Some remarks on hamiltonian reduction of third derivative extension of MCS model

S. C. Sararu*
Department of Physics, University of Craiova
13 Al. I. Cuza Str., Craiova 200585, Romania

Abstract

A Hamiltonian reduction of a higher derivative model described by a Lagrangian action containing three terms, the topological mass term, Maxwell term and a third derivative extension of the Chern-Simons term is achieved.

1 Introduction

The addition of topological mass term to the Maxwell term (MCS model) leads to topologically massive electrodynamics a first-class theory with a single massive degree of freedom, described by a second order derivative action [1-4]. An interesting model can be built up in $D=3$ by adding to the MCS model a third order derivative extension that involve the Chern-Simons (TCS) term [5]

$$
\begin{equation*}
S=\int d^{3} x\left(c \varepsilon_{\mu \nu \rho} A^{\mu} \partial^{\nu} A^{\rho}-\frac{a}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{2 b} \varepsilon_{\mu \nu \rho} F^{\mu \lambda} \partial^{\nu} F_{\lambda}^{\rho}\right) . \tag{1}
\end{equation*}
$$

2 Hamiltonian reduction of MCSTCS model

In this paper after the canonical analysis of the MCSTCS model, the hamiltonian of the model is expressed in term of a reduced set of variables by solving the constraints $[6,7]$. The canonical analysis of the MCSTCS model will be done by a variant [8-11] of the Ostrogradsky method $[12,13]$. This approach is done by going through the third derivative order MCSTCS model to an equivalent first order one by introducing some new fields B_{μ} as

$$
\begin{equation*}
B_{\mu}=\partial_{0} A_{\mu} \tag{2}
\end{equation*}
$$

and enforce the Lagrangian constraints

$$
\begin{equation*}
B_{\mu}-\partial_{0} A_{\mu}=0 \tag{3}
\end{equation*}
$$

by Lagrange multiplier ξ^{μ}

$$
\mathcal{L}=c \varepsilon_{0 i j} A^{0} \partial^{i} A^{j}+c \varepsilon_{i 0 i} A^{i} B^{j}+c \varepsilon_{i j 0} A^{i} \partial^{j} A^{0}-\frac{a}{4} F_{i j} F^{i j}
$$

[^0]\[

$$
\begin{align*}
& -\frac{a}{2}\left(B_{i}-\partial_{i} A_{0}\right)\left(B^{i}-\partial^{i} A^{0}\right)-\frac{1}{2 b} \varepsilon_{0 i j}\left(B^{k}-\partial^{k} A^{0}\right) \partial^{i} F_{k}^{j} \\
& -\frac{1}{2 b} \varepsilon_{i 0 j}\left(\partial^{i} A^{0}-B^{i}\right)\left(\partial^{j} B_{0}-\partial_{0} B^{j}\right)-\frac{1}{2 b} \varepsilon_{i 0 j} F^{i k}\left(\partial^{j} B_{k}-\partial_{k} B^{j}\right) \\
& -\frac{1}{2 b} \varepsilon_{i j 0} F^{i k} \partial^{j}\left(B_{k}-\partial_{k} A_{0}\right)+\xi^{\mu}\left(B_{\mu}-\partial_{0} A_{\mu}\right) \tag{4}
\end{align*}
$$
\]

and then canonical analysis is performed using Dirac's constrained algorithm [14, 15].
Performing the canonical analysis of the model described by the Lagrangian (4) we are left with a system subject to the constraints

$$
\begin{align*}
\chi_{i} & \equiv \pi_{i}+\frac{1}{2 b} \varepsilon_{0 i j}\left(B^{j}-\partial^{j} A^{0}\right) \approx 0, \tag{5}\\
G^{(1)} & \equiv \partial_{i} p^{i}+c \varepsilon_{0 i j} \partial^{i} A^{j} \approx 0, \tag{6}\\
G^{(2)} & \equiv-p_{0}+\partial_{i} \pi^{i} \approx 0, \tag{7}\\
G^{(2)} & \equiv \pi^{0} \approx 0, \tag{8}
\end{align*}
$$

where we denote by $\left\{p^{\mu}, \pi^{i}\right\}$ the canonical momenta conjugate to the fields $\left\{A_{\mu}, B_{i}\right\}$. The canonical hamiltonian is given by

$$
\begin{align*}
H= & \int d^{2} x\left[-c \varepsilon_{0 i j} A^{0} \partial^{i} A^{j}-c \varepsilon_{i 0 i} A^{i} B^{j}-c \varepsilon_{i j 0} A^{i} \partial^{j} A^{0}+\frac{a}{4} F_{i j} F^{i j}\right. \\
& +\frac{a}{2}\left(B_{i}-\partial_{i} A_{0}\right)\left(B^{i}-\partial^{i} A^{0}\right)+\frac{1}{2 b} \varepsilon_{0 i j}\left(B^{k}-\partial^{k} A^{0}\right) \partial^{i} F^{j}{ }_{k} \tag{9}\\
& +\frac{1}{2 b} \varepsilon_{i 0 j}\left(\partial^{i} A^{0}-B^{i}\right) \partial^{j} B_{0}+\frac{1}{2 b} \varepsilon_{i 0 j} F^{i k}\left(\partial^{j} B_{k}-\partial_{k} B^{j}\right) \\
& \left.+\frac{1}{2 b} \varepsilon_{i j 0} F^{i k} \partial^{j}\left(B_{k}-\partial_{k} A_{0}\right)+p^{i} B_{i}\right] . \tag{10}
\end{align*}
$$

Examining the structure of the matrix, we find that the constraints $\chi_{i} \approx 0$ represent an independent subset of second-class constraints, while $\left\{G^{(1)}, G^{(2)}, G^{(3)}\right\} \approx 0$ represent an independent subset of first-class constraints. The number of physical degrees of freedom of the equivalent first order system is equal to

$$
\begin{align*}
\mathcal{N}_{O} & =(12 \text { canonical variables }-2 \mathrm{scc}-2 \times 3 \mathrm{fcc}) / 2 \\
& =2 \tag{11}
\end{align*}
$$

We perform a total gauge-fixing imposing the canonical gauge conditions

$$
\begin{equation*}
-\partial^{i} A_{i} \approx 0, \quad-A_{0} \approx 0, \quad B_{0} \approx 0 \tag{12}
\end{equation*}
$$

We remove all constraints by the Dirac bracket technique. Nonzero Dirac brackets between the variables $\left\{A_{i}, B_{i}, p^{i}\right\}$ are

$$
\begin{align*}
{\left[B_{i}(x), B_{j}(y)\right]_{x_{0}=y_{0}}^{*} } & =-b \varepsilon_{0 i j} \delta^{2}(\mathbf{x}-\mathbf{y}), \tag{13}\\
{\left[A_{i}(x), p^{j}(y)\right]_{x_{0}=y_{0}}^{*} } & =\left(\delta_{i}^{j}-\frac{\partial_{i} \partial^{j}}{\partial_{k} \partial^{k}}\right) \delta^{2}(\mathbf{x}-\mathbf{y}), \tag{14}\\
{\left[p_{i}(x), p_{j}(y)\right]_{x_{0}=y_{0}}^{*} } & =-c \varepsilon_{0 i j} \delta^{2}(\mathbf{x}-\mathbf{y}) . \tag{15}
\end{align*}
$$

while the canonical Hamiltonian takes the form

$$
H=\int d^{2} x\left[-c \varepsilon_{i 0 j} A^{i} B^{j}+\frac{a}{4} F_{i j} F^{i j}+\frac{a}{2} B_{i} B^{i}\right.
$$

$$
\begin{equation*}
\left.+\frac{1}{2 b} \varepsilon_{0 i j} B^{k} \partial^{i} F^{j}{ }_{k}-\frac{1}{2 b} \varepsilon_{i 0 j} F^{i k} \partial_{k} B^{j}+p^{i} B_{i}\right] . \tag{16}
\end{equation*}
$$

The fields $\left\{A_{i}, p^{i}\right\}$ are not really independent variables on the phase space because they are subject to an additional constraint. The algebra (13)-(15) is solved in terms of the free fields and canonical conjugate momenta $\left\{\alpha, \pi_{\alpha}, \varphi, \pi_{\varphi}\right\}$

$$
\begin{align*}
A_{i} & =-\varepsilon_{0 i j} \hat{\partial}^{j} \alpha \tag{17}\\
p_{i} & =\varepsilon_{0 i j} \hat{\partial}^{j} \pi_{\alpha}-c \hat{\partial}_{i} \alpha \tag{18}\\
B_{i} & =-\varepsilon_{0 i j} \hat{\partial}^{j} \pi_{\varphi}+b \hat{\partial}_{i} \varphi \tag{19}
\end{align*}
$$

where $\hat{\partial}_{i} \equiv \frac{\partial_{i}}{\sqrt{-\partial^{2}}}$. In terms of the new fields/momenta pairs the Hamiltonian reduce to

$$
\begin{equation*}
H=\int d^{2} x\left[\frac{a}{2} \alpha \partial_{i} \partial^{i} \alpha+\alpha \partial_{i} \partial^{i} \varphi-\frac{a b^{2}}{2} \varphi^{2}+2 c b \alpha \varphi-\frac{a}{2} \pi_{\alpha}^{2}-\frac{1}{2} \pi_{\beta}^{2}+\frac{1}{2} \pi_{\varphi}^{2}\right] \tag{20}
\end{equation*}
$$

Passing to the Lagrangian formulation we obtain

$$
\begin{equation*}
S=\int d^{3} x\left[-\frac{a}{2} \alpha \square \alpha-\alpha(\square+2 c b) \varphi+\frac{a b^{2}}{2} \varphi^{2}\right] . \tag{21}
\end{equation*}
$$

Setting $c=0$ in (21) we get

$$
\begin{equation*}
S_{(c=0)}=\int d^{3} x\left[-\frac{a}{2} \alpha \square \alpha-\alpha \square \varphi+\frac{a b^{2}}{2} \varphi^{2}\right] \tag{22}
\end{equation*}
$$

that can be written in diagonal form

$$
\begin{equation*}
S_{(c=0)}=\int d^{3} x\left[-\frac{1}{2 a} \bar{\alpha} \square \bar{\alpha}+\frac{1}{2 a} \varphi\left(\square+4 a^{2} b^{2}\right) \varphi\right] \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\alpha}=a \alpha+\varphi, \tag{24}
\end{equation*}
$$

result in agreement with those obtained in [5].
For $a=0(21)$ reduce to

$$
\begin{equation*}
S_{(a=0)}=\int d^{3} x[-\alpha(\square+2 c b) \varphi] \tag{25}
\end{equation*}
$$

that can be diagonalized

$$
\begin{equation*}
S_{(a=0)}=\frac{1}{2} \int d^{3} x[-\bar{\alpha}(\square+2 c b) \bar{\alpha}+\bar{\varphi}(\square+2 c b) \bar{\varphi}] \tag{26}
\end{equation*}
$$

in terms of

$$
\begin{equation*}
\bar{\alpha}=\frac{1}{\sqrt{2}}(\alpha+\varphi), \quad \bar{\varphi}=\frac{1}{\sqrt{2}}(\alpha-\varphi), \tag{27}
\end{equation*}
$$

to represent two massive degrees of freedom with a relative ghost sign.
Keeping all three terms ($a \neq 0$ and $c \neq 0$), action (21) can be written in diagonal form for $b=2 c$

$$
\begin{equation*}
S=\frac{1}{2} \int d^{3} x\left\{-\widetilde{\alpha}\left[\square+\frac{4 c^{2}\left(\sqrt{a^{2}+4}-a\right)}{\sqrt{a^{2}+4}+a}\right] \widetilde{\alpha}+\widetilde{\varphi}\left[\square+\frac{4 c^{2}\left(\sqrt{a^{2}+4}+a\right)}{\sqrt{a^{2}+4}-a}\right] \widetilde{\varphi}\right\} \tag{28}
\end{equation*}
$$

where the concrete form of the $\widetilde{\alpha}$ and $\widetilde{\varphi}$ is not important for our purpose. We find that the MCSTCS is free of tachyons (the c^{2} terms signs are all positive) and based on the relative sign of the two terms from (28) we have a massive ghost.

3 Conclusions

In this paper, we have achieved a Hamiltonian reduction of a higher derivative model described by a Lagrangian action containing three terms, the topological mass term, Maxwell term and a third derivative extension of the Chern-Simons term. The MCSTCS model is free of tachyons, but is plagued by ghost. Similarly, the CSTCS model describes two massive degrees of freedom with a relative ghost sign. The MTCS model describes a pair of excitations, one is massless and the other a massive ghost [5].

References

[1] P. K. Townsend, K. Pilch and P. van Nieuwenhuizen, Phys. Lett. B 136, 38 (1984).
[2] S. Deser and R. Jackiw, Phys. Lett. B 139, 371 (1984).
[3] S. Deser, R. Jackiw and S. Templeton, Ann. Phys. (NY) 140, 372 (1982).
[4] R. Banerjee, H. J. Rothe and K. D. Rothe, Phys. Rev. D 55, 6339 (1997).
[5] S. Deser and R. Jackiw, Phys. Lett. B 451, 73 (1999).
[6] R. Banerjee and S. Kumar, Phys. Rev. D 63, 125008 (2001).
[7] S. C. Sararu, M. T. Udristioiu, AIP Conf. Proc. 1916, 020009 (2017);
[8] J. M. Pons, Lett. Math. Phys. 17, 181 (1989).
[9] R. Banerjee, P. Mukherjee and B. Paul, JHEP 1108, 085 (2011).
[10] S. C. Sararu, Eur. Phys. J. C 75, 526 (2015).
[11] S. C. Sararu, M. T. Udristioiu, Mod. Phys. Lett. A 31, 1650205 (2016)
[12] M. Ostrogradsky, Mem. Ac. St. Petersbourg VI 4, 385 (1850).
[13] D. M. Gitman, S. L. Lyakhovich and I. V. Tyutin, Sov. Phys. J. 28, 554 (1985).
[14] P. A. M. Dirac, Can. J. Math. 2, 129 (1950).
[15] P. A. M. Dirac, Lectures on Quantum Mechanics (Academic Press, 1967).

[^0]: *e-mail address: scsararu@central.ucv.ro

