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Abstract

An approach of the proper quantization rule to find exact solution of radial

Schrödinger equation for non-polynomial potentials, which are quasi exactly solv-

able, is developed in this work. Using this rule, the determination of the energy

spectrum  for non-pollynomialy potentials is somewhat impossible and limited,

which provides their energy at ground state only. To overcome this difficulty, we de-

vised in this approach the potential into two potentials: an exact potential () and

a non-linear extension(), the potential will be expressed as: () = ()+(),

then calculate the energy level  and the ground state 0 energy for exactly solv-

able potential () using the proper quantization rule, from which an analytical

expression of energie  for non-polynomial potential  () related with the ground

level energy 0 is found easily. We conclude that the study of non-exactly potential

remain to the study of the first exactly solvable potential.

Keywords: Proper quantization rule, exact solutions, non-polynomial potential,

Riccati equation.

1 Introduction

In quantum mechanics, find an exact solution of Schrödinger equation forms the most

important subject of research. This continuous interest is because of the solutions, used

in differential field of physics, contain all information about the quantum system. Also,

such solutions can be used to test the analytical method. Among different approach used

to obtain the exact eigenvalues and the wave function of solvable potentials; we consider

the traditional method [1], which reduce the Schrödinger equation via transformations

into a well-Known hypergeometric, confluent hypergeometric differential equation whose

solutions are the special functions, showing as well as the Asymptotic Iteration Method

(AIM) [2, 3], the Nikivarov-Uvarov (Nu) method[4],...etc. The algebraic method related to

the study of the Hamiltonian, the supersymmetric quantummechanics (SusyQM) [5, 6, 7],

the factorization method[8, 9]. Recently, new methods based on the exact and proper

quantization rule [10, 11, 12], and the Supersymmetric (WKB) method were investigated.
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It is well known that the number of potentials exactly solvable is limited, which have

given recently a great deal of interest to generate a novel class of potentials, for which

the Schrödinger equation is exactly. Construct this new family of solvable potential and

generating an extension of this one, is possible by means of a number of technic, such as

the algebraic Darboux transformations [13, 14, 15, 16] based on the factorization method,

point canonical transformations [17, 18], the supersymmetric quantum mechanics [19].

These indeed provides a powerful approach to a recent research. Recently, in the same

context, more study were published. All most of the authors have proposed exact solu-

tions of the non-polynomial extension of solvable potentials, using several methods. Such

Quesene [19] have constructed a new exactly solvable extended of radial oscillator and

scarf I potentials, Cariñena [20] , Sesma [21], Qiang Dong [22], Nasser Saad et al. [23],

Y.Grandati [24] both of them have treated the Generalized isotonic oscillator. Agboola

et al.[25] have analyzed a class of four of non-polynomially potentials, employing Bethe

ansatz method. In regard to Qiang Dong et al.[26], they exposed in their paper a work

concerning Non-polynomially modified oscillator, using a Confluent Hunt equation.

Motivated by this works, we propose in this paper, a study to obtain the exact solution

of some non-linear potential related with the radial oscillator, and coulomb potential

respectively using another efficient technical; so-called Qiang Dong proper quantization

rule [10, 11, 12] based on the quantization rule. This rule present a disadvantage, that it

is unable to generate energy spectra of non-polynomial potentials, we propose to calculate

the eigenvalues of the well-known solvable potential, then determined the ground state

energy 0 for non-polynomial potential, thus, an analytical form of energy  for each

potential of the following potentials was deduced by combination of the energy spectrum

of the solvable potential, with much more simple calculations and in economical manner:

• Generalized isotonic oscillator [20, 21, 22, 23, 24],  () = 1
2
22 + 

2 − 2

(2 + 2)
2


• Singular anharmonic potential [21, 27], () = 1
2
22 +



4
+



6


• Non polynomially modified oscillator [21, 26, 28, 29, 30], () = 1
2
22 +

2

1 + 2


• Soft-core coulomb potential [25]  () = 


− 

 + 


We will present the rest of this paper as follows: section 2: is a brief description

of exact and proper quantization rule as a powerful tool in calculating energy levels of

exactly solvable systems. In section 3; at first, we apply this method to calculate the

energy spectra both of the radial oscillator, and the coulomb potential. The form of

ground energies of these non-polynomial potentials are exposed in the section 4. A relation

between the energy spectrum of these two types of non-polynomial potentials and their

ground energy is found in section 5, then general expressions of energies for each one of

the potentials type is exposed and marks the end of this section. Finally, in section 6, we

give some concluding remarks .

2 Exact and proper quantization rule

Consider the one-dimentional non-relativistic stationary Schrödinger equation (we em-

ployed the natural unit ̄ = 2 = 1) expressed as,
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2()

2
+ [ −  ()]() = 0 (1)

by making transformation () =
1

()

()


, the Schrödinger equation can be ex-

pressed as a nonlinear Riccati equation,

()


= −[ −  ()]− 2() (2)

where () solution of the Riccati equation, defined as the logarithmic derivative of

wave function ()

From Eq. (2) () decreases monotonically with respect to  between two turning

points  and  , where  ≥  () As  increases across a node of wave function,  ()

decreases to −∞, jumps to +∞ and decreases again.

By study of the above one dimensional Schrödinger equation, Ma and Xu [10, 11]

proposed a new exact quantization rule, derived from the semi-classical  (Wentzel-

Kramer-Brilloin) condition. Its integral expression without approximation (so the rule is

exact) is,
Z



() =  +

Z


()0()
0()

 (3)

where () =
p
[ −  ()] is the classical momentum function for the energy 

 and  are two classical turning points determined by the resolution of  =  ()

 = ( + 1) is the number of nodes of () in the region  ≥  (), and  is

the quantum number; represent the number of node of wave function () between two

turning points.

The integral term

Z


()0()
0()

 is called the quantum correction. Ma and Xu [10, 11]

were found that this term is independ of the number of nodes of wave function () for all

exactly solvable potentials, they considered that the quantum correction can be calculated

from its ground state as,

Z


() =  +

Z


0()
0
0()

00()
 (4)

with this approach, it should be mentioned that it is necessary to calculate two com-

plicated integrals. In fact, to simplify this improved quantization method; Qiang Dong

proposed a proper Quantization rule [12] given by,

Z


()−
0Z

0

0() =  (5)

it consists of calculation of the first integral

Z


(), then replace the energy levels 

in the result by the ground energy expression 0 to obtain the second integral. Which

simplify the calculation of complicated integrals, occurs previously.
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Obviously, this new exact quantization rule, was also generalized to 3 Schrödinger

equation, and will be written as,

Z


() −
Z



0() =  (6)

3 Energy level for exactely solvable potentials

We propose, in this section, to apply the proper quantization rule in order to find an

analytical expression of the energy spectrum with respect of Radial oscillator and coulomb

potential which are exactly solvable:

3.1 Radial oscillator

The radial oscillator in three dimensional is given by,

 () =
1

2
22 (7)

the corresponding radial Schrödinger equation can be written as (Throughout the rest of

this paper, we take the unit ̄ =  = 1),

2()

2
+ [2 +

( + 1)

2
− 22]() = 0 (8)

where  Â 0 denote the oscillator frequency and  = −1 0 1 is the angular momentum
quantum angular number. And  is the energy eigenvalue.

Making the substitution 2 =  the turning points  and  determined by solving

 =  () are given by,

 +  =
2

2
and  =

 ( + 1)

2
 (9)

the logarithmic derivative for the ground state has the form: 0 () = − +



 ( where

 Â 0 due to the monotonic property). Substituting 0 () into the nonlinear Riccati

equation below,
0 ()


= −

∙
20 +

( + 1)


− 2

¸
− 20 ()  (10)

resolving this equation, allows us to determine the ground energy,

0 = 

µ
3

2
+ 

¶
 (11)

we find that 0 () = − +
( + 1)




Let now calculate the first integral for the momentum () appearing in Eq. (6) as

follows,

Z


() =

Z


p
2 ( −  ()) =



2

Z


p
( − ) ( − )


 (12)

=


2

"
1

2

µ
2

2

¶
−
r

( + 1)

2

#
 (13)
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the second integral is deduced by replacing  in Eq. (12) with 0 in Eq. (11) and

considering Eq. (6) one has, the following well-known result of the energy spectrum of

radial oscillator

 = 

µ
2+

3

2
+ 

¶
 (14)

from where the energy spectrum is equidistant,

 = (2 + 0)   = 0 1 2  (15)

3.2 Coulomb potential

Now, we consider the coulomb potential defined as

 () =



 (16)

where  Â 0 constant parameter.
the corresponding radial part of schrödinger equation for a particle in the presence of

this potential is:

2()

2
+ [2 +

( + 1)

2
− 


]() = 0 (17)

where  denotes the energy eigenvalues.

the turning points  and  are determined by solving  =  (), where  ≺ 

 =


2
− 1
2

s³
−


´2
− 4 ( + 1)

2
 (18)

 =


2
+
1

2

s³
−


´2
− 4 ( + 1)

2
 (19)

the logarithmic derivative 0 in the Riccati equation (2) take the form 0 = − +



(where  Â 0), substituting this into equation (2), allows us to obtain the explicit form of
the ground state energy and the Riccati function

0 = −1
2

µ
− 

 + 1

¶2
 0 = −



 + 1
(20)

now, the first momentum quantum integral

Z


() can be take the simplify form

and calculated as:

Z


() =

Z


p
2 ( −  ()) =

√
2

Z


p
( − ) ( − )


 (21)

thus
Z



() =


2

s
−2

2


− 

p
 ( + 1) (22)
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replacing  in equation (22) by 0 given in equation (20) yields the second integral as

Z


0() =


2

s
−2

2

0
− 

p
 ( + 1) (23)

and now, by considering the Quantization rule in equation (6), we obtain immediately

an analytical expression of the well-known eigenvalues for coulomb potential as following

 =
−2

2 (+  + 1)
2
 (24)

4 Ground state energies for non-polynomial poten-

tials

Now, let proceed to find a solution of nonlinear oscillator potentials at the ground state

via the Proper quantization rule. Considering non-polynomial oscillator as fellows:

4.1 Generalized isotonic oscillator

The quantum system described by the generalized isotonic oscillator, have attracted more

attention, and given in three dimentional by,

 () =
1

2
22 + 

2 − 2

(2 + 2)
2
 and   Â 0 (25)

this Non-polynomial potential converges to the isotonic and the harmonic oscillator

when  tends to zero and to infinity respectively if  remains constant. It is found that

this potential is placed between the isotonic and the harmonic oscillator.

Considering, the Schrödinger radial equation for this potential which take the form,

2()

2
+ [2 +

( + 1)

2
− 22 − 2 2 − 2

(2 + 2)
2
]() = 0 (26)

this later, can be transformed to the nonlinear Riccati equation for the ground level,

0()


= −[20 + ( + 1)

2
− 22 − 2 2 − 2

(2 + 2)
2
]− 20 () = 0 (27)

taken the wave function for the ground state as 0 () = −+



+

2

(2 + 2)
 with  Â 0,

substituting it into Riccati equation Eq. (27) , one can find the ground state energy as,

0 = 

µ
5

2
+  −

p
1 + 4

¶
 (28)

indeed, the Riccati function becomes 0 () = − +
( + 1)


−
¡
1−√1 + 4¢ 
(2 + 2)



142



4.2 Singular anharmonic potential

The singular anharmonic potential is represented in three dimensional by the following

formula,

 () =
1

2
22 +



4
+



6
 (29)

where   Â 0 constants parameter.
It’s radial Schrödinger equation can be written as,

2()

2
+ [2 +

( + 1)

2
− 22 − 2

µ


4
+



6

¶
]() = 0 (30)

and can be given as the following nonlinear Riccati equation,

0()


= −[20 + ( + 1)

2
− 22 − 2

µ


4
+



6

¶
]− 20 () = 0 (31)

after taking 0 () = −+



+



3
 with  Â 0, and substituting it into Riccati equation,

one gets the energy of the ground state,

0 = 

µ
2 +

√
2

¶
 (32)

and 0 () = − +

³
3
2
+ √

2

´


+

√
2

3


4.3 Non polynomially modified oscillator

A great interest in several areas was focused to study this potential, particularly in laser

theory. N. Besiss and G. Bessis [28], Flessas[29] . And recently, N. Saad et all [30],

D. Agboola and all [25], Qiang Dong and all [26] were analyzed this potential. The

non-polynomial modified oscillator have the following expression,

 () =
1

2
22 +

2

1 + 2
 with   Â 0 −∞ ≺  ≺ +∞ (33)

which can be reduced to the harmonic radial oscillator when the parameter  converge to

zero. The corresponding radial Schrödinger equation is given as,

2()

2
+ [2 +

( + 1)

2
− 22 − 22

1 + 2
]() = 0 (34)

can be transformed to the Riccati equation at the ground state like,

0()


= −[20 + ( + 1)

2
− 22 − 22

1 + 2
]− 20 () = 0 (35)

if taking 0() = − +



+



1 + 2
 where  Â 0 substituting it into the above Riccati

equation, we find the ground eigenvalue energy,

0 =



+ 

µ
7

2
+ 

¶
 (36)

and the solution of Riccati equation is given by 0() = − +
( + 1)


+

2

1 + 2
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4.4 Soft-core coulomb potential

Consider the Soft-core Coulomb potential [25] given by

 () =



− 

 + 
 (37)

where  6=  Â 0 and  Â 0 are constant parameters. Such potential is of interest in
atomic and molecular physics. The corresponding radial Schrödinger equation is

2()

2
+ [2 +

( + 1)

2
− 


+



 + 
]() = 0 (38)

where  is the energy eigenvalue. The last equation transforms to the bellow non-

linear Riccati equation and becomes

0()


= −[20 + ( + 1)

2
− 


+



 + 
]− 20 () = 0 (39)

After substituting the logarithmic derivative 0() = − +



+



1 + 
 where  Â 0

into the above Riccati equation, one can obtain the explicit form of the energy at the

ground state 0 and the unknown parameters ,  and  as

0 = −1
2

µ
 −

 + 2

¶2
 and  =

µ
 −

 + 2

¶
  = ( + 1)   = 1 (40)

5 Energies expressions potentials

Now, we are in the position to determine the energy levels expression for anharmonic

potentials. Looking at the Eqs.(28), (32) and (36), one can conclude that the ground

level energy of radial oscillator potential appears in the ground state energy expression

of non-pollynomial potentials, from which, with a simple treatment, allows us to obtain

a general analytical expression of energy spectrum for these class of potentials in respect

to the ground level energy 0 for each potential by the given formula,

 = 0 + 2 (41)

nevertheless, the energy spectrum of the nonlinear oscillator is that of the radial os-

cillator plus a constant , which differs from one potential to another. So the height ∆

is constant,

 =  +  with  is constant, (42)

replacing the ground state energy 0 of each non-polynomial potentials into the energy

formula Eq. (41), we obtain easily the energy spectra, corresponding to non-polynomial

quantum potentials bellows:

Generalized isotonic oscillator,

 = 

µ
2+

5

2
+  −

p
1 + 4

¶
 (43)
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Singular anharmonic potential,

 = 

µ
2+ 2 +

√
2

¶
 (44)

Non polynomially modified oscillator,

 =



+ 

µ
2+

7

2
+ 

¶
 (45)

Likewise, the energy levels  and the energy for the ground state 0 of Soft-core

coulomb potential is expressed in terms of the energy spectrum  of the coulomb potential

and provides by solving the equations (22) and (23), as followss
−2 (− )

2



= 2 +

s
−22


 (46)

then s
−2 (− )

2

0
+ 2 = 2 +

s
−22


 (47)

hence s
−2 (− )

2



= 2+

s
−2 (− )

2

0
 (48)

using this result it will be easy to obtain the the energy eigenvalues  of the Soft-core

coulomb potential is given by resolving the equation (48)

 = −1
2

µ
 −

+  + 2

¶2
 (49)

6 Conclusion

At last, throughout of this work, we have shown that it is very easy to obtain the eigenen-

ergy of the quantum systems described by non-pollynomial potentials, expressed with

solvable potential and a nonlinear extension using proper quantization rule. It consists of

transforming the Schrödinger equation into the Riccati differential equation; in which, the

appropriate solution 0 function at the ground level was inserted. In a simple resolution

of the Riccati equation, one can obtain the ground level energy 0 for these potentials

type. And find that the energy spectrum of non-polynomial quantum potentials can be

determined from its ground state energy only; without needing to calculate integral term

obtained by combination of energy spectra of solvable potential. The results gated are in

agreement with those already obtained.
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