
solutions of (3) are called sometimes as cosymmetries [25, 4] or adjoint symmetries [2].

4 Equivalence of conservation laws
with respect to transformation groups

We can essentially simplify and order classification of conservation laws, taking into account addition-
ally symmetry transformations of a system or equivalence transformations of a whole class of systems.
Such problem is similar to one of group classification of differential equations.

Proposition 1. Any point transformation g maps a class of equations in the conserved form into
itself. More exactly, the transformation g: x̃ = xg(x, u), ũ = ug(x, u) prolonged to the jet space J (r)
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transforms the equation DiF
i = 0 to the equation DiF

i
g = 0. The transformed conserved vector Fg is

determined by the formula

F i
g(x̃, ũ(r)) =

Dxj x̃i

|Dxx̃| F j(x, u(r)), i.e. Fg(x̃, ũ(r)) =
1

|Dxx̃|(Dxx̃)F (x, u(r)) (4)

in the matrix notions. Here |Dxx̃| is the determinant of the matrix Dxx̃ = (Dxj x̃i).

Note 1. In the case of one dependent variable (m = 1) g can be a contact transformation: x̃ =
xg(x, u(1)), ũ(1) = ug(1)(x, u(1)). Similar notes are also true for the statements below.

Definition 6. Let G be a symmetry group of the system L. Two conservation laws with the conserved
vectors F and F ′ are called G-equivalent if there exists a transformation g ∈ G such that the conserved
vectors Fg and F ′ are equivalent in the sense of Definition 3.

Any transformation g ∈ G induces a linear one-to-one mapping g∗ in CV(L), transforms trivial
conserved vectors only to trivial ones (i.e. CV0(L) is invariant with respect to g∗) and therefore
induces a linear one-to-one mapping gf in CL(L). It is obvious that gf preserves linear (in)dependence
of elements in CL(L) and maps a basis (a set of generatrices) of CL(L) in a basis (a set of generatrices)
of the same space. In such way we can consider the G-equivalence relation of conservation laws as
well-determined on CL(L) and use it to classify conservation laws.

Proposition 2. If the system L admits a one-parameter group of transformations then the infinites-
imal generator X = ξi∂i + ηa∂ua of this group can be used for construction of new conservation laws
from known ones. Namely, differentiating equation (4) with respect to the parameter ε and taking the
value ε = 0, we obtain the new conserved vector

F̃ i = −X(r)F
i + (Djξ

i)F j − (Djξ
j)F i. (5)

Here X(r) denotes the r-th prolongation [20, 21] of the operator X.

Note 2. Formula (5) can be directly extended to generalized symmetry operators (see, for exam-
ple, [3]). A similar statement for generalized symmetry operators in evolutionary form (ξi = 0) was
known earlier [10, 20]. It was used in [16] to introduce a notion of basis of conservation laws as a set
which generates a whole set of conservation laws with action of generalized symmetry operators and
the operation of linear combination.

Proposition 3. Any point transformation g between systems L and L̃ induces a linear one-to-one
mapping g∗ from CV(L) into CV(L̃), which maps CV0(L) into CV0(L̃) and generates a linear one-
to-one mapping gf from CL(L) into CL(L̃).

Corollary 1. Any point transformation g between systems L and L̃ induces a linear one-to-one
mapping ĝf from Chf(L) into Chf(L̃).

It is possible to obtain an explicit formula for correspondence between characteristics of L and L̃.
Let L̃µ = ΛµνLν , where Λµν = ΛµναDα, Λµνα are differential functions, α = (α1, . . . , αn) runs the
multi-indices set (αi∈N ∪ {0}), µ, ν = 1, l. Then

λµ = Λνµ∗(|Dxx̃|λ̃ν).

Here Λνµ∗ = (−D)α · Λµνα is the adjoint to the operator Λνµ. For a number of cases, e.g. if L and L̃
are single partial differential equations (l = 1), the operators Λµν are simply differential functions (i.e.
Λµνα = 0 for |α| > 0) and, therefore, Λνµ∗ = Λµν .

Consider the class L|S of systems Lθ: L(x, u(ρ), θ(x, u(ρ))) = 0 parameterized with the parameter-
functions θ = θ(x, u(ρ)). Here L is a tuple of fixed functions of x, u(ρ) and θ. θ denotes the tuple of
arbitrary (parametric) functions θ(x, u(ρ)) = (θ1(x, u(ρ)), . . . , θk(x, u(ρ))) running the set S of solutions
of the system S(x, u(ρ), θ(q)(x, u(ρ))) = 0. This system consists of differential equations on θ, where x
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and u(ρ) play the role of independent variables and θ(q) stands for the set of all the partial derivatives
of θ of order no greater than q. In what follows we call the functions θ arbitrary elements. Denote the
point transformations group preserving the form of the systems from L|S as G∼ = G∼(L, S).

Consider the set P = P (L, S) of all pairs each of which consists of a system Lθ from L|S and a
conservation law F of this system. In view of Proposition 3, action of transformations from G∼ on
L|S and {CV(Lθ) | θ ∈ S} together with the pure equivalence relation of conserved vectors naturally
generates an equivalence relation on P .

Definition 7. Let θ, θ′ ∈ S, F ∈ CL(Lθ), F ′ ∈ CL(Lθ′), F ∈ F , F ′ ∈ F ′. The pairs (Lθ,F)
and (Lθ′ ,F ′) are called G∼-equivalent if there exists a transformation g ∈ G∼ which transform the
system Lθ to the system Lθ′ and such that the conserved vectors Fg and F ′ are equivalent in the sense
of Definition 3.

Classification of conservation laws with respect to G∼ will be understood as classification in P
with respect to the above equivalence relation. This problem can be investigated in the way that is
similar to group classification in classes of systems of differential equations, especially it is formulated
in terms of characteristics. Namely, we construct firstly the conservation laws that are defined for all
values of the arbitrary elements. (The corresponding conserved vectors may depend on the arbitrary
elements.) Then we classify, with respect to the equivalence group, arbitrary elements for each of that
the system admits additional conservation laws.

In an analogues way we also can introduce equivalence relations on P , which are generated by
either generalizations of usual equivalence groups or all admissible point or contact transformations [22]
(called also form-preserving ones [17, 18]) in pairs of equations from L|S .

Note 3. It can be easy shown that all the above equivalences are indeed equivalence relations, i. e.
they have the usual reflexive, symmetric and transitive properties.

Note 4. Inclusion of the equivalence with respect to transformations to the framework of conserva-
tion laws allows us to investigate different classification problems on conservation laws (construction
of generating sets of conservation laws for a system of differential equations with respect to the corre-
sponding point symmetry group, classification of conservation laws for a class of systems of differential
equations with respect to its equivalence group or the associated set of admissible transformations,
investigation of generating sets of conservation laws for classes of systems of differential equations etc).
What kind of the problem is necessary to solve depends on the way of further usage of conservation
laws.

5 Direct iteration method of finding
conservation laws

To construct conservation laws of a system L of differential equations, we iterate a modification of the
most direct method based on Definition 1. More precisely, the algorithm is as follows.

Zeroth iteration. At first we construct local conservation laws of L. We fix an (arbitrary) order r
of conserved vectors under consideration. Then we introduce local coordinates (“unconstrained vari-
ables”) on the manifold L(r+1) determined by the system L and its differential consequences in J (r+1).
The other (“constrained”) variables of J (r+1) are expressed via unconstrained ones by means of using
the equations of L(r+1). We substitute the expressions for constrained variables into a conservation law
and split the obtained condition with respect to the unconstrained variables. This procedure results
in a first-order linear system of determining equations for conserved vectors. Solving the determining
equations up to the usual equivalence relation on CV(L), we obtain complete description of local
conservation laws of L. To classify conservation laws in easier and more systematic way (especially for
classes of systems of differential equations), instead of usual equivalence we use the introduced above
equivalence with respect to symmetry or equivalence transformations.
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First iteration. After applying Lemma 1 to constructed conservation laws on the set of solutions
of L = L0, we introduce potentials as additional dependent variables and attach the equations connect-
ing the potentials with components of corresponding conserved vectors to L0. (If n > 2 the attached
equations of such kind form an underdetermined system with respect to the potentials. Therefore, we
can also attach gauge conditions on the potentials to L0.)

We have to use linear independent conservation laws since otherwise the introduced potentials will
be dependent in the following sense: there exists a linear combination of the potential tuples, which
is, for some r′ ∈ N, a tuple of functions of x and u(r′) only.

Then we exclude the unnecessary equations (i.e. the equations that are dependent on equations
of L0 and attached equations simultaneously) from the extended (potential) system L1 which will be
called a potential system of the first level. Any conservation law of L0 is a one of L1. We iterate the
above procedure of the direct method for L1 to find its conservation laws which are linear independent
with ones from the previous iteration and will be called potential conservation laws of the first level.

Further iterations. We make iterations while it is possible (i.e. the iteration procedure has to be
stopped if all the conservation laws of a potential system Lk+1 of the (k + 1)-th level are linear
dependent with the ones of Lk) or construct infinite chains of conservation laws by means of induction.
This process may yield purely potential conservation laws of the initial system L, which are linear
independent with local conservation laws and, therefore, depend explicitly on potential variables.

Any conservation law from the previous step of iteration procedure will be a conservation law for
the next step and vice versa, conservation laws which are obtained on the next step and depend only
on variables of the previous step are linear dependent with conservation laws from the previous step.
It is also obvious that the conservation laws used for construction of a potential system of the next
level are trivial on the manifold of this system.

Since gauge conditions on potentials can be chosen in many different ways, exhaustive realization
of iterations is improbable in the case n > 2.

The procedure of exclusion of constrained variables (which are described above in detail only for
the zeroth iteration) is called in classical group analysis as “confining to the manifold of L”. Taking
into account L in the above way, we automatically eliminate the ambiguity connected with vanishing
conserved vectors on the solutions of L. However, the second kind ambiguity arising via existence of
null divergences is preserved, and it is the main reason of difficulties in realization of this algorithm
with symbolic computation systems [30].

The modification of the most direct method with usage of equivalence with respect to symmetry or
equivalence transformations is especially effective in the two-dimensional case. See, e.g., [12, 14, 24, 26]
for examples on calculation of conservation laws for different classes of evolution equations. A new
example is given in Section 7. At the same time, this method can be effectively applied also to
multi-dimensional equations [13].

To find conservation laws on each step of iteration procedure, one can apply other methods which
are based on the characteristic form (1) or its consequences (2) and (3). These methods are also called
as direct [1, 2]. Following [30], for convenience we will numerate them as the second, third and fourth
versions of the direct method in contrast to the above first one. They are close to the symmetry group
method by Noether since in the case of Euler–Lagrange equations the coefficients λa are nothing else
than Noether’s characteristics. Taking into account the equivalence relation on Ch(L), one can assume
during calculations that characteristics depend only on unconstrained variables.

In the second version of the direct method the representation (1) is regarded as an equation defined
on an open subset of J (k) with respect to conserved vectors and characteristics simultaneously.

In the framework of the third version, sought quantities are characteristics only. Determining
equation (2) is defined on an open subset of J (k). Conserved vectors are reconstructed from known
characteristics via explicit integral formulas. An algorithm of this (third) version of the direct method
was developed for Cauchy–Kovalevskaya systems by S. Anco and G. Bluman [1, 2] (see also [20, 31]
for a theoretical background).

The fourth version is based on equation (3) which is defined on the manifold L and is only a neces-
sary condition on characteristic of conservation laws. Therefore, one has to choose characteristics from
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the set of adjoint symmetries using additional conditions. See, e.g., [7] or [28] and other papers of the
same journal issue for the corresponding theoretical background, numerous examples of applications
and references on this version of the direct method.

Each from four above versions of the direct method has its advantages and disadvantages. A
detailed comparative analysis of all the versions and their realizations in computer algebra programs
are given by T. Wolf [30].

6 Two-dimensional case

The case of two independent variables is singular, in particular, with respect to possible (constant)
indeterminacy after introduction of potentials and high effectiveness of application of potential symme-
tries. That is why we consider some notions connected with conservation laws in this case separately.
We denote independent variables as t (the time variable) and x (the space one). Any local conservation
law has the form

DtF (t, x, u(r)) + DxG(t, x, u(r)) = 0. (6)

Here Dt and Dx are the operators of the total differentiation with respect to t and x. F and G are
called the conserved density and the flux of the conservation law correspondingly.

Two conserved vectors (F,G) and (F ′, G′) are equivalent if there exist such functions F̂ , Ĝ and H
of t, x and derivatives of u that F̂ and Ĝ vanish on L(k) for some k and

F ′ = F + F̂ + DxH, G′ = G + Ĝ−DtH. (7)

Any conservation law (6) of L allows us to deduce the new dependent (potential) variable v by
means of the equations

vx = F, vt = −G. (8)

To construct a number of potentials in one step, we have to use a set of linear independent conservation
laws (see the previous section) since otherwise the potentials will be dependent in the following sense:
there exists a linear combination of the potentials, which is, for some r′ ∈ N, a function of t, x and
u(r′) only.

In the case of two independent variables we can also introduce the more general notion of potential
dependence.

Definition 8. The potentials v1, . . . , vp are called locally dependent on the set of solution of the
system L (or, briefly speaking, dependent) if there exist r′ ∈ N and a function H of the variables t,
x, u(r′), v1, . . . , vp such that H(t, x, u(r′), v

1, . . . , vp) = 0 for any solution (u, v1, . . . , vp) of the united
system determining the set of potentials v1, . . . , vp.

Proof of local dependence or independence of potentials for general classes of differential equations
is difficult since it is closely connected with precise description of possible structure of conservation
laws. An example of such proof for diffusion–convection equations is presented below.

In the case of single equation L, equations of form (8) combine into the complete potential system
since L is a differential consequence of (8). As a rule, systems of such kind admit a number of nontrivial
symmetries and so they are of a great interest.

Equations (4) and (8) imply the following statement.

Proposition 4. Any point transformation connecting two systems L and L̃ of PDEs with two indepen-
dent variables generates a one-to-one mapping between the sets of potential systems, which correspond
to L and L̃. Generation is made via trivial prolongation on the space of introduced potential variables,
i.e. we can assume that the potentials are not transformed.

Corollary 2. The Lie symmetry group of a system L of differential equations generates an equivalence
group on the set of potential systems corresponding to L.
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Corollary 3. Let L̂|S be the set of all potential systems constructed for systems from the class L|S
with their conservation laws. Action of transformations from G∼(L, S) together with the equivalence
relation of potentials naturally generates an equivalence relation on L̂|S.

Note 5. Proposition 4 and its Corollaries imply that the equivalence group for a class of systems
or the symmetry group for single system can be prolonged to potential variables for any step of the
direct iteration procedure. It is natural the prolonged equivalence groups are used to classify possible
conservation laws and potential systems in each iteration. Additional equivalences which exist in some
subclasses of the class or arise after introducing potential variables can be used for deeper analysis of
connections between conservation laws.

7 Conservation laws of variable coefficient
diffusion–reaction equations

To demonstrate effectiveness of the modified direct method and to illustrate some calculation details,
we study local conservation laws of variable coefficient diffusion–reaction equations of the general form

f(x)ut = (g(x)A(u)ux)x + h(x)B(u), (9)

where f = f(x), g = g(x), h = h(x), A = A(u) and B = B(u) are arbitrary smooth functions of their
variables, f(x)g(x)A(u) 6= 0.

Conservation laws were investigated for some subclasses of class (9). In particular, V.A. Dorod-
nitsyn and S.R. Svirshchevskii [8] (see also [11, Chapter 10]) constructed the local conservation laws
for the class of reaction–diffusion equations of the form ut = (A(u)ux)x + B(u), which is a subclass of
the class under consideration.

The equivalence group G∼ of class (9) is formed by the nondegenerate point transformations in the
space of (t, x, u, f, g, h, A, B), which are projectible on the space of (t, x, u), i.e., they have the form

(t̃, x̃, ũ) = (T t, T x, T u)(t, x, u),

(f̃ , g̃, h̃, Ã, B̃) = (T f , T g, T h, T A, T B)(t, x, u, f, g, h, A, B),

and transform any equation from class (9) for the function u = u(t, x) with the arbitrary elements
(f, g, h, A,B) to an equation from the same class for the function ũ = ũ(t̃, x̃) with the new arbitrary
elements (f̃ , g̃, h̃, Ã, B̃). Complicated calculations according to the direct method of finding equivalence
transformations implies that G∼ consists of the transformations

t̃ = δ1t + δ2, x̃ = ϕ(x), ũ = δ3u + δ4,

f̃ =
δ0δ1

ϕx
f, g̃ =

δ0ϕx

δ5
g, h̃ =

δ0

δ5ϕx
h, Ã = δ5A, B̃ = δ3δ5B,

where δj (j = 0, 5) are arbitrary constants, δ0δ1δ3δ5 6= 0, ϕ is an arbitrary smooth function of x,
ϕx 6= 0. The equivalence transformation

t̃ = t, x̃ =
∫

dx

g(x)
, ũ = u (10)

maps equation (9) to the equation f̃(x̃)ũt̃ = (A(ũ)ũx̃)x̃ + h̃(x̃)B(ũ), where f̃(x̃) = g(x)f(x), g̃(x̃) = 1
and h̃(x̃) = g(x)h(x). That is why, without loss of generality we can restrict ourselves to investigation
of the equations

f(x)ut = (A(u)ux)x + h(x)B(u). (11)

In view of results of section 4 it is sufficient for exhaustive investigation if we classify conservation
laws of equations only from class (11) and then extend the obtained results to class (9) with the
transformations (10).
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Since there are two independent variables t and x in equations under consideration, which play
a part of the time and space variables correspondingly, the conservation laws will have the general
form (6).

At first we prove the lemma on order of local conservation laws for more general class of second-
order evolution equations, which covers class (9).

Lemma 2. Any local conservation law of any second-order (1+ 1)-dimensional quasi-linear evolution
equation has the first order and, moreover, there exists its conserved vector with the density depending
at most on t, x, and u and the flux depending at most on t, x, u and ux.

Proof. Consider a conservation law (6) of a second-order (1 + 1)-dimensional quasi-linear evolution
equation

ut = S(t, x, u, ux)uxx + R(t, x, u, ux), (12)

where S 6= 0. In view of equation (12) and its differential consequences, we can assume that F and G
depend only on t, x and uk = ∂ku/∂xk, k = 0, r′, where r′ ≤ 2r. Suppose that r′ > 1. We expand the
total derivatives in (6) and take into account differential consequences of the form utj = Dj

x(Suxx+R),
where utj = ∂j+1u/∂t∂xk, j = 0, r′. As a result, we obtain the following condition

Ft + FujD
j
x(Suxx + R) + Gx + Gujuj+1 = 0. (13)

Let us decompose (13) with respect to the highest derivatives uj . Thus, the coefficients of ur′+2 and
ur′+1 give the equations Fur′ = 0, Gur′ + SFur′−1

= 0 that implies

F = F̂ , G = −SF̂ur′−1
ur′ + Ĝ,

where F̂ and Ĝ are functions of t, x, u, u1, . . . , ur′−1. Then, after selecting the terms containing u2
r′ ,

we obtain that −SF̂ur′−1ur′−1
= 0. It yields that F̂ = F̌ 1ur′−1 + F̌ 0, where F̌ 1 and F̌ 0 depend only on

t, x, u, u1, . . . , ur′−2.
Consider the conserved vector with the density F̃ = F −DxH and the flux G̃ = G + DtH, where

H =
∫

F̌ 1dur′−2. This conserved vector is equivalent to the initial one, and

F̃ = F̃ (t, x, u, u1, . . . , ur′−2), G̃ = G̃(t, x, u, u1, . . . , ur′−1).

Iterating the above procedure a necessary number of times, we result in an equivalent conserved
vector depending only on t, x, u and ux, i.e. we can assume at once that r′ ≤ 1. Then the coefficients
of uxxx and uxx in (13) lead to the equations Fux = 0, Gux +SFu = 0 that implies F = F (t, x, u) and,
moreover, G = −Fu

∫
S dux + Ĝ, where Ĝ = Ĝ(t, x, u).

Note 6. A similar statement is true for an arbitrary (1+1)-dimensional evolution equation L of the
even order r = 2r̄, r̄ ∈ N. For example [10], for any conservation law of L we can assume up to
equivalence of conserved vectors that F and G depend only on t, x and derivatives of u with respect
to x, and the maximal order of derivatives in F is not greater than r̄.

Lemma 2 gives a stronger result for a more restricted class of equations. In the above proof we spe-
cially use the most direct method based on the definition of conservation laws to demonstrate its effec-
tiveness in quite general cases. This proof can be easily extended to other classes of (1+1)-dimensional
evolution equations of even orders and some systems connected with evolution equations [24].

Theorem 2. A complete list of equations (11) having nontrivial conservation laws is exhausted by the
following ones

1. Au 6= 0, B = β1

∫
A : (ϕifu, −ϕiAux + ϕi

x

∫
A ), ϕi, i = 1, 2.

2. Au 6= 0, B = β1

∫
A + β2u, β2 6= 0, h = f :

( e−β2tϕifu, e−β2t(−ϕiAux + ϕi
x

∫
A) ), e−β2tϕi, i = 1, 2.
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3. A = 1, B = β1u + β0 : (αfu− β0h
∫

α dt, −αux + αxu ), α.

Here β1 and β2 are arbitrary constants, α = α(t, x) runs the set of solutions of the linear equation
fαt + αxx + β1hα = 0. The functions ϕi = ϕi(x), i = 1, 2, form a fundamental system of solutions of
the second-order linear ordinary differential equation ϕxx + β1hϕ = 0. Hereafter

∫
A =

∫
A du.

(Together with constraints on the parameter-functions A, B, f and h we also adduce conserved
vectors and characteristics of the basis elements of the corresponding space of conservation laws.)

Proof. In view of lemma 2, we can assume at once that F = F (t, x, u) and G = G(t, x, u, ux). Let
us substitute the expression for ut deduced from (11) into (6) and decompose the obtained equation
with respect to uxx. The coefficient of uxx gives the equation AFu + fGux = 0, therefore G =
−Af−1Fuux + Ĝ(t, x, u). Taking into account the latter expression for G and splitting the rest of
equation (6) with respect to the powers of ux, we obtain the system of PDEs on the functions F and
Ĝ of the form

Fuu = 0, −A
(Fu

f

)
x

+ Ĝu = 0, Ft +
h

f
BFu + Ĝx = 0. (14)

Solving first two equations of (14) yields

F = Φ(t, x)fu + F 0(t, x), Ĝ = Φx

∫
A + G0(t, x), i.e. G = −ΦAux + Φx

∫
A + G0(t, x).

(It is convenient to separate f as a multiplier in the coefficient of u in the expression of F .) In further
consideration the major role is played by a differential consequence of system (14) that can be written
as

fΦt + AΦxx + BuhΦ = 0. (15)

Indeed, it is the unique classifying condition for this problem. In all the classification cases we obtain
the equation F 0

t +G0
x = 0. Therefore, we can assume F 0 = G0 = 0 up to conserved vectors equivalence

and have to suppose for existence of non-trivial conserved vectors that Φ 6= 0.
It follows from (15) that equation (11) possesses non-trivial conserved vectors only for the special

values of the parameter-functions if Bu ∈ 〈1, A〉. Hence it is sufficient to study the following cases.
There exist three different possibilities for values of A and Bu.

1. A 6∈ 〈1〉, Bu ∈ 〈1, A〉. Therefore, Bu = β2+β1A, or B = β2u+β1

∫
A. (Without loss of generality

we can take the same values of the integral of A as in the expression of G.) Equation (15) is split
to two equations Φt + β2ψΦ = 0 and Φxx + β1hΦ = 0 which imply, as a compatibility condition, the
equation β2(2ψxΦx + ψxxΦ) = 0. Here the function ψ denotes the ratio h/f . Further consideration
depends on values of β2 and ψ.

If β2 6= 0 and ψ 6= const then Φ = 0, hence equation (11) has only trivial conserved vectors.
The supposition β2 = 0 implies Φt = 0, i.e. Φ depends only on x and runs the set of solutions of

the second-order linear ordinary differential equation Φxx + β1hΦ = 0 (case 1).
If β2 6= 0 and ψ = const, we can put ψ = 1 in view of gauge equivalence transformations in

class (11). Therefore, Φ = e−β2tϕ(x), where ϕ is an arbitrary solution of the same ordinary differential
equation ϕxx + β1hϕ = 0 (case 2).

2. A,Bu ∈ 〈1〉, i.e. A can be assumed equal to 1 without loss of generality, B = β1u + β0 and
fΦt + Φxx + β1hΦ = 0 (the linear case 3).

Note 7. Taking into account transformations from the equivalence group G∼
1 of class (11) and addi-

tional equivalence transformations, we can reduce some parameters in cases of theorem 2. In particular,
β2 = 1 mod G∼

1 in case 2.
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8 Hierarhy of conservation laws
of diffusion–convection equations

As an example of exhaustive investigation of both local and potential conservation laws, we adduce
results of [24] on the hierarchy of potential conservation laws and potential systems of the class of
“constant coefficient” nonlinear diffusion–convection equations

ut = (A(u)ux)x + B(u)ux, (16)

where A = A(u) and B = B(u) are arbitrary smooth functions of u, A(u) 6=0.
The complete equivalence group G∼ (including the both continuous and discrete transformations)

of class (16) is formed by the transformations

t̃ = ε4t + ε1, x̃ = ε5x + ε7t + ε2, ũ = ε6u + ε3, Ã = ε−1
4 ε2

5A, B̃ = ε−1
4 ε5B − ε7,

where ε1, . . . , ε7 are arbitrary constants, ε4ε5ε6 6= 0.

Theorem 3. Any equation from class (16) has the conservation law (6) where

1. F = u, G = −Aux −
∫

B.

A complete list of G∼-inequivalent equations (16) having additional conservation laws is exhausted by
the following ones

2. ∀A, B = 0 : F = xu, G =
∫

A− xAux,

3. ∀A, B = A : F = (ex + ε)u, G = −(ex + ε)Aux − ε
∫

A,

4. A = 1, B = 0 : F = αu, G = αxu− αux,

where ε ∈ {0,±1} mod G∼,
∫

A =
∫

A(u)du,
∫

B =
∫

B(u)du, α = α(t, x) is an arbitrary solution of
the backward linear heat equation αt + αxx = 0.

Using the conservation laws adduced in Theorem 3, we can introduce potentials for different values
of the parameter-functions A and B and construct the corresponding potential systems. The important
question for our consideration is whether the introduced potentials are locally independent. If we know
the precise structure of conservation laws the answer is almost obvious.

Theorem 4. For any equation (16) potentials are locally dependent on the equation manifold iff the
corresponding conservation laws are linear dependent.

We introduce potentials using the obtained conservation laws and investigate local conservation
laws of the corresponding potential systems. These laws can be considered as nonlocal (potential)
conservation laws of equations from class (16). The potential conservation laws obtained with attaching
only one potential to the local variables are called simplest potential conservation laws. We classify
conservation laws up to the equivalence relation with respect to the transformation group G∼

pr which
is a result of the trivial prolongation of the group G∼ to the space of the potential v. Then we iterate
the above procedure.

Up to G∼-equivalence the hierarchy of conservation laws for diffusion–convection equations (16)
has the form:

• the “common” local conservation law (for any values of A and B);

• two independent local conservation laws if B = 0 or B = A;

• one “common” local conservation law and one simplest potential that with F = ev, G = −ev
∫

A
if B =

∫
A + uA;

• the infinite series of local conservation laws for the linear heat equation;
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• one “common” local conservation law and the infinite series of simplest potential conservation
laws with F = αev, G = αxev − αuev for the Burgers equation ut = uxx + 2uux;

• two independent local conservation laws for the u−2-diffusion equation ut = (u−2ux)x as a
subcase of B = 0 and additionally the infinite series of simplest potential conservation laws with
(F, G) = (σ, σvu

−1);

• two independent local conservation laws for the equation ut = (u−2ux)x + u−2ux as a subcase of
B = A and additionally the infinite series of simplest potential conservation laws with (F, G) =
(σex, σvu

−1ex).

Here α = α(t, x) and σ = σ(t, v) are arbitrary solutions of the backward linear heat equation,
i.e. αt + αxx = 0, σt + σvv = 0. The potential v in the above simplest potential conservation laws is
introduced with the “common” local conservation law and, therefore, determined by the “common”
potential system vx = u, vt = Aux +

∫
B. Similarity of the conservation law hierarchies for the

equations in two latter cases is explained by the fact that the equation ut = (u−2ux)x + u−2ux is
reduced to the u−2-diffusion equation by the additional equivalence transformation t̃ = t, x̃ = ex,
ũ = e−xu.

The hierarchy of conservation laws generates the complete set of locally inequivalent potential
systems for the class under consideration:

• the “common” potential system vx = u, vt = Aux +
∫

B;

• the additional simplest potential systems
vx = xu, vt = xAux −

∫
A if B = 0 and

vx = (ex + ε)u, vt = (ex + ε)Aux + ε
∫

A if B = A;

• the second level potential systems
vx = u, wx = exv, wt = ex

∫
A if B = 0 and

vx = u, wx = σex, wt = −σvu
−1ex if B = A

(which are equivalent to the united potential systems of the first level);

• the systems of the general form
vs
x = αsu, vs

t = αsux − αs
xu, where αs

t + αs
xx, s = 1, p,

with an arbitrary number p of locally independent potentials for the linear heat equation.
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