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Abstract

A Hamiltonian reduction of a higher derivative model described by a Lagrangian
action containing three terms, the topological mass term, Maxwell term and a third
derivative extension of the Chern-Simons term is achieved.

1 Introduction

The addition of topological mass term to the Maxwell term (MCS model) leads to topolog-
ically massive electrodynamics a �rst-class theory with a single massive degree of freedom,
described by a second order derivative action [1�4]. An interesting model can be built up
in D = 3 by adding to the MCS model a third order derivative extension that involve the
Chern-Simons (TCS) term [5]
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2 Hamiltonian reduction of MCSTCS model

In this paper after the canonical analysis of the MCSTCS model, the hamiltonian of the
model is expressed in term of a reduced set of variables by solving the constraints [6, 7].
The canonical analysis of the MCSTCS model will be done by a variant [8�11] of the
Ostrogradsky method [12,13]. This approach is done by going through the third derivative
order MCSTCS model to an equivalent �rst order one by introducing some new �elds B�
as

B� = @0A�; (2)

and enforce the Lagrangian constraints
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and then canonical analysis is performed using Dirac�s constrained algorithm [14,15].
Performing the canonical analysis of the model described by the Lagrangian (4) we

are left with a system subject to the constraints
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G(2) � �p0 + @i�i � 0; (7)

G(2) � �0 � 0; (8)

where we denote by fp�; �ig the canonical momenta conjugate to the �elds fA�; Big. The
canonical hamiltonian is given by
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Examining the structure of the matrix, we �nd that the constraints �i � 0 represent an
independent subset of second-class constraints, while

�
G(1); G(2); G(3)

	
� 0 represent an

independent subset of �rst-class constraints. The number of physical degrees of freedom
of the equivalent �rst order system is equal to

NO = (12 canonical variables� 2 scc� 2� 3 fcc)=2
= 2: (11)

We perform a total gauge-�xing imposing the canonical gauge conditions

� @iAi � 0; �A0 � 0; B0 � 0: (12)

We remove all constraints by the Dirac bracket technique. Nonzero Dirac brackets between
the variables fAi; Bi; pig are
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while the canonical Hamiltonian takes the form
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The �elds fAi; pig are not really independent variables on the phase space because they
are subject to an additional constraint. The algebra (13)-(15) is solved in terms of the
free �elds and canonical conjugate momenta f�; ��; '; �'g

Ai = �"0ij @̂j�; (17)

pi = "0ij @̂
j�� � c@̂i�; (18)

Bi = �"0ij @̂j�' + b@̂i': (19)

where @̂i � @ip
�@2 . In terms of the new �elds/momenta pairs the Hamiltonian reduce to
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Passing to the Lagrangian formulation we obtain
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Setting c = 0 in (21) we get
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that can be written in diagonal form
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where
� = a�+ '; (24)

result in agreement with those obtained in [5].
For a = 0 (21) reduce to
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that can be diagonalized
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to represent two massive degrees of freedom with a relative ghost sign.
Keeping all three terms (a 6= 0 and c 6= 0), action (21) can be written in diagonal form

for b = 2c
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a2 + 4� a

# e') ; (28)
where the concrete form of the e� and e' is not important for our purpose. We �nd that
the MCSTCS is free of tachyons (the c2 terms signs are all positive) and based on the
relative sign of the two terms from (28) we have a massive ghost.
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3 Conclusions

In this paper, we have achieved a Hamiltonian reduction of a higher derivative model
described by a Lagrangian action containing three terms, the topological mass term,
Maxwell term and a third derivative extension of the Chern-Simons term. The MCSTCS
model is free of tachyons, but is plagued by ghost. Similarly, the CSTCS model describes
two massive degrees of freedom with a relative ghost sign. The MTCS model describes a
pair of excitations, one is massless and the other a massive ghost [5].
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