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Abstract
We discuss maximal Supergravity and maximal supersymmetric Yang-Mills Theory and show

that they can be described in terms of two constrained superfields on the light-cone, without the
use of auxiliary fields. We show that the same superfield can be used in the maximal dimensions as
well as in all those dimensions to which the two theories can be reduced. We stress the similarities
between these two superfields that can be seen as masterfields for a series of theories.

Lecture presented at the The 5th International School and Workshop on QFT and Hamiltonian
Systems, 20-26 May 2006, Calimanesti-Caciulata, Romania.

1 Introduction

When we study supersymmetric theories, the maximally supersymmetric ones, (N = 8, d = 4) super-
gravity [1] and (N = 4, d = 4) Yang-Mills Theory [2] or their eleven-dimensional or ten-dimensional
versions always show up. The N = 1 supergravity in eleven dimensions [3], is the largest supersym-
metric local field theory with maximum helicity two (on reduction to d = 4). This theory has gained
renewed prominence since its recognition as the infrared limit of M-Theory [4]. Although M-Theory
casts well-defined shadows on lower-dimensional manifolds, its actual structure remains a mystery.
We must therefore glean all we can from the N = 1 supergravity theory or its dimensionally reduced
versions before tackling M-Theory. N = 1 supergravity is ultraviolet divergent in d = 11 but this
divergence is presumably tamed by M-Theory and the hope is that an understanding of this divergent
structure, will give us a window into the workings of M-Theory. Similarly the N = 1 Yang-Mills
Theory in ten dimensions [2], which is the low-energy limit of the open string theory in ten dimensions
has been shown to play an important role in the AdS/CFT duality [5]. The four-dimensional version
N = 4 Yang-Mills Theory is also very special since it is free of ultraviolet divergences [6] [7].

In the normal covariant treatments of these two theories they look quite different, one being a
reparametrisation invariant gravity theory, while the other is a Yang-Mills gauge theory. However,
in the light-cone formulations, the so-called LC2 formulations where all auxiliary degrees of freedom
have been eliminated, [8], [9], the two superfields describing the field content of the two theories are
particularly simple and and very much alike. Indeed these superfields can be regarded as master fields
for a series of theories. Since they are natural partners in string theory this similarity must be quite
important and much of my research in recent years has been to use this similarity and to try to use
it to learn more about these theories and the underlying string theory. They are, of course, very well
studied during a long time but they have consistently shown themselves to be more interesting than
what meets the eye.

Writing the two theories in the LC2 formulation has a price. We loose a lot of information from the
geometry and the only guide-line will be the non-linearly realized supersymmetry algebra. However,
it is important to view these very important theories from different angles and for certain question
this formulation is the most adequate one.

In this talk I will start from the beginning to build up light-cone field theories and then go over to
the supersymmetric ones. I will start the analysis in four dimensions of space-time and then ’oxidize’
them to higher dimensions keeping the specific form of the superfields.

∗lars.brink@fy.chalmers.se
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2 Light-Frame Formulation of Field Theories

In his famous paper of 1949 Dirac [10] argued that for a relativitistically invariant theory any direction
within the light-cone can be the evolution parameter, the ”time”. In particular we can use one of the
light-cone directions. For this discussion we will use x+ = 1√

2
( x0 +x3) as the time. The coordinates

and the derivatives that we will use will then be

x± =
1√
2

( x0±x3 ) ; ∂± =
1√
2

(− ∂0± ∂3 ) ; (1)

x =
1√
2

( x1 + i x2 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) ; (2)

x̄ =
1√
2

( x1 − i x2 ) ; ∂ =
1√
2

( ∂1 + i ∂2 ) , (3)

so that
∂+ x− = ∂− x+ = − 1 ; ∂̄ x = ∂ x̄ = +1 . (4)

The derivatives are, of course, related to the momenta through the usual formula pµ = −i∂µ and
we use the light-cone decomposition also for pµ. We will only consider massless theories so we solve
the condition p2 = 0. We then find

p− =
pp̄

p+
. (5)

The generator p− is really the Hamiltonian conjugated to the light cone time x+ and we see that
the translation generators of the Poincare algebra are written with just three operators. We will use
Dirac’s vocabulary that generators that involve the ”time” are called dynamical (or Hamiltonians) and
the others kinematical. Using light-cone notation and the complex one from above for the transverse
directions, the most general form of the generators of the full Poincaré algebra at x+ = 0 is then given
by the four momenta

p− = − i
∂∂̄

∂+
, p+ = − i ∂+ , p = − i ∂ , p̄ = − i ∂̄ , (6)

the kinematical transverse space rotation

j = j12 = x ∂̄ − x̄ ∂ + λ, (7)

the other kinematical generators

j+ = i x ∂+ , j̄+ = i x̄ ∂+ , (8)

and
j+− = i x− ∂+, (9)

as well as the dynamical boosts

j− = i x
∂∂̄

∂+
− i x− ∂ + iλ

∂

∂+
, (10)

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + iλ

∂̄

∂+
. (11)

There is one degree of freedom in the algebra, namely the parameter λ which is the helicity. At
this stage it is arbitrary and checking the corresponding spin one finds, of course, that it is |λ|. Hence
the algebra covers all possible free field theories. We can let the generators act on a complex field φ(x)
with helicity λ, with its complex conjugate having the opposite helicity. This is the ”first-quantized”
version. We can also consider the fields as operators having the commutation relation.
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[∂+φ̄(x), φ(x′)] = − i

2
δ(x− x′), (12)

where hence the momentum field conjugate to φ is ∂+φ̄.
We then introduce the ”second-quantized” representation O in terms of the ”first-quantized” rep-

resentation o as O = 2i
∫

d4x∂+φ̄(x) o φ(x). We then find that the commutator between two of the
generators J1 and J2 is

[J1, J2] = 2i
∫

d4x∂+φ̄(x)[j1, j2]φ(x). (13)

We can understand that P− truly is the Hamiltonian using equ.(5)

P− = 2
∫

d4x∂+φ̄(x)
∂∂̄

∂+
φ(x). (14)

Legendre transforming to the Lagrangian using the field momenta from equ.(12) we get the action

S =
∫

d4x[∂+φ̄(x)∂−φ(x) + ∂+φ(x)∂−φ̄(x)− 2∂+φ̄(x)
∂∂̄

∂+
φ(x)]

=
∫

d4x∂+φ̄(x)2φ(x). (15)

It is remarkable that there is a unique form of the kinematic term for any spin-λ field. We should
remember though that to specify the theory we have to give all Poincaré generators, since the action
via the Hamiltonian is just one of those generators. They will show what spin the field describes.

In this representation it is straightforward to try to add interaction terms to the Hamiltonian.
This was done in [11]. Every dynamical generator will have interaction terms. The procedure is
very painstaking and there are as far as I know no other way than trial and error to find the non-
linear representation. On the other hand, once such a representation is found it represents a possible
relativistically invariant interacting field theory. The result is that for every integer λ there exists a
possible three-point interaction. For λ even, the unique solutions are

S =
∫

d4x
{

φ̄(x)2φ(x)

+g
[ λ∑

n=0

(−1)n

(
λ

n

)
φ̄(x)∂+λ(

∂̄λ−n

∂+λ−n
φ(x)

∂̄λ

∂+λ
φ(x)) + c.c.

]}

+O(g2). (16)

For λ odd, the field φ(x) must be in the adjoint representation of an external group φa(x) and we
have to introduce the fully antisymmetric structure constants fabc in the interaction terms to find a
possible term. The results is

S =
∫

d4x
{

φ̄a(x)2φa(x)

+gfabc
[ λ∑

n=0

(−1)n

(
λ

n

)
φ̄a(x)∂+λ(

∂̄λ−n

∂+λ−n
φb(x)

∂̄λ

∂+λ
φc(x)) + c.c.

]}

+O(g2). (17)

We note the non-locality in the interaction term in terms of inverses of ∂+. The easiest way to
understand it is to Fourier transform to momentum space. In the calculations it is really defined by
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the rule 1
∂+ ∂+f(x+) = f(x+). When performing a calculation one has to specify exactly the situation

of the pole in ∂+. In an sense this is a remainder of the gauge invariance.
We can now check for special values of λ.

• λ = 0

The dimension of the coupling constant g is 1 (in mass units) and this is the usual φ3- theory.
This theory is superrenormalizable but not physical since it does not have a stable vacuum having a
potential with no minimum.

• λ = 1

The dimension of the coupling constant g is 0 and this theory is nothing but non-abelian gauge
theory in a specific gauge. If we go on we know that we need a four-point coupling to fully close the
algebra. Note that the action has no local symmetry and the gauge group only appears as the external
symmetry group.

• λ = 2

The dimension of the coupling constant g is −1 and this theory is the beginning series of a gravity
theory. It is clear from the dimensions of the coupling constant that interaction terms to arbitrary
order can be constructed without serious non-localities. The four-point function related to Einstein’s
theory is known [12]. Going beyond the four-point coupling is probably too difficult, unless powerful
computer methods could be devised. We expect several solutions, of course, since we know that the
Hilbert action is but the simplest of all actions consistent with the equivalence principle. Note that
the action above, which is a fully gauge fixed Hilbert action expanded in the fluctuations around the
Minkowski metric, has no local symmetry, no covariance and knows nothing about curved spaces. It
is probably useless for discussions about global properties of space and time but can be useful in the
study of quantum corrections; to understand the finiteness properties of the quantum theory.

• λ > 2

The dimension of the coupling constant g is < −1 and these theories are theories for higher spins.
Again they are non-renormalizable in the naive sense like the the spin-2 theory above. There are
strong reason to believe that these theories cannot be Poincaré invariant one by one when we go to
higher orders in the coupling constant, but the result above is an indication that certain sums of such
theories interacting with each other could possibly be invariant theories.

We can also find interacting solutions for λ half-integer. We can, of course, not have a three-point
coupling. We will in fact not be able to find self-interacting theories but have to consider the coupling
of the half-integer spin field to an integer spin field. (A quartic fermion coupling is possible, but it
would not lead to a renormalizable theory so we do not pursue it here.) We then find that we can
couple a spin-1

2 field to a spin-1 or a spin-0 field to recover in the first case a non-abelian gauge field
coupled to a spin-1

2 field ψi(x) in a representation characterized by i of the external group such that we
can have a coupling ψ̄iψ

jφaCi
ja, with Ci

ja the Clebsch-Gordan coefficient. It is interesting to note that
it is only in the interacting theory that we can prove the spin-statistics theorem [13]. The formalism
demands the spin-1

2 field to be of odd Grassmann type and the integer spin fields to be even. Note
that there is no spinor space. The spin-1

2 field is a complex (Grassmann odd) field with no space-time
index. Its equation of motion looks just like the one for a bosonic field. (Remember the free equation
the follows from equ. (18).) However, the dimension of the field ψ(x) is different from the one of the
bosonic field, so the free action is

S =
∫

d4x∂+ψ̄(x)
2

∂+
ψ(x). (18)

The fact that we do not need to use spinors is very special for d = 4, since the transverse symmetry
which is covariantly realized is SO(2) ≈ U(1), which does not distinguish spinor representations.
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We have hence seen that we can find all known unitary relativistic field theories as representations
of the Poincaré algebra, and we see their uniqueness and also what kind of possibilities there are for
higher spin fields. In a gauge invariant formulation one can attempt to add in new terms that are
gauge invariant. Invariably they lead to problems with unitarity. We do not see those terms here since
the theories are unitary by construction.

3 Light-Frame Formulation of Supersymmetric Field Theories

The known extension of the Poincaré algebra is to make it into a supersymmetry algebra. This will
lead to a restriction on relativistic dynamics. It is true that the world does not look supersymmetric
as such, but a good working hypothesis is that at some stage supersymmetry is indeed a symmetry of
the world.

Supersymmetry is an augmentation of the Poincaré algebra with a spinor generator Qα with the
anti-commutator

{Qα, Q̄β} = γµ
αβPµ. (19)

The spinor Qα is four-component. It satisfies the so-called Majorana condition which makes it real
in a certain representation of the γ-matrices. In the light-cone frame the spinor splits up into two
two-component spinor that can be rewritten as two complex operators, which we call Q+ = −1

2γ+γ−Q
and Q− = −1

2γ−γ+Q. From the Clifford algebra {γµ, γν} = 2ηµν with η = diag(−1, 1, 1, 1) we see
that Q = Q+ + Q−, and that the products −1

2γ+γ− and −1
2γ−γ+ are projection operators. We can

linearly combine the two components of the spinors into complex entities with no indices. We can
also augment by letting the Q’s transform as the representation N under SU(N). The light-cone
supersymmetry algebra is then

{Qm
+ , Q̄+n} = −

√
2δm

n P+ (20)

{Qm
− , Q̄−n} = −

√
2δm

n P− (21)

{Qm
+ , Q̄−n} = −

√
2δm

n P, (22)

where all other anticommutators are zero, except for the complex conjugate of the last one. The
indices m,n run from 1 to N .

The superPoincaré algebra can now be represented on a superspace with coordinates x±, x, x̄, θm, θ̄n,
where the coordinates θm and θ̄n are complex conjugates, Grassmann odd and transform as N and N̄
under SU(N). We will denote their derivatives as

∂̄m ≡ ∂

∂ θm
; ∂m ≡ ∂

∂ θ̄m
. (23)

The Q’s are then represented as (We use the notation with lower case letters for operators that
act on the field.)

qm
+ = −∂m +

i√
2

θm ∂+ ; q̄+n = ∂̄n − i√
2

θ̄n ∂+ , (24)

and the dynamical ones as

qm
− =

∂̄

∂+
q m

+ , q̄−m =
∂

∂+
q̄+ m . (25)

On this space we can also represent ”chiral” derivatives anticommuting with the supercharges Q.

dm = −∂m − i√
2

θm ∂+ ; d̄n = ∂̄n +
i√
2

θ̄n ∂+ , (26)
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which satisfy the anticommutation relations

{ dm , d̄n } = −i
√

2 δm
n ∂+ . (27)

To find an irreducible representation we have to impose the the chiral constraints

dm φ = 0 ; d̄m φ̄ = 0 , (28)

on a complex superfield φ(x±, x, x̄, θm, θ̄n). The solution is then that

φ = φ(x+, y− = x− − i√
2

θm θ̄m, x, x̄, θm). (29)

We now have to add in θ-terms into the Lorentz generators to complete the representation of the
free algebra. The result is for λ = 0

j = x ∂̄ − x̄ ∂ + S12 , (30)

where the little group helicity generator is

S12 =
1
2

( θp ∂̄p − θ̄p ∂p ) − i

4
√

2 ∂+
( dp d̄p − d̄p dp ). (31)

It ensures that the chirality constraints are preserved

[ j , dm ] = [ j , d̄m ] = 0 . (32)

The other kinematical generators are

j+ = i x ∂+ , j̄+ = i x̄ ∂+ . (33)

The rest of the generators must be specified separately for chiral and antichiral fields. Acting on φ,
we have

j+− = i x− ∂+ − i

2
( θp∂̄p + θ̄p ∂p ) , (34)

chosen so as to preserve the chiral combination

[ j+− , y− ] = − i y− , (35)

and such that its commutators with the chiral derivatives

[ j+− , dm ] =
i

2
dm , [ j+− , d̄m ] =

i

2
d̄m , (36)

preserve chirality. Similarly the dynamical boosts are

j− = i x
∂∂̄

∂+
− i x− ∂ + i

(
θp∂̄p +

i

4
√

2 ∂+
( dp d̄p − d̄p dp )

) ∂

∂+
,

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + i

(
θ̄p∂

p +
i

4
√

2 ∂+
( dp d̄p − d̄p dp )

) ∂̄

∂+
. (37)

They do not commute with the chiral derivatives,

[ j− , dm ] =
i

2
dm ∂

∂+
, [ j− , d̄m ] =

i

2
d̄m

∂

∂+
, (38)

but do not change the chirality of the fields on which they act. They satisfy the Poincaré algebra, in
particular
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[ j− , j̄+ ] = − i j+− − j , [ j− , j+− ] = i j− . (39)

We can now follow the same path as we did in the last section to go over to a ”second-quantized”
version in terms of integrals over the superfield and then add interaction terms to the dynamical
generators and try to close the algebra. In this way we can construct all the known supersymmetric
field theories as different representations of various supersymmetry algebras with different values of
λ and N . It is particularly interesting to study the cases N = 4× integer. For those values one can
impose a further condition on the superfield φ namely the ”inside out” condition

d̄m1
d̄m2

..d̄mN/2−1
d̄mN/2

φ =

1
2
εm1m2 ...mN/2 ...mN−1mN dmN/2+1 dmN/2+2 ...dmN−1 dmN φ̄ . (40)

We can now construct three-point interaction terms for any N
4 even in the dynamical generators.

This is certainly a tedious exercise based on writing the most general terms in the interaction terms
and then check the full algebra. The resulting action is [9]

S =
∫

d4xdNθdN θ̄

{
φ̄(x, θ)

2

∂+
N
2

φ(x, θ)

+
4g

3

[ N
4∑

n=0

(−1)n

(N
4

n

)
1

∂+N/2
φ̄(x, θ)∂̄

N
4
−n∂+n

φ(x, θ)∂̄n∂+
N
4
−n

φ(x, θ)

+ c.c.
]}

+ O(g2). (41)

When N
4 is odd, again the superfield has to transform as the adjoint representation of an external

group with structure constants fabc. The corresponding action is then

S =
∫

d4xdNθdN θ̄

{
φ̄a(x, θ)

2

∂+
N
2

φa(x, θ)

+
4g

3
fabc

[ N
4∑

n=0

(−1)n

(N
4

n

)
1

∂+N/2
φ̄a(x, θ)∂̄

N
4
−n∂+n

φb(x, θ)∂̄n∂+
N
4
−n

φc(x, θ)

+ c.c.
]}

+ O(g2). (42)

We note that we can construct theories with higher spin if N
4 > 2. These are then very special

combinations of the theories constructed in the previous section, with better quantum properties, since
we know by experience that the more supersymmetry there is the better are the quantum properties.

3.1 Maximally supersymmetric Yang-Mills Theory

The case N = 4 is especially interesting [2]. All the physical degrees of freedom are present in the
superfield which can be expanded as

φ (y) =
1

∂+
A (y) +

i√
2

θm θn Cmn (y) +
1
12

θm θn θp θq εmnpq ∂+ Ā (y)

+
i

∂+
θm χ̄m(y) +

√
2

6
θm θn θp εmnpq χq(y) . (43)

The fields A and Ā constitute the two helicities of a vector field while the antisymmetric SU(4)
bi-spinors Cmn represent six scalar fields since they satisfy
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Cmn =
1
2

εmnpq Cpq . (44)

The fermion fields are denoted by χm and χ̄m. All have adjoint indices (not shown here), and are
local fields in the modified light-cone coordinates . This is the maximal supersymmetric Yang-Mills
theory. The full action is known [8]

S = −
∫

d4x

∫
d4θ d4θ̄

{
φ̄a 2

∂+2
φa +

4g

3
fabc

( 1
∂+

φ̄a φb ∂̄ φc + c.c.
)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1
∂+

(φ̄d ∂+ φ̄e) +
1
2

φbφ̄c φd φ̄e
)}

. (45)

With this action it was shown [6] that the perturbation expansion is finite. There is no need for
renormalization and the theory is very special. It is one of the cornerstones of modern particle physics.
From the point of this lecture it appears as a very special representation of the superPoincaré algebra.

3.2 Maximal Supergravity

The next case is N = 8 [8]. In this case the superfield can be expanded as

φ (y) =
1

∂+2 h (y) + i θm 1
∂+2 ψ̄m (y) + i θm n 1

∂+
Ām n (y)

− θm n p 1
∂+

χ̄m n p (y)− θm n p r Cm n p r (y) + i θ̃(5)
m n p χm n p(y)

+ i θ̃(6)
m n ∂+ Am n(y) + θ̃(7)

m ∂+ χm(y) + θ̃(8) ∂+2
h̄ (y) , (46)

where

θm1 ... mn ≡ 1
n!

θm1 . . . θmn , θ̃(n)
n1 ... n8−n

≡ 1
n!

θm1 ... mn εm1 ... mn n1 ... n8−n . (47)

The helicity in the field goes from 2 to −2 and the theory has a spectrum comprised of a metric,
twenty-eight vector fields, seventy scalar fields, fifty-six spin one-half fields and eight spin three-half
fields. This theory is the maximal supergravity theory in d = 4. The action can be simplified [18] to

S =
∫

d4xd8θd8θ̄

{
φ̄(x, θ)

2

∂+4 φ(x, θ) +
3
2

g
1

∂+2 φ ∂̄ φ ∂̄ φ + c.c.
]}

+ O(g2). (48)

The four-point coupling was finally found last year [15]. It is however quite complicated and reflects
the fact that the ∂+-derivatives can be sprinkled out in very many ways. It is remarkable though,
that the actions for the maximally supersymmetric Yang-Mills Theory and Supergravity Theory are
so similar. In some sense the Supergravity Theory is just an extension of the Yang-Mills one. In
the modern particle physics these two theories are very intimately connected even though the direct
physical consequences of them look quite different.

3.3 The Hamiltonian as a Quadratic Form

The two theories share also another unique property. We note that the free Hamiltonian for the
(N = 4, d = 4) Yang-Mills Theory

H0 =
∫

d4x d4θ d4θ̄ φ̄a 2 ∂∂̄

∂+2
φa , (49)

can be rewritten as a quadratic form
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H0 =
1

2
√

2
(W0 , W0 ) , (50)

using the inner product notation

( φ , ξ ) ≡ 2i

∫
d4x d4θ d4 θ̄ φ̄

1
∂+

ξ , (51)

where φ and ξ are chiral superfields and

Wa
0 =

∂

∂+
q̄+φa , (52)

is a fermionic superfield, the free dynamical supersymmetry variation of the superfield (SU(4) spinor
indices are summed over). The proof is straightforward, and requires integration by parts and the use
of of the inside-out property of the superfields.

Also the fully interacting Hamiltonian [14] can be expressed as a quadratic form

H =
1

2
√

2
(Wa , Wa ) , (53)

where now

Wa =
∂

∂+
q̄+φa − gfabc 1

∂+
(d̄φb∂+φc) , (54)

is the complete (classical) dynamical supersymmetry variation. The power of supersymmetry allows
for this simple rewriting of the fully interacting Hamiltonian.

The same can be shown to be true also for the (N = 8, d = 4) supergravity [15] and was an
important clue to find the four-point coupling. We have not found any other theory with this property
which again renders the two models to behave very similarly and to have unique properties.

Note that this is not the same as the statement that the Hamiltonian satisfies

H = −2
√

2{Qm
− , Q̄−m}. (55)

4 Light-Frame Formulations of Higher Dimensional Theories

The procedure to find representations of the Poincaré algebra that we have followed in the previous
section can, of course, be extended to field theories in dimensions of space-time higher than four. The
covariant subalgebra which will be linearly realized is then SO(d − 2), so the physical fields will be
representations of this algebra and hence characterized by these representations like we used helicity to
distinguish the physical fields in four dimensions. If we just implement Poincaré invariance as in sect.2
we can, in principle, find all the possible field theories. However, the procedure gets easily tedious
and furthermore there are few interesting quantum field theories in higher dimensions because of the
renormalization problems. The only ones that are discussed are supersymmetric field theories since
they are connected to the Superstring Theory. The ones that we have been interested in are the ones
which lead to interesting field theories when compactified to four dimensions, so let us concentrate
on those. The ones I will discuss here are ten-dimensional SuperYang-Mills and eleven-dimensional
Supergravity which under compactification leads to the maximal theories discussed above.
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4.1 Ten-Dimensional SuperYang-Mill Theory

The physical degrees of freedom of this theory are 8v and an 8s. If we insist that the superfield should
be a representation of the transverse SO(8) it must be in one of the representations above. Since the
natural spinor coordinate will also be an 8s, such a superfield must include 8 × 28 components and
must hence be very strongly restricted. Such a formalism has been developed [16], but it is not clear
that the formalism is useful. Also it is not easily generalizable to the eleven-dimensional case. Instead
I will describe a recent procedure developed in [17].

The idea is to use the same superfield as in four dimensions. In order to do that we have to sacrifice
the explicit covariance under SO(8) and use the decomposition

SO(8) ⊃ SO(2) × SO(6) . (56)

Since SO(6) ∼ SU(4) we can identify the SU(4) as the external symmetry group in the superfield
equ. (46). The remaining symmetry SO(8)/(SO(6) × SO(2)) will transform among the components
of the superfield. First of all, the transverse light-cone space variables need be generalized to eight.
We stick to the representions used in the superfield, and introduce the six extra coordinates and their
derivatives as antisymmetric bi-spinors

xm 4 =
1√
2

( xm +3 + i xm + 6 ) , ∂m 4 =
1√
2

( ∂m +3 + i ∂m +6 ) , (57)

for m 6= 4, and their complex conjugates

x̄pq =
1
2

εpqmn xmn ; ∂̄pq =
1
2

εpqmn ∂mn . (58)

Their derivatives satisfy

∂̄mn xpq = ( δm
p δn

q − δm
q δn

p ) ; ∂mn x̄pq = ( δm
p δn

q − δm
q δn

p ) , (59)

and

∂mn xpq =
1
2

εpqrs ∂mn x̄rs = εmnpq . (60)

There are then no modifications to be made to the chiral superfield, except for the dependence on the
extra coordinates

A(y) = A(x, x̄, xmn, x̄mn, y−) , etc... . (61)

These extra variables will be acted on by new operators that generate the higher-dimensional symme-
tries.

4.2 The SuperPoincaré Algebra in 10 Dimensions

The SuperPoincaré algebra needs to be generalized from the form in four dimensions. One starts with
the construction of the SO(8) little group using the decomposition SO(8) ⊃ SO(2) × SO(6). The
SO(2) generator is the same; the SO(6) ∼ SU(4) generators are given by

jm
n =

1
2

( xmp ∂̄pn − x̄pn ∂mp ) − θm ∂̄n + θ̄n ∂m +
1
4

( θp ∂̄p − θ̄p ∂p ) δm
n

+
i

2
√

2 ∂+
( dm d̄n − d̄n dm ) +

i

8
√

2 ∂+
( dp d̄p − d̄p dp ) δm

n . (62)

Note that we use the same spinors as in 4 dimensions because of the decomposition SO(8) ⊃ SO(2)×
SO(6), where SO(6) ∼ SU(4). The extra terms with the d and d̄ operators are not necessary for
closure of the algebra. However they insure that the generators commute with the chiral derivatives.
They satisfy the commutation relations

10



[
j , jm

n

]
= 0 ,

[
jm

n , jp
q

]
= δm

q jp
n − δp

n jm
q . (63)

The remaining SO(8) generators lie in the coset SO(8)/(SO(2)× SO(6))

jpq = x ∂pq − xpq ∂ +
i√
2

∂+ θp θq − i
√

2
1

∂+
∂p ∂q +

i√
2 ∂+

dp dq ,

j̄mn = x̄ ∂̄mn − x̄mn ∂̄ +
i√
2

∂+ θ̄m θ̄n − i
√

2
1

∂+
∂̄m ∂̄n +

i√
2 ∂+

d̄m d̄n . (64)

All SO(8) transformations are specially constructed so as not to mix chiral and antichiral superfields,

[ jmn , d̄p ] = 0 ; [ j̄mn , dp ] = 0 , (65)

and satisfy the SO(8) commutation relations

[
j , jmn

]
= jmn ,

[
j , j̄mn

]
= − j̄mn ,

[
jm

n , jpq
]

= δq
n jmp − δp

n jmq ,
[
jm

n , j̄pq

]
= δm

q j̄np − δm
p j̄nq ,

[
jmn , j̄pq

]
= δm

pj
n

q + δn
qj

m
p − δn

pj
m

q − δm
qj

n
p − ( δm

p δn
q − δn

p δm
q ) j .

Rotations between the 1 or 2 and 4 through 9 directions induce on the chiral fields the changes

δ φ =
( 1

2
ωmn jmn +

1
2

ω̄mn j̄mn

)
φ , (66)

where complex conjugation is like duality

ω̄pq =
1
2

εmnpq ωmn . (67)

For example, a rotation in the 1 − 4 plane through an angle θ corresponds to taking θ = ω14 = ω23

(= ω23 = ω14 by reality), all other components being zero. Finally, we verify that the kinematical
supersymmetries are duly rotated by these generators

[ jmn , q̄+ p ] = δn
p qm

+ − δm
p qn

+ ; [ j̄mn , qp
+ ] = δn

p q̄+ m − δm
p q̄+ n . (68)

We now use the SO(8) generators to construct the SuperPoincaré generators

j+ = i x ∂+ ; j̄+ = i x̄ ∂+

j+ mn = i xmn ∂+ ; j̄+
mn = i x̄mn ∂+ . (69)

The dynamical boosts are now

j− = i x
∂∂̄ + 1

4 ∂̄pq ∂pq

∂+
− i x− ∂ + i

∂

∂+

{
θm ∂̄m +

i

4
√

2 ∂+
(dp d̄p − d̄p dp)

}
−

− 1
4

∂̄pq

∂+

{
∂+

√
2

θp θq −
√

2
∂+

∂p ∂q +
1√
2∂+

dp dq

}
, (70)

and its conjugate

11



j̄− = i x̄
∂∂̄ + 1

4 ∂̄pq ∂pq

∂+
− i x− ∂̄ + i

∂̄

∂+

{
θ̄m ∂m +

i

4
√

2 ∂+
(dp d̄p − d̄p dp)

}
−

− 1
4

∂pq

∂+

{
∂+

√
2

θ̄p θ̄q −
√

2
∂+

∂̄p ∂̄q +
1√
2∂+

d̄p d̄q

}
. (71)

The others are obtained by using the SO(8)/(SO(2)× SO(6)) rotations

j−mn = [ j− , jmn ] ; j̄−mn = [ j̄− , j̄mn ] . (72)

We do not show their explicit forms as they are too cumbersome. The four supersymmetries in
four dimensions turn into one supersymmetry in ten dimensions. In our notation, the kinematical
supersymmetries qn

+ and q̄+n, are assembled into one SO(8) spinor. The dynamical supersymmetries
are obtained by boosting

i [ j̄− , qm
+ ] ≡ Qm , i [ j− , q̄+ m ] ≡ Qm , (73)

where

Qm =
∂̄

∂+
q+

m +
1
2

∂mn

∂+
q̄+ n ,

Qm =
∂

∂+
q+ m +

1
2

∂mn

∂+
q n

+ . (74)

They satisfy the supersymmmetry algebra

{Qm , Qn } = i
√

2 δm
n

1
∂+

(
∂ ∂ +

1
4

∂pq ∂pq
)

, (75)

and can be obtained from one another by SO(8) rotations, as

1
2

εpqmn [ jpq , Qm ] = 4Qn , (76)

while
[ j̄pq , Qm ] = 0 . (77)

Note also that

{Qm , qn
+ } =

i√
2

∂mn , (78)

4.3 The Generalized Derivatives

The cubic interaction in the N = 4 Lagrangian contains explicitly the derivative operators ∂ and ∂̄.
To achieve covariance in ten dimensions, these must be generalized. We propose the following operator

∇ ≡ ∂̄ +
i α

4
√

2 ∂+
d̄p d̄q ∂pq , (79)

which naturally incorporates the rest of the derivatives ∂pq, with α as an arbitrary parameter. After
some algebra, we find that ∇ is covariant under SO(8) transformations. We define its rotated partner
as

∇mn ≡
[
∇ , jmn

]
, (80)

where

12



∇mn = ∂mn − i α

4
√

2 ∂+
d̄r d̄s εmnrs ∂ . (81)

If we apply to it the inverse transformation, it goes back to the original form
[
jpq , ∇mn

]
= ( δp

m δq
n − δq

m δp
n )∇ , (82)

and these operators transform under SO(8)/(SO(2)×SO(6)), and SO(2)×SO(6) as the components
of an 8-vector.

We introduce the conjugate operator ∇ by requiring that

∇ φ̄ ≡ (∇φ) , (83)

with

∇ ≡ ∂ +
i α

4
√

2 ∂+
dp dq ∂̄pq . (84)

Define

∇ mn ≡
[
∇ , j̄mn

]
, (85)

which is given by

∇mn = ∂̄mn −
i α

4
√

2 ∂+
dr ds εmnrs ∂̄ . (86)

We then verify that
[
jmn , ∇pq

]
= ( δp

m δq
n − δq

m δp
n )∇ . (87)

The kinetic term is trivially made SO(8)-invariant by including the six extra transverse derivatives
in the d’Alembertian. The quartic interactions are obviously invariant since they do not contain any
transverse derivative operators. Hence we need only consider the cubic vertex. In the paper [17] it is
shown that to achieve covariance in ten dimensions, it suffices indeed to replace the transverse ∂ and
∂̄ by ∇ and ∇, respectively. This is done by checking the invariance under the little group SO(8).
Together with the result from four dimensions this is enough to warrant invariance under the full
superPoincaré group in ten dimensions. In this process the parameter α is determined to be 1. The
full action is then

S = −
∫

d4x

∫
d4θ d4θ̄

{
φ̄a 2

∂+2
φa +

4g

3
fabc

( 1
∂+

φ̄a φb ∇̄φc + c.c.
)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1
∂+

(φ̄d ∂+ φ̄e) +
1
2

φbφ̄c φd φ̄e
)}

. (88)

This action is suitable in order to investigate the perturbative properties of the theory. It is, of
course, non-renormalizable but has still remarkable properties that Nature might use. One can also
study possible higher symmetries of this action.

4.4 Eleven-Dimensional Supergravity

N = 1 Supergravity in eleven dimensions, contains three different massless fields, two bosonic (gravity
and a three-form) and one Rarita-Schwinger spinor. Its physical degrees of freedom are classified in
terms of the transverse little group, SO(9), with the graviton G( MN ), transforming as a symmetric
second-rank tensor, the three-form B[ MNP ] as an anti-symmetric third-rank tensor and the Rarita-
Schwinger field as a spinor-vector, ΨM (M, N, . . . are SO(9) indices). This theory on reduction to four
dimensions leads to the maximally supersymmetric N = 8 theory.
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In order to use the formalism and especially the superfield equ. (49) developed in four dimensions
for the maximally supersymmetric N = 8 theory we have to decompose

SO(9) ⊃ SO(2) × SO(7) . (89)

The SO(7) symmetry can in fact be upgraded to an SU(8) symmetry. However, it is important to
remember that it is really the SO(7) which is relevant when we “oxidize” the theory to d = 11 and
the coordinates θm and θ̄n used in the four-dimensional case will now be interpreted as spinors under
SO(7)× SO(2). To distinguish this we will change the notation m, n to α, β for the spinors and use
the notation a, b for the vector indices of SO(7).

The first step is to generalize the transverse variables to nine. In the Yang-Mills case, the compact-
ified SO(6) was easily described by SU(4) parameters and we made use of the convenient bi-spinor
notation. In the present case, the compactified SO(7) has no equivalent unitary group so we simply
introduce additional real coordinates, xa and their derivatives ∂a(where a runs from 4 through 10).
The chiral superfield remains unaltered, except for the added dependence on the extra coordinates

h(y) = h(x, x̄, xa, y−) , etc... . (90)

These extra variables will be acted on by new operators that will restore the higher-dimensional
symmetries.

4.5 The SuperPoincaré Algebra in 11 Dimensions

The SuperPoincaré algebra needs to be generalized from its four-dimensional version. The SO(2)
generators stay the same and we propose generators of the coset SO(9)/(SO(2)×SO(7)), of the form,

ja = − i ( x ∂a − xa ∂ ) +
i

2
√

2
∂+ θα ( γa)α β θβ − i√

2 ∂+
∂α ( γa)α β ∂β

+
i

2
√

2 ∂+
dα ( γa)α β dβ (91)

j
b = − i ( x̄ ∂b − xb ∂̄ ) +

i

2
√

2
∂+ θ̄α ( γb)

α β
θ̄β − i√

2 ∂+
∂̄α ( γb)

α β
∂̄β

+
i

2
√

2 ∂+
d̄α ( γb)

α β
d̄β (92)

which satisfy the SO(9) commutation relations,

[
j , ja

]
= ja ,

[
j , j̄b

]
= − j̄b

[
jcd , ja

]
= δca jd − δda jc

[
ja , j̄b

]
= i jab + δab j, (93)

where j is the same as before, and the SO(7) generators read,

jab = − i ( xa ∂b − xb ∂b ) + θα (γa)α β (γb)
β σ

∂̄σ

+ θ̄α (γa)α β (γb)
β σ

∂σ − 1√
2 ∂+

dα (γa)α β (γb)
β σ

d̄σ . (94)

The full SO(9) transverse algebra is generated by j , jab , ja and j̄b. All rotations are specially con-
structed to preserve chirality. For example,

[ ja , d̄α ] = 0 ; [ j̄ b , dα ] = 0 . (95)
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The remaining kinematical generators do not get modified,

j+ = j+ , j+− = j+− , (96)

while new kinematical generators appear,

j+ a = i xa ∂+ ; j̄+ b = i x̄b ∂+ . (97)

We generalize the linear part of the dynamical boosts to,

j− = i x
∂∂̄ + 1

2 ∂a ∂a

∂+
− i x− ∂ + i

∂

∂+

{
θα ∂̄α +

i

4
√

2 ∂+
(dα d̄α − d̄α dα)

}

− 1
4

∂a

∂+

{
∂+ θα ( γa)α β θβ − 2

∂+
∂α ( γa)α β ∂β +

1
∂+

dα ( γa)α β dβ
}

.

(98)

The other boosts may be obtained by using the SO(9)/(SO(2)× SO(7)) rotations,

j− a = [ j− , ja ] ; j̄− b = [ j̄− , j̄b ] . (99)

We do not show their explicit forms as they are too cumbersome. The dynamical supersymmetries
are obtained by boosting

[ j− , q̄+ η ] ≡ Qη = − i
∂

∂+
q+ η −

i√
2

( γb ) η ρ q ρ
+

∂b

∂+
,

[ j̄− , qα
+ ] ≡ Qα = i

∂̄

∂+
q+

α +
i√
2

( γa )α β q̄+ β

∂a

∂+
. (100)

They satisfy,

{Qα , qη
+ } = − ( γa )α η ∂a , (101)

and the supersymmetry algebra,

{Qα , Q η } = i
√

2 δα
η

1
∂+

(
∂ ∂ +

1
2

∂a ∂a
)

. (102)

Having constructed the free N = 1 SuperPoincaré generators in eleven dimensions which act on
the chiral superfield, we turn to building the interacting theory.

4.6 The Generalized Derivatives

The cubic interaction in the N = 8 Lagrangian explicitly contains the transverse derivative operators
∂ and ∂̄. To achieve covariance in eleven dimensions, we proceed to generalize these operators as we
did for N = 4 Yang-Mills. We propose the generalized derivative

∇ = ∂̄ +
σ

16
d̄α ( γa )α β d̄β

∂a

∂+
, (103)

which naturally incorporates the coset derivatives ∂m. Here σ is a parameter, still to be determined.
We use the coset generators to produce its rotated partner ∇ by,

[ ∇ , ja ] ≡ ∇a = − i ∂a +
i σ

16
d̄α ( γa )α β d̄β

∂

∂+
. (104)
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It remains to verify that the original derivative operator is reproduced by undoing this rotation;
indeed we find the required closure,

[ ∇a , j
b ] = δ a b ∇

The new derivative ( ∇ , ∇a ), thus transforms as a 9-vector under the little group in eleven
dimensions. We note that σ is not determined by these algebraic requirements. Instead, its value
will be fixed by requiring that our generalized vertex satisfy the correct invariance requirements. We
define the conjugate derivative ∇, by requiring that

∇ φ̄ ≡ (∇φ) . (105)

This tells us that,

∇ ≡ ∂ +
σ∗

16
dα ( γb )

α β
dβ ∂b

∂+
(106)

This construction is akin to that for the N = 4 Yang-Mills theory, but this time it applies to the
“oxidation” of the (N = 8, d = 4) theory to (N = 1, d = 11) Supergravity. This points to remarkable
algebraic similarities between the two theories, with possibly profound physical consequences. It
remains to show that the simple replacement of the transverse derivatives ∂, ∂̄ by ∇,∇ in the (N = 8,
d = 4) interacting theory yields the fully covariant Lagrangian in eleven dimensions.

This can be done by checking the invariance under the little group SO(9). This is a very tedious
exercise which was done in paper [18]. Indeed it is possible to show that the three-point coupling is
invariant for the specific choice of σ = −√2 and the eleven-dimensional supergravity theory can be
written as

S =
∫

d10xd8θd8θ̄

{
φ̄(x, θ)

2

∂+4 φ(x, θ) +
3
2

g
1

∂+2 φ ∇φ ∇φ + c.c.
]}

+ O(g2). (107)

The four-point coupling for d = 4 was computed as said above in [15]. It should be straightforward
to show that it can be taken up to d = 11 as was done for the three-point coupling. The trouble though
is that it contains so many terms. With it one can in principle study various properties of this theory,
such as the one-loop graphs. They will diverge but there might be ways to add more fields to get
convergent answer. This is a long term goal of this project. One can also study the symmetries of the
action. It is clear that the action is quite unique and has a profound rôle in modern particle physics
and any symmetry that can be found for this action is a genuine physical symmetry. This theory is
also the low-energy limit of the mystic M-theory which is supposed to be the underlying theory to
all string theories. This theory is shrouded in mystery and any attempt to better understand the
supergravity theory can help us eventually understand M-theory.

5 Oxidations and Reductions

We have seen how the two superfields can be used as master fields. In the case of the N = 4 we have
used the superfield for both d = 4 and for d = 10. Similarly the d = 6 theory can be found [19]. We
can reduce the theory also to d = 3.The 10-dimensional case saturates the algebra and the superfield.
Similarly we can consider the superfield for N = 8. We have shown how to use it for d = 4 and d = 11.
We can again use the superfield also for the other dimensions between 11 and 3. However, in this case
we can use the superfield also for higher dimensions so let me describe some results in d = 18.
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5.1 Particle Dynamics and Supersymmetry in 18 dimensions

If we consider the linear parts of the supersymmetry algebras we can consider them as part of a descrip-
tion of particle dynamics.. We describe an N = n superparticle by its coordinates xi, x+, x− θm, θ̄m,
where m = 1, ...n. The action for the free particle is

S =
∫

dτ(
1
2
ẋi2 + θm ˙̄θm) (108)

It has to be supplemented with the full supersymmetry algebra to have a fully invariant theory.
If we instead change θm to a transverse fermionic vector coordinate λi, we will describe a spinning
particle. For d = 4, i.e. i = 1, 2 it is a Dirac particle.

For the N = 4 theory in d = 10 there exist both a spinning particle and a superparticle solution.
This is a consequence of the triality of SO(8). For the (N = 8 we can push the algebra up to d = 18

The 18-dimensional superparticle should describe a 128 boson and a 128 fermion under the little
group of SO(16). The kinematical light-cone supersymmetry transforms as a 16, i.e. is vectorial. We
will break the SO(1.17) covariance further down to SU(8) × U(1) × SO(16)

SU(8)×U(1) × SO(1,17)
SO(16) with the

generators identified as 153 = 63+1+28+28+8+ 8̄+8+ 8̄+1 in terms of representations of SU(8).
We will introduce the generators with the notation jm

n , j , jmn , j̄mn , j+m , j̄+
m , j−m , j̄−m , j+− with

m = 1, .....8.
Let us start with the bosonic part. We will describe the phase space in terms of x+, x−, xm and x̄m

and the corresponding ones for the momenta. The coordinates satisfy ∂m
x x̄n = δm

n . p2 = −2p+p−+2pp̄.
The orbital generators are straightforward to construct. We take x+ = 0

lmn = xm∂̄xn − x̄n∂x
m − δm

n

8
(xp∂̄xp − x̄p∂x

p), (109)

l = xp∂̄xp − x̄p∂x
p, (110)

lmn = xm∂x
n − xn∂x

m, (111)
l̄mn = x̄m∂̄xn − x̄n∂̄xm, (112)
l+m = ixm∂+, (113)
l̄+m = −ix̄m∂+, (114)

l−m = i(xm ∂p
x∂̄xp

∂+
− x−∂m

x ), (115)

l̄−m = −i(x̄m
∂p

x∂̄xp

∂+
− x−∂̄xm), (116)

l+− = ix−∂+. (117)

Let us now try to construct the spin parts s. We will use the supersymmetry generators in order
to get chiral operators. The kinematical ones (we write them in terms of q’s instead of θ’s and d’s as
we have done before, which is slightly simpler.)

q m
+ = −∂m +

i√
2

θm ∂+ ; q̄+ n = ∂̄n − i√
2

θ̄n ∂+ , (118)

satisfy

{ q m
+ , q̄+ n } = i

√
2 δm

n ∂+ . (119)
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With these we can construct

sm
n = −i

1√
2∂+

qm
+ q̄+n + i

δm
n

8
√

2∂+
qp
+q̄+p, (120)

s = −i
1√
2∂+

qp
+q̄+p, (121)

smn = −i
1√
2∂+

qm
+ qn

+, (122)

s̄mn = −i
1√
2∂+

q̄+mq̄+n, (123)

(124)

These ones close to the SO(16) algebra. The remaining coset generators have to be guessed. We
start with the

s+m = 0, (125)
s̄+

m = 0, (126)

s+− = − i

2
(θp∂̄p + θ̄p∂

p). (127)

Note that the l+− is not written in terms of the q+’s. It commutes with the covariant derivatives
to a covariant derivative which is good enough to warrant chirality. By making an ansatz for j−m and
j̄−m one can derive a possible form by using the commutators

[J+m, J−n] = −Jmn, (128)

[J̄+
m, J−n] = −Jn

m − iδn
mJ+− − δn

m

8
J. (129)

A solution to these commutators is

s−m =
i

2
∂x

m

∂+
(θp∂̄p + θ̄p∂

p) +
1√
2

∂x
p

∂+2 qm
+ q̄+p

+
1√
2

∂̄xp

∂+2 qm
+ qp

+, (130)

s̄−m = − i

2
∂x

m

∂+
(θp∂̄p + θ̄p∂

p)− 1√
2

∂̄xp

∂+2 q̄+m qp
+

− 1√
2

∂p
x

∂+2 q̄+mq̄+p. (131)

We can now check the full Poincaré algebra SO(1, 17) closes. What kind of algebra does the full set
of generators including the supersymmetry generators qm

+ close to? By commuting qm
+ with J−n we

will generate the dynamical supersymmetry generators. However, unlike the previous cases we have
studied this process does not close. The algebra becomes an open algebra. Noting that qm

+ and q̄+m

represent 16 components we can see that an alternative way to describe them is a an SO(16) vector
and we hence have an 18-dimensional spinning particle. However, this study is interesting since d = 18
is the dimension of the ”missing string theory”. We know since many years that the string theory
algebras demand d = 26 or d = 10. It has been been conjectured by many that there should be some
kind of consistent structure also in d = 18. It has be be more general than the straight attempt above
but it should contain it. If we could find a new structure in d = 18 it could give us a lot of hints to
the true nature of M-theory.
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