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Abstract

Gauge field theory is usually used to describe particles with spins higher than 1/2. The gauge
invariance represented in terms of the BRST invariance is often crucial for studying the quantum
properties of those theories. Yet there is a another very different formulation sometimes called
the light-cone gauge approach or the light-front approach used to study quantum properties,
where the only symmetries present in the theory are the Poincaré symmetry and perhaps some
global external symmetries. There are no unphysical degrees of freedom in the fields. The
elementary particles are related to the irreducible representations of the Poincaré algebra. In
this formulation of quantum field theory one can extend these representations to depend also on
a coupling constant. The representations then become non-linear and contain the interaction
terms which are shown to have strong uniqueness. Extending the algebra to supersymmetry it
is shown that two field theories stick out, N = 4 Yang-Mills and N = 8 Supergravity and their
higher dimensional analogues. I also discuss string theory from this starting point.

1 Introduction

In his famous paper in 1939 Eugene Wigner [1] showed that the irreducible representations of the
Poincaré algebra can be classified by the spin of the representations (as well as the mass). The spin
can be either integer or half-integer and we find naturally the bosons and the fermions on an equal
footing. A quantum field theory must be invariant under this symmetry, and that is certainly one of
the starting points for building a quantum field theory. Another one is, of course, gauge invariance,
which introduces unphysical degrees of freedom and shadows the consequences of the Poincaré
symmetry. The crucial symmetry to study the quantum properties is the BRST symmetry [2].
Most modern studies of gauge theories are based on studies of this symmetry. There are, however,
gauge choices for which the unphysical degrees of freedom can be integrated out of the functional
integral and then the remaining symmetry is just the Poincaré one. Here we have no need for the
BRST symmetry approach. These gauge choices are typically such that the light-cone components
of the gauge field be zero. By also interpreting one of the light-cone directions as the evolution
parameter, the ”time”, one finds that the unphysical degrees of freedom satisfy algebraic equations
and hence can be integrated out from the functional integral [3]. This process will introduce new
interaction terms and, as we will see, also some mild non-locality into the interacting Lagrangians.
The Poincaré invariance is now obscured since some of the covariance is lost and it will indeed
be non-linearly implemented. The generators can be found by introducing the solutions of the
unphysical degrees of freedom into them and by making a gauge transformation to make sure one
stays in the gauge.

There is an obvious alternative way to construct these gauge fixed Lagrangians, namely to take
Wigner’s approach very literally. Poincaré invariance is a physical symmetry, a global symmetry
that we can test, and which we believe must be an underlying symmetry of any theory. In some sense
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the gauge invariances are artificial. It is really only their global limits that we measure physically.
Hence we only need to implement the global symmetries. If we construct a free quantum field
which describes the physical degrees of freedom consistent with the Poincaré invariance and other
global symmetries, we can try to construct interaction terms with a coupling constant to extend the
generators such they close again [4]. This means that these representations can be characterized
by a parameter, the coupling constant. From the arguments above it is clear that the process must
work at least for the known quantum field theories, and hence could be used to find new theories
as well as to argue about the uniqueness of the known ones.

In this talk I will show that all massless theories can be found in the latter way and that the
procedure is very general. Among the theories discussed, we see that the spin-2 theory is just
another field theory. There will be no hint of the equivalence principle or the covariance principle
and the symmetry will be strictly just the Poincaré one. Since this formulation will contain infinitely
many interaction terms which have to be found by the procedure, it is obvious that only the first
few terms can be found. The formulation will be useless for most purposes except questions about
simple loop graphs in the quantum theory. Would this procedure have produced the Einstein theory
on a different planet? This we can only speculate about, but it is possible. The process is more
important when we turn to supersymmetric theories. Here it is seen that the N = 4 Yang-Mills
and N = 8 Supergravity theories stick out as very special theories indicating that there must be a
close relationship among them. I will also show that the formalism is very natural to construct the
corresponding theories in d = 10 and d = 11 [5], [6].

Finally one can also use this procedure to extend the representations to be written in terms of
functionals, In this way one can show that there exist indeed Poincaré invariant string theories but
with very little freedom to construct such ones.

2 Light-Frame Formulation of Field Theories

We know since the time of Poincaré, Lorentz and Einstein that relativistic dynamics is invariant
under the Poincaré algebra. We start by working in a four-dimensional space with translations Pµ

and rotations and boosts Jµν , where µ = 0, 1, 2, 3 and the metric is ηµν = (−1, 1, 1, 1). (We will
use both capital and lower case letters for the generators. The difference will be clear later.) The
algebra is

[Pµ, P ν ] = 0 , (1)

[Jµν , P σ] = i(ηµσP ν − ηνσPµ) , (2)

[Jµν , Jαβ] = i(ηµαJνβ + ηανJβµ + ηνβJµα + ηβµJαν). (3)

In this talk I will study representations of this algebra and show that we can find all relativistic
field theories in a systematic way in this study.

In his famous paper of 1949 Paul Dirac [7] argued that for a relativitistically invariant theory
any direction within the light-cone can be the evolution parameter, the ”time”. In particular we
can use one of the light-cone directions. For this discussion we will use x+ = 1√

2
( x0 +x3) as the

time. The coordinates and the derivatives that we will use will then be
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x± =
1√
2

(x0±x3 ) ; ∂± =
1√
2

(− ∂0± ∂3 ) ; (4)

x =
1√
2

(x1 + i x2 ) ; ∂̄ =
1√
2

( ∂1 − i ∂2 ) ; (5)

x̄ =
1√
2

(x1 − i x2 ) ; ∂ =
1√
2

( ∂1 + i ∂2 ) , (6)

so that
∂+ x− = ∂− x+ = − 1 ; ∂̄ x = ∂ x̄ = +1 . (7)

The derivatives are, of course, related to the momenta through the usual formula pµ = −i∂µ

and we use the light-cone decomposition also for pµ. We will only consider massless theories so we
solve the condition p2 = 0. We then find

p− =
pp̄

p+
. (8)

The generator p− is really the Hamiltonian conjugated to the light cone time x+ and we see that
the translation generators of the Poincare algebra are written with just three operators. We will use
Dirac’s vocabulary that generators that involve the ”time” are called dynamical (or Hamiltonians)
and the others kinematical. Using light-cone notation and the complex one from above for the
transverse directions, the most general form of the generators of the full Poincaré algebra at x+ = 0
is then given by the four momenta

p− = − i
∂∂̄

∂+
, p+ = − i ∂+ , p = − i ∂ , p̄ = − i ∂̄ , (9)

the kinematical transverse space rotation

j = j12 = x ∂̄ − x̄ ∂ + λ, (10)

the other kinematical generators

j+ = i x ∂+ , j̄+ = i x̄ ∂+ , (11)

and
j+− = i x− ∂+, (12)

as well as the dynamical boosts

j− = i x
∂∂̄

∂+
− i x− ∂ + iλ

∂

∂+
, (13)

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + iλ

∂̄

∂+
. (14)

There is one degree of freedom in the algebra, namely the parameter λ which is the helicity.
At this stage it is arbitrary and checking the corresponding spin one finds, of course, that it is
|λ|. Hence the algebra covers all possible free field theories. We can let the generators act on a
complex field φ(x) with helicity λ, with its complex conjugate having the opposite helicity. This is
the ”first-quantized” version. We can also consider the fields as operators having the commutation
relation.
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[∂+φ̄(x), φ(x′)] = − i

2
δ(x− x′), (15)

where hence the momentum field conjugate to φ is ∂+φ̄.
We then introduce the ”second-quantized” representation O in terms of the ”first-quantized”

representation o as O = 2i
∫

d4x∂+φ̄(x) o φ(x). We then find that the commutator between two of
the generators J1 and J2 is

[J1, J2] = 2i
∫

d4x∂+φ̄(x)[j1, j2]φ(x). (16)

We can understand that P− truly is the Hamiltonian using equ.(8)

P− = 2
∫

d4x∂+φ̄(x)
∂∂̄

∂+
φ(x). (17)

Legendre transforming to the Lagrangian using the field momenta from equ.(15) we get the
action

S =
∫

d4x[∂+φ̄(x)∂−φ(x) + ∂+φ(x)∂−φ̄(x)− 2∂+φ̄(x)
∂∂̄

∂+
φ(x)]

=
∫

d4x∂+φ̄(x)2φ(x). (18)

It is remarkable that there is a unique form of the kinematic term for any spin-λ field. We should
remember though that to specify the theory we have to give all Poincaré generators, since the action
via the Hamiltonian is just one of those generators. They will show what spin the field describes.

In this representation it is straightforward to try to add interaction terms to the Hamiltonian.
This was done in [4]. Every dynamical generator will have interaction terms. The procedure is very
painstaking and there are as far as I know no other way than trial and error to find the non-linear
representation. On the other hand, once such a representation is found it represents a possible
relativistically invariant interacting field theory. The result is that for every integer λ there exists
a possible three-point interaction. For λ even, the unique solutions are

S =
∫

d4x
{

φ̄(x)2φ(x)

+g
[ λ∑

n=0

(−1)n

(
λ

n

)
φ̄(x)∂+λ(

∂̄λ−n

∂+λ−n
φ(x)

∂̄λ

∂+λ
φ(x)) + c.c.

]}

+O(g2). (19)

For λ odd, the field φ(x) must be in the adjoint representation of an external group φa(x) and
we have to introduce the fully antisymmetric structure constants fabc in the interaction terms to
find a possible term. The results is

S =
∫

d4x
{

φ̄a(x)2φa(x)

+gfabc
[ λ∑

n=0

(−1)n

(
λ

n

)
φ̄a(x)∂+λ(

∂̄λ−n

∂+λ−n
φb(x)

∂̄λ

∂+λ
φc(x)) + c.c.

]}

+O(g2). (20)

14



We note the non-locality in the interaction term in terms of inverses of ∂+. The easiest way to
understand it is to Fourier transform to momentum space. In the calculations it is really defined
by the rule 1

∂+ ∂+f(x+) = f(x+). When performing a calculation one has to specify exactly the
situation of the pole in ∂+. In an sense this is a remainder of the gauge invariance.

We can now check for special values of λ.

• λ = 0

The dimension of the coupling constant g is 1 (in mass units) and this is the usual φ3- theory.
This theory is superrenormalizable but not physical since it does not have a stable vacuum having
a potential with no minimum.

• λ = 1

The dimension of the coupling constant g is 0 and this theory is nothing but non-abelian gauge
theory in a specific gauge. If we go on we know that we need a four-point coupling to fully close
the algebra. Note that the action has no local symmetry and the gauge group only appears as the
external symmetry group.

• λ = 2

The dimension of the coupling constant g is −1 and this theory is the beginning series of a
gravity theory. It is clear from the dimensions of the coupling constant that interaction terms to
arbitrary order can be constructed without serious non-localities. The four-point function related
to Einstein’s theory is known [8]. Going beyond the four-point coupling is probably too difficult,
unless powerful computer methods could be devised. We expect several solutions, of course, since
we know that the Hilbert action is but the simplest of all actions consistent with the equivalence
principle. Note that the action above, which is a fully gauge fixed Hilbert action expanded in the
fluctuations around the Minkowski metric, has no local symmetry, no covariance and knows nothing
about curved spaces. It is probably useless for discussions about global properties of space and
time but can be useful in the study of quantum corrections; to understand the finiteness properties
of the quantum theory.

• λ > 2

The dimension of the coupling constant g is < −1 and these theories are theories for higher
spins. Again they are non-renormalizable in the naive sense like the the spin-2 theory above. There
are strong reason to believe that these theories cannot be Poincaré invariant one by one when we
go to higher orders in the coupling constant, but the result above is an indication that certain sums
of such theories interacting with each other could possibly be invariant theories.

We can also find interacting solutions for λ half-integer. We can, of course, not have a three-
point coupling. We will in fact not be able to find self-interacting theories but have to consider the
coupling of the half-integer spin field to an integer spin field. We then find that we can couple a
spin-1

2 field to a spin-1 or a spin-0 field to recover in the first case a non-abelian gauge field coupled
to a spin-1

2 field ψi(x) in a representation characterized by i of the external group such that we
can have a coupling ψ̄iψ

jφaCi
ja, with Ci

ja the Clebsch-Gordan coefficient. It is interesting to note
that it is only in the interacting theory that we can prove the spin-statistics theorem [9]. The
formalism demands the spin-1

2 field to be of odd Grassmann type and the integer spin fields to be
even. Note that there is no spinor space. The spin-1

2 field is a complex (Grassmann odd) field with
no space-time index. Its equation of motion looks just like the one for a bosonic field. (Remember
the free equation the follows from equ. (18).) However, the dimension of the field ψ(x) is different
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from the one of the bosonic field, so the free action is

S =
∫

d4x∂+ψ̄(x)
2

∂+
ψ(x). (21)

The fact that we do not need to use spinors is very special for d = 4, since the transverse symmetry
which is covariantly realized is SO(2) ≈ U(1), which does not distinguish spinor representations.

We have hence seen that we can find all known unitary relativistic field theories as representa-
tions of the Poincaré algebra, and we see their uniqueness and also what kind of possibilities there
are for higher spin fields. In a gauge invariant formulation one can attempt to add in new terms
that are gauge invariant. Invariably they lead to problems with unitarity. We do not see those
terms here since the theories are unitary by construction.

3 Light-Frame Formulation of Supersymmetric Field Theories

I think that Poincaré would have been very interested in supersymmetry. It is an extension of the
Poincaré algebra and hence a restriction on relativistic dynamics. It is true that the world does not
look supersymmetric as such, but a good working hypothesis is that at some stage supersymmetry
is indeed a symmetry of the world.

Supersymmetry is an augmentation of the Poincaré algebra with a spinor generator Qα with
the anti-commutator

{Qα, Q̄β} = γµ
αβPµ. (22)

The spinor Qα is four-component. It satisfies the so-called Majorana condition which makes it
real in a certain representation of the γ-matrices. In the light-cone frame the spinor splits up
into two two-component spinor that can be rewritten as two complex operators, which we call
Q+ = −1

2γ+γ−Q and Q− = −1
2γ−γ+Q. From the Clifford algebra {γµ, γν} = 2ηµν with η =

diag(−1, 1, 1, 1) we see that Q = Q+ + Q−, and that the products −1
2γ+γ− and −1

2γ−γ+ are
projection operators. We can linearly combine the two components of the spinors into complex
entities with no indices. We can also augment by letting the Q’s transform as the representation
N under SU(N). The light-cone supersymmetry algebra is then

{Qm
+ , Q̄+n} = −

√
2δm

n P+ (23)

{Qm
− , Q̄−n} = −

√
2δm

n P− (24)

{Qm
+ , Q̄−n} = −

√
2δm

n P, (25)

where all other anticommutators are zero, except for the complex conjugate of the last one. The
indices m,n run from 1 to N .

The superPoincaré algebra can now be represented on a superspace with coordinates x±, x, x̄, θm, θ̄n,
where the coordinates θm and θ̄n are complex conjugates, Grassmann odd and transform as N and
N̄ under SU(N). We will denote their derivatives as

∂̄m ≡ ∂

∂ θm
; ∂m ≡ ∂

∂ θ̄m
. (26)

The Q’s are then represented as (We use the notation with lower case letters for operators that
act on the field.)

qm
+ = −∂m +

i√
2

θm ∂+ ; q̄+n = ∂̄n − i√
2

θ̄n ∂+ , (27)
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and the dynamical ones as

qm
− =

∂̄

∂+
q m

+ , q̄−m =
∂

∂+
q̄+ m . (28)

On this space we can also represent ”chiral” derivatives anticommuting with the supercharges
Q.

dm = −∂m − i√
2

θm ∂+ ; d̄n = ∂̄n +
i√
2

θ̄n ∂+ , (29)

which satisfy the anticommutation relations

{ dm , d̄n } = −i
√

2 δm
n ∂+ . (30)

To find an irreducible representation we have to impose the the chiral constraints

dm φ = 0 ; d̄m φ̄ = 0 , (31)

on a complex superfield φ(x±, x, x̄, θm, θ̄n). The solution is then that

φ = φ(x+, y− = x− − i√
2

θm θ̄m, x, x̄, θm). (32)

We now have to add in θ-terms into the Lorentz generators to complete the representation of
the free algebra. The result is for λ = 0

j = x ∂̄ − x̄ ∂ + S12 , (33)

where the little group helicity generator is

S12 =
1
2

( θp ∂̄p − θ̄p ∂p ) − i

4
√

2 ∂+
( dp d̄p − d̄p dp ). (34)

It ensures that the chirality constraints are preserved

[ j , dm ] = [ j , d̄m ] = 0 . (35)

The other kinematical generators are

j+ = i x ∂+ , j̄+ = i x̄ ∂+ . (36)

The rest of the generators must be specified separately for chiral and antichiral fields. Acting on
φ, we have

j+− = i x− ∂+ − i

2
( θp∂̄p + θ̄p ∂p ) , (37)

chosen so as to preserve the chiral combination

[ j+− , y− ] = − i y− , (38)

and such that its commutators with the chiral derivatives

[ j+− , dm ] =
i

2
dm , [ j+− , d̄m ] =

i

2
d̄m , (39)

preserve chirality. Similarly the dynamical boosts are
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j− = i x
∂∂̄

∂+
− i x− ∂ + i

(
θp∂̄p +

i

4
√

2 ∂+
( dp d̄p − d̄p dp )

) ∂

∂+
,

j̄− = i x̄
∂∂̄

∂+
− i x− ∂̄ + i

(
θ̄p∂

p +
i

4
√

2 ∂+
( dp d̄p − d̄p dp )

) ∂̄

∂+
. (40)

They do not commute with the chiral derivatives,

[ j− , dm ] =
i

2
dm ∂

∂+
, [ j− , d̄m ] =

i

2
d̄m

∂

∂+
, (41)

but do not change the chirality of the fields on which they act. They satisfy the Poincaré algebra,
in particular

[ j− , j̄+ ] = − i j+− − j , [ j− , j+− ] = i j− . (42)

We can now follow the same path as we did in the last section to go over to a ”second-quantized”
version in terms of integrals over the superfield and then add interaction terms to the dynamical
generators and try to close the algebra. In this way we can construct all the known supersymmetric
field theories as different representations of various supersymmetry algebras with different values
of λ and N . It is particularly interesting to study the cases N = 4× integer. For those values one
can impose a further condition on the superfield φ namely the ”inside out” condition

d̄m1
d̄m2

..d̄mN/2−1
d̄mN/2

φ =

1
2
εm1m2 ...mN/2 ...mN−1mN dmN/2+1 dmN/2+2 ...dmN−1 dmN φ̄ . (43)

We can now construct three-point interaction terms for any N
4 even in the dynamical generators.

This is certainly a tedious exercise based on writing the most general terms in the interaction terms
and then check the full algebra. The resulting action is [10]

S =
∫

d4xdNθdN θ̄

{
φ̄(x, θ)

2

∂+
N
2

φ(x, θ)

+
4g

3

[ N
4∑

n=0

(−1)n

(N
4

n

)
1

∂+N/2
φ̄(x, θ)∂̄

N
4
−n∂+n

φ(x, θ)∂̄n∂+
N
4
−n

φ(x, θ)

+ c.c.
]}

+ O(g2). (44)

When N
4 is odd, again the superfield has to transform as the adjoint representation of an external

group with structure constants fabc. The corresponding action is then

S =
∫

d4xdNθdN θ̄

{
φ̄a(x, θ)

2

∂+
N
2

φa(x, θ)

+
4g

3
fabc

[ N
4∑

n=0

(−1)n

(N
4

n

)
1

∂+N/2
φ̄a(x, θ)∂̄

N
4
−n∂+n

φb(x, θ)∂̄n∂+
N
4
−n

φc(x, θ)

+ c.c.
]}

+ O(g2). (45)

We note that we can construct theories with higher spin if N
4 > 2. These are then very special

combinations of the theories constructed in the previous section, with better quantum properties,
since we know by experience that the more supersymmetry there is the better are the quantum
properties.
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3.1 Maximally supersymmetric Yang-Mills Theory

The case N = 4 is especially interesting [11]. All the physical degrees of freedom are present in the
superfield which can be expanded as

φ (y) =
1

∂+
A (y) +

i√
2

θm θn Cmn (y) +
1
12

θm θn θp θq εmnpq ∂+ Ā (y)

+
i

∂+
θm χ̄m(y) +

√
2

6
θm θn θp εmnpq χq(y) . (46)

The fields A and Ā constitute the two helicities of a vector field while the antisymmetric SU(4)
bi-spinors Cmn represent six scalar fields since they satisfy

Cmn =
1
2

εmnpq Cpq . (47)

The fermion fields are denoted by χm and χ̄m. All have adjoint indices (not shown here), and are
local fields in the modified light-cone coordinates . This is the maximal supersymmetric Yang-Mills
theory. The full action is known [3]

S = −
∫

d4x

∫
d4θ d4θ̄

{
φ̄a 2

∂+2
φa +

4g

3
fabc

( 1
∂+

φ̄a φb ∂̄ φc + c.c.
)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1
∂+

(φ̄d ∂+ φ̄e) +
1
2

φbφ̄c φd φ̄e
)}

. (48)

With this action it was shown [13] that the perturbation expansion is finite. There is no
need for renormalization and the theory is very special. It is one of the cornerstones of modern
particle physics. From the point of this lecture it appears as a very special representation of the
superPoincaré algebra.

3.2 Maximal Supergravity

The next case is N = 8 [12]. In this case the superfield can be expanded as

φ (y) =
1

∂+2 h (y) + i θm 1
∂+2 ψ̄m (y) + i θm n 1

∂+
Ām n (y)

− θm n p 1
∂+

χ̄m n p (y)− θm n p r Cm n p r (y) + i θ̃(5)
m n p χm n p(y)

+ i θ̃(6)
m n ∂+ Am n(y) + θ̃(7)

m ∂+ χm(y) + θ̃(8) ∂+2
h̄ (y) , (49)

where

θm1 ... mn ≡ 1
n!

θm1 . . . θmn , θ̃(n)
n1 ... n8−n

≡ 1
n!

θm1 ... mn εm1 ... mn n1 ... n8−n . (50)

The helicity in the field goes from 2 to −2 and the theory has a spectrum comprised of a metric,
twenty-eight vector fields, seventy scalar fields, fifty-six spin one-half fields and eight spin three-half
fields. This theory is the maximal supergravity theory in d = 4. The action can be simplified [6] to

S =
∫

d4xd8θd8θ̄

{
φ̄(x, θ)

2

∂+4 φ(x, θ) +
3
2

g
1

∂+2 φ ∂̄ φ ∂̄ φ + c.c.
]}

+ O(g2). (51)

The computation of the four-point coupling is in progress [14]. It is remarkable that the actions
for the maximally supersymmetric Yang-Mills Theory and Supergravity Theory are so similar. In
some sense the Supergravity Theory is just an extension of the Yang-Mills one. In the modern
particle physics these two theories are very intimately connected even though the direct physical
consequences of them look quite different.
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4 Light-Frame Formulations of Higher Dimensional Theories

The procedure to find representations of the Poincaré algebra that we have followed in the previous
section can, of course, be extended to field theories in dimensions of space-time higher than four.
The covariant subalgebra which will be linearly realized is then SO(d − 2), so the physical fields
will be representations of this algebra and hence characterized by these representations like we
used helicity to distinguish the physical fields in four dimensions. If we just implement Poincaré
invariance as in sect.2 we can, in principle, find all the possible field theories. However, the proce-
dure gets easily tedious and furthermore there are few interesting quantum field theories in higher
dimensions because of the renormalization problems. The only ones that are discussed are super-
symmetric field theories since they are connected to the Superstring Theory. The ones that we
have been interested in are the ones which lead to interesting field theories when compactified to
four dimensions, so let us concentrate on those. The ones I will discuss here are ten-dimensional
SuperYang-Mills and eleven-dimensional Supergravity which under compactification leads to the
maximal theories discussed above.

4.1 Ten-Dimensional SuperYang-Mill Theory

The physical degrees of freedom of this theory are 8v and an 8s. If we insist that the superfield
should be a representation of the transverse SO(8) it must be in one of the representations above.
Since the natural spinor coordinate will also be an 8s, such a superfield must include 8 × 28

components and must hence be very strongly restricted. Such a formalism has been developed [15],
but it is not clear that the formalism is useful. Also it is not easily generalizable to the eleven-
dimensional case. Instead I will describe a recent procedure developed in [5].

The idea is to use the same superfield as in four dimensions. In order to do that we have to
sacrifice the explicit covariance under SO(8) and use the decomposition

SO(8) ⊃ SO(2) × SO(6) . (52)

Since SO(6) ∼ SU(4) we can identify the SU(4) as the external symmetry group in the su-
perfield equ. (46). The remaining symmetry SO(8)/(SO(6) × SO(2)) will transform among the
components of the superfield. First of all, the transverse light-cone space variables need be gener-
alized to eight. We stick to the representions used in the superfield, and introduce the six extra
coordinates and their derivatives as antisymmetric bi-spinors

xm 4 =
1√
2

( xm +3 + i xm +6 ) , ∂m 4 =
1√
2

( ∂m +3 + i ∂m +6 ) , (53)

for m 6= 4, and their complex conjugates

x̄pq =
1
2

εpqmn xmn ; ∂̄pq =
1
2

εpqmn ∂mn . (54)

Their derivatives satisfy

∂̄mn xpq = ( δm
p δn

q − δm
q δn

p ) ; ∂mn x̄pq = ( δm
p δn

q − δm
q δn

p ) , (55)

and

∂mn xpq =
1
2

εpqrs ∂mn x̄rs = εmnpq . (56)

There are then no modifications to be made to the chiral superfield, except for the dependence on
the extra coordinates
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A(y) = A(x, x̄, xmn, x̄mn, y−) , etc... . (57)

These extra variables will be acted on by new operators that generate the higher-dimensional
symmetries.

4.2 The SuperPoincaré Algebra in 10 Dimensions

The SuperPoincaré algebra needs to be generalized from the form in four dimensions. One starts
with the construction of the SO(8) little group using the decomposition SO(8) ⊃ SO(2)× SO(6).
The SO(2) generator is the same; the SO(6) ∼ SU(4) generators are given by

jm
n =

1
2

( xmp ∂̄pn − x̄pn ∂mp ) − θm ∂̄n + θ̄n ∂m +
1
4

( θp ∂̄p − θ̄p ∂p ) δm
n

+
i

2
√

2 ∂+
( dm d̄n − d̄n dm ) +

i

8
√

2 ∂+
( dp d̄p − d̄p dp ) δm

n . (58)

Note that we use the same spinors as in 4 dimensions because of the decomposition SO(8) ⊃
SO(2) × SO(6), where SO(6) ∼ SU(4). The extra terms with the d and d̄ operators are not
necessary for closure of the algebra. However they insure that the generators commute with the
chiral derivatives. They satisfy the commutation relations

[
j , jm

n

]
= 0 ,

[
jm

n , jp
q

]
= δm

q jp
n − δp

n jm
q . (59)

The remaining SO(8) generators lie in the coset SO(8)/(SO(2)× SO(6))

jpq = x ∂pq − xpq ∂ +
i√
2

∂+ θp θq − i
√

2
1

∂+
∂p ∂q +

i√
2 ∂+

dp dq ,

j̄mn = x̄ ∂̄mn − x̄mn ∂̄ +
i√
2

∂+ θ̄m θ̄n − i
√

2
1

∂+
∂̄m ∂̄n +

i√
2 ∂+

d̄m d̄n . (60)

All SO(8) transformations are specially constructed so as not to mix chiral and antichiral super-
fields,

[ jmn , d̄p ] = 0 ; [ j̄mn , dp ] = 0 , (61)

and satisfy the SO(8) commutation relations

[
j , jmn

]
= jmn ,

[
j , j̄mn

]
= − j̄mn ,

[
jm

n , jpq
]

= δq
n jmp − δp

n jmq ,
[
jm

n , j̄pq

]
= δm

q j̄np − δm
p j̄nq ,

[
jmn , j̄pq

]
= δm

pj
n

q + δn
qj

m
p − δn

pj
m

q − δm
qj

n
p − ( δm

p δn
q − δn

p δm
q ) j .

Rotations between the 1 or 2 and 4 through 9 directions induce on the chiral fields the changes

δ φ =
( 1

2
ωmn jmn +

1
2

ω̄mn j̄mn

)
φ , (62)

where complex conjugation is like duality

ω̄pq =
1
2

εmnpq ωmn . (63)
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For example, a rotation in the 1− 4 plane through an angle θ corresponds to taking θ = ω14 = ω23

(= ω23 = ω14 by reality), all other components being zero. Finally, we verify that the kinematical
supersymmetries are duly rotated by these generators

[ jmn , q̄+ p ] = δn
p qm

+ − δm
p qn

+ ; [ j̄mn , qp
+ ] = δn

p q̄+ m − δm
p q̄+ n . (64)

We now use the SO(8) generators to construct the SuperPoincaré generators

j+ = i x ∂+ ; j̄+ = i x̄ ∂+

j+ mn = i xmn ∂+ ; j̄+
mn = i x̄mn ∂+ . (65)

The dynamical boosts are now

j− = i x
∂∂̄ + 1

4 ∂̄pq ∂pq

∂+
− i x− ∂ + i

∂

∂+

{
θm ∂̄m +

i

4
√

2 ∂+
(dp d̄p − d̄p dp)

}
−

− 1
4

∂̄pq

∂+

{
∂+

√
2

θp θq −
√

2
∂+

∂p ∂q +
1√
2∂+

dp dq

}
, (66)

and its conjugate

j̄− = i x̄
∂∂̄ + 1

4 ∂̄pq ∂pq

∂+
− i x− ∂̄ + i

∂̄

∂+

{
θ̄m ∂m +

i

4
√

2 ∂+
(dp d̄p − d̄p dp)

}
−

− 1
4

∂pq

∂+

{
∂+

√
2

θ̄p θ̄q −
√

2
∂+

∂̄p ∂̄q +
1√
2∂+

d̄p d̄q

}
. (67)

The others are obtained by using the SO(8)/(SO(2)× SO(6)) rotations

j−mn = [ j− , jmn ] ; j̄−mn = [ j̄− , j̄mn ] . (68)

We do not show their explicit forms as they are too cumbersome. The four supersymmetries in
four dimensions turn into one supersymmetry in ten dimensions. In our notation, the kinematical
supersymmetries qn

+ and q̄+n, are assembled into one SO(8) spinor. The dynamical supersymmetries
are obtained by boosting

i [ j̄− , qm
+ ] ≡ Qm , i [ j− , q̄+ m ] ≡ Qm , (69)

where

Qm =
∂̄

∂+
q+

m +
1
2

∂mn

∂+
q̄+ n ,

Qm =
∂

∂+
q+ m +

1
2

∂mn

∂+
q n

+ . (70)

They satisfy the supersymmmetry algebra

{Qm , Qn } = i
√

2 δm
n

1
∂+

(
∂ ∂ +

1
4

∂pq ∂pq
)

, (71)

and can be obtained from one another by SO(8) rotations, as

1
2

εpqmn [ jpq , Qm ] = 4Qn , (72)
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while
[ j̄pq , Qm ] = 0 . (73)

Note also that

{Qm , qn
+ } =

i√
2

∂mn , (74)

4.3 The Generalized Derivatives

The cubic interaction in the N = 4 Lagrangian contains explicitly the derivative operators ∂ and
∂̄. To achieve covariance in ten dimensions, these must be generalized. We propose the following
operator

∇ ≡ ∂̄ +
i α

4
√

2 ∂+
d̄p d̄q ∂pq , (75)

which naturally incorporates the rest of the derivatives ∂pq, with α as an arbitrary parameter.
After some algebra, we find that ∇ is covariant under SO(8) transformations. We define its rotated
partner as

∇mn ≡
[
∇ , jmn

]
, (76)

where

∇mn = ∂mn − i α

4
√

2 ∂+
d̄r d̄s εmnrs ∂ . (77)

If we apply to it the inverse transformation, it goes back to the original form
[
jpq , ∇mn

]
= ( δp

m δq
n − δq

m δp
n )∇ , (78)

and these operators transform under SO(8)/(SO(2)×SO(6)), and SO(2)×SO(6) as the components
of an 8-vector.

We introduce the conjugate operator ∇ by requiring that

∇ φ̄ ≡ (∇φ) , (79)

with

∇ ≡ ∂ +
i α

4
√

2 ∂+
dp dq ∂̄pq . (80)

Define

∇ mn ≡
[
∇ , j̄mn

]
, (81)

which is given by

∇mn = ∂̄mn −
i α

4
√

2 ∂+
dr ds εmnrs ∂̄ . (82)

We then verify that
[
jmn , ∇pq

]
= ( δp

m δq
n − δq

m δp
n )∇ . (83)

The kinetic term is trivially made SO(8)-invariant by including the six extra transverse deriva-
tives in the d’Alembertian. The quartic interactions are obviously invariant since they do not
contain any transverse derivative operators. Hence we need only consider the cubic vertex. In
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the paper [5] it is shown that to achieve covariance in ten dimensions, it suffices indeed to replace
the transverse ∂ and ∂̄ by ∇ and ∇, respectively. This is done by checking the invariance under
the little group SO(8). Together with the result from four dimensions this is enough to warrant
invariance under the full superPoincaré group in ten dimensions. In this process the parameter α
is determined to be 1. The full action is then

S = −
∫

d4x

∫
d4θ d4θ̄

{
φ̄a 2

∂+2
φa +

4g

3
fabc

( 1
∂+

φ̄a φb ∇̄φc + c.c.
)

−g2fabc fade
( 1

∂+
(φb ∂+φc)

1
∂+

(φ̄d ∂+ φ̄e) +
1
2

φbφ̄c φd φ̄e
)}

. (84)

This action is suitable in order to investigate the perturbative properties of the theory. It is,
of course, non-renormalizable but has still remarkable properties that Nature might use. One can
also study possible higher symmetries of this action.

4.4 Eleven-Dimensional Supergravity

N = 1 Supergravity in eleven dimensions, contains three different massless fields, two bosonic
(gravity and a three-form) and one Rarita-Schwinger spinor. Its physical degrees of freedom are
classified in terms of the transverse little group, SO(9), with the graviton G( MN ), transforming as
a symmetric second-rank tensor, the three-form B[ MNP ] as an anti-symmetric third-rank tensor
and the Rarita-Schwinger field as a spinor-vector, ΨM (M, N, . . . are SO(9) indices). This theory
on reduction to four dimensions leads to the maximally supersymmetric N = 8 theory.

In order to use the formalism and especially the superfield equ. (49) developed in four dimen-
sions for the maximally supersymmetric N = 8 theory we have to decompose

SO(9) ⊃ SO(2) × SO(7) . (85)

The SO(7) symmetry can in fact be upgraded to an SU(8) symmetry. However, it is important
to remember that it is really the SO(7) which is relevant when we “oxidize” the theory to d = 11
and the coordinates θm and θ̄n used in the four-dimensional case will now be interpreted as spinors
under SO(7)×SO(2). To distinguish this we will change the notation m, n to α, β for the spinors
and use the notation a, b for the vector indices of SO(7).

The first step is to generalize the transverse variables to nine. In the Yang-Mills case, the
compactified SO(6) was easily described by SU(4) parameters and we made use of the convenient
bi-spinor notation. In the present case, the compactified SO(7) has no equivalent unitary group
so we simply introduce additional real coordinates, xa and their derivatives ∂a(where a runs from
4 through 10). The chiral superfield remains unaltered, except for the added dependence on the
extra coordinates

h(y) = h(x, x̄, xa, y−) , etc... . (86)

These extra variables will be acted on by new operators that will restore the higher-dimensional
symmetries.

4.5 The SuperPoincaré Algebra in 11 Dimensions

The SuperPoincaré algebra needs to be generalized from its four-dimensional version. The SO(2)
generators stay the same and we propose generators of the coset SO(9)/(SO(2) × SO(7)), of the
form,

ja = − i ( x ∂a − xa ∂ ) +
i

2
√

2
∂+ θα ( γa)α β θβ − i√

2 ∂+
∂α ( γa)α β ∂β

+
i

2
√

2 ∂+
dα ( γa)α β dβ (87)
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j
b = − i ( x̄ ∂b − xb ∂̄ ) +

i

2
√

2
∂+ θ̄α ( γb)

α β
θ̄β − i√

2 ∂+
∂̄α ( γb)

α β
∂̄β

+
i

2
√

2 ∂+
d̄α ( γb)

α β
d̄β (88)

which satisfy the SO(9) commutation relations,

[
j , ja

]
= ja ,

[
j , j̄b

]
= − j̄b

[
jcd , ja

]
= δca jd − δda jc

[
ja , j̄b

]
= i jab + δab j, (89)

where j is the same as before, and the SO(7) generators read,

jab = − i ( xa ∂b − xb ∂b ) + θα (γa)α β (γb)
β σ

∂̄σ

+ θ̄α (γa)α β (γb)
β σ

∂σ − 1√
2 ∂+

dα (γa)α β (γb)
β σ

d̄σ . (90)

The full SO(9) transverse algebra is generated by j , jab , ja and j̄b. All rotations are specially
constructed to preserve chirality. For example,

[ ja , d̄α ] = 0 ; [ j̄ b , dα ] = 0 . (91)

The remaining kinematical generators do not get modified,

j+ = j+ , j+− = j+− , (92)

while new kinematical generators appear,

j+ a = i xa ∂+ ; j̄+ b = i x̄b ∂+ . (93)

We generalize the linear part of the dynamical boosts to,

j− = i x
∂∂̄ + 1

2 ∂a ∂a

∂+
− i x− ∂ + i

∂

∂+

{
θα ∂̄α +

i

4
√

2 ∂+
(dα d̄α − d̄α dα)

}

− 1
4

∂a

∂+

{
∂+ θα ( γa)α β θβ − 2

∂+
∂α ( γa)α β ∂β +

1
∂+

dα ( γa)α β dβ
}

.

(94)

The other boosts may be obtained by using the SO(9)/(SO(2)× SO(7)) rotations,

j− a = [ j− , ja ] ; j̄− b = [ j̄− , j̄b ] . (95)

We do not show their explicit forms as they are too cumbersome. The dynamical supersymmetries
are obtained by boosting

[ j− , q̄+ η ] ≡ Qη = − i
∂

∂+
q+ η −

i√
2

( γb ) η ρ q ρ
+

∂b

∂+
,

[ j̄− , qα
+ ] ≡ Qα = i

∂̄

∂+
q+

α +
i√
2

( γa )α β q̄+ β

∂a

∂+
. (96)
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They satisfy,

{Qα , qη
+ } = − ( γa )α η ∂a , (97)

and the supersymmetry algebra,

{Qα , Q η } = i
√

2 δα
η

1
∂+

(
∂ ∂ +

1
2

∂a ∂a
)

. (98)

Having constructed the free N = 1 SuperPoincaré generators in eleven dimensions which act
on the chiral superfield, we turn to building the interacting theory.

4.6 The Generalized Derivatives

The cubic interaction in the N = 8 Lagrangian explicitly contains the transverse derivative opera-
tors ∂ and ∂̄. To achieve covariance in eleven dimensions, we proceed to generalize these operators
as we did for N = 4 Yang-Mills. We propose the generalized derivative

∇ = ∂̄ +
σ

16
d̄α ( γa )α β d̄β

∂a

∂+
, (99)

which naturally incorporates the coset derivatives ∂m. Here σ is a parameter, still to be determined.
We use the coset generators to produce its rotated partner ∇ by,

[ ∇ , ja ] ≡ ∇a = − i ∂a +
i σ

16
d̄α ( γa )α β d̄β

∂

∂+
. (100)

It remains to verify that the original derivative operator is reproduced by undoing this rotation;
indeed we find the required closure,

[ ∇a , j
b ] = δ a b ∇

The new derivative ( ∇ , ∇a ), thus transforms as a 9-vector under the little group in eleven
dimensions. We note that σ is not determined by these algebraic requirements. Instead, its value
will be fixed by requiring that our generalized vertex satisfy the correct invariance requirements.
We define the conjugate derivative ∇, by requiring that

∇ φ̄ ≡ (∇φ) . (101)

This tells us that,

∇ ≡ ∂ +
σ∗

16
dα ( γb )

α β
dβ ∂b

∂+
(102)

This construction is akin to that for the N = 4 Yang-Mills theory, but this time it applies to
the “oxidation” of the (N = 8, d = 4) theory to (N = 1, d = 11) Supergravity. This points
to remarkable algebraic similarities between the two theories, with possibly profound physical
consequences. It remains to show that the simple replacement of the transverse derivatives ∂, ∂̄
by ∇,∇ in the (N = 8, d = 4) interacting theory yields the fully covariant Lagrangian in eleven
dimensions.
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This can be done by checking the invariance under the little group SO(9). This is a very tedious
exercise which was done in paper [6]. Indeed it is possible to show that the three-point coupling
is invariant for the specific choice of σ = −√2 and the eleven-dimensional supergravity theory can
be written as

S =
∫

d10xd8θd8θ̄

{
φ̄(x, θ)

2

∂+4 φ(x, θ) +
3
2

g
1

∂+2 φ ∇φ ∇φ + c.c.
]}

+ O(g2). (103)

The computation of the four-point coupling is in progress. With it one can study various
properties of this theory, such as the one-loop graphs. They will diverge but there might be ways
to add more fields to get convergent answer. This is the long term goal of this project. One can
also study the symmetries of the action. It is clear that the action is quite unique and has a
profound rôle in modern particle physics and any symmetry that can be found for this action is a
genuine physical symmetry. This theory is also the low-energy limit of the mystic M-theory which
is supposed to be the underlying theory to all string theories. This theory is shrouded in mystery
and any attempt to better understand the supergravity theory can help us eventually understand
M-theory.

5 Strings

We have so far studied the physics of point-particles. We can ask what happens if we extend
this programme to also study one-dimensional objects, strings. The fields will then be functionals
Φ(x(σ)) and the corresponding theories will be functional field theories, which is a subject much
less understood. However, we can get far by studying the ”first-quantized” version.

The relativistic dynamics of extended bodies is quite difficult to handle. There is the severe
problem of simultaneity. A string that moves will in general have different times along it. There
is one exception, though, and that is if we choose ”time” to be one of the light-cone directions.
We can, in fact, choose the same x+ along the string. But this is just the time we like to work
with! We also have to specify the boundary conditions for the string. Either we choose an open
string or a closed string. We here treat them both but specify the length to be π. We introduce a
momentum density pµ and demand the commutation rules

[xµ(σ), pν(σ′)] = iδ(σ − σ′)ηµν (104)

We can now try to imitate the algebra in the point-particle case and try the following generators
at x+ = 0

p+ = p+, (105)

p− =
1

2p+

∫ π

0
dσ

(
(pi(σ))2 + (x́i(σ))2

)
,

pi =
∫ π

0
dσ pi(σ),

jij =
∫ π

0
dσ

(
xi(σ)pj(σ)− (xj(σ)pi(σ)

)
,

j+j = −xip+,

j+− = −x−p+,

j−i =
∫ π

0
dσ

(
x−(σ)pi(σ)− (xi(σ)p−(σ)

)
.
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In this expression i, j denote the transverse directions and p−(σ) is the integrand of p−. The
function x−(σ) is an unknown function, which will be determined such that the algebra closes.
The closure of this algebra was established in the famous paper of Goddard, Goldstone, Rebbi and
Thorn [16]. The remarkable result is that it only closes if the dimension of space-time is d = 26.
This was a very surprising result at the time.

Consider an open string with the parametrization

xi(σ) = xi + i
∑

n 6=0

1
n

αi
n cosnσ, (106)

where the oscillator modes α satisfy

[αi
m, αj

n] = mδm+n,0δ
ij . (107)

Insert this into the generator p−.

p− =
pi2

2p+
+

1
p+

∞∑

n=1

αi
nαi

n. (108)

or

p2 = −m2 = −
∞∑

n=1

αi
nαi

n. (109)

The string constitutes an infinite set of harmonic oscillators. If we compute the lowest mass
state we will only have the zero-mode fluctuations of all the oscillators [17]. The frequency is
essentially n and the computation gives

m2 =
d− 2

2

∞∑

n=1

n =
d− 2

2

∞∑

n=1

n−s |s=−1= −d− 2
24

. (110)

In this calculation we used a ζ-function renormalization of the infinite sum. In the orginal paper [17]
we used a renormalization of the velocity of light which is the velocity with which the phonons on
the string travel.

The spin-1 state must be massless so this scalar state is a tachyon with mass2 = −1. (We have
suppressed a mass scale, which does not affect the argument). Again we see that it only works for
d = 26.

We note that a string formalism is much more constrained than the corresponding one for
point-like particles. The formalism above is a representation of the Poincaré algebra but it is
unphysical.

How can one find a representation which is physical in the sense of not having any tachyons?
Equ. (110) is the crucial one to understand. The only way is to cancel the negative contribution
from the zero-point fluctuations with a corresponding positive contribution. We know that the
zero-point flucutation from a fermionic oscillator is negative so an infinite sum like the one above
over fermionic oscillators could cancel the term from the bosonic ones. Suppose we introduce a
Grassmann coordinate λµ(σ). It should lead to a cancellation if λµ satisfy the same boundary
conditions as xµ. In fact scrutinizing possible boundary conditions one finds indeed that such
conditions are possible, but there is also another sector with modes with half-integer frequencies.
This sector would again lead to tachyons. The two sectors found are the Ramond [18] and the
Neveu-Schwarz [19] sectors. One could also try to use a spinorial coordinate θα(σ) . This can only
be done in d = 3 , 4 , 6 or 10, since in the transverse space the vector and the spinor then have the
same dimension. The latter model is the Superstring Model [20].
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Adding in the Grassmann coordinates into the Poincaré generators one finds that the algebra
does indeed close in d = 10. Furthermore one finds that one can construct the full d = 10
superPoincaré algebra. By playing with open and closed strings and combining the d = 10 with
the d = 26 model one finds that one can construct five different string theories. These have been
the basis for much of the work in string theory for the last twenty years.

It is remarkable that there exist only five different physically consistent representations of the
superPoincaré algebra in terms of strings. They can all be found quite simply by just trying to
construct representations of the Poincaré algebra. For a detailed study of this method, see [21].

6 Concluding remarks

In this lecture I have shown that all the known quantum field theories follow by studying repre-
sentations of the Poincaré algebra. What we get though is essentially the part of them which is
amenable to perturbation theory, ie as expansions in a coupling constant. We have learnt in recent
years that quantum field theories are very much richer than what meets the eye in a perturbation
expansion. The formalism here is not suitable for such studies. It is very hard if possible to study
non-perturbative effects such as solitons, magnetic monopoles, branes and various forms of duality.
However, the formalism is a complement to other studies, and it is very useful for certain studies
about finiteness in perturbations expansions, which is one of the crucial tests of a quantum gravity
theory.
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