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Abstract 

In the present work, we investigate the role of embedded viscosity in 
anisotropic dark energy in Saez-Ballester and Brans-Dicke theories of 
gravitation with Bianchi type II, VIII and IX metric. Hyperbolic volumetric 
expansion is considered to solve the field equations. It is observed that the 
universe is expanding and accelerating. The universe tends to be isotropic at 
later stage.   
Keywords: Brans-Dicke, Saez-Ballester, anisotropic dark energy, Viscosity, 
Bianchi type II, VIII, IX metric 

 
1. Introduction 

Scalar tensor theories (STT) are generalizations of general relativity, in order to 
incorporate Mach's principle. Scalar tensor theories of gravitation's are useful to discuss the 
problem of singularity. In STT, scalar field   is a dynamical variable. STT are divided into 

two categories. In the first category, 1G  and in the second category,    is dimensionless 
scalar field. The Brans-Dicke theory (BDT)[1] is of first category and Saez-Ballester theory 
(SBT)[2] is of second category. Nordtvedt [3], Lyra [4], Sen and Dunn [5] are some of the 
scalar tensor theories. They are also called alternative theory. Singha and Debnath [6] studied 
chaplygin gas in Brans-Dicke Theory.  

The high red-shift supernovae, the cosmic microwave background anisotropy, and 
galaxy clustering [7-9] indicate that the present universe is expanding and accelerating. It is 
assumed that some unknown exotic fluid known as dark energy is responsible for the 
accelerated expansion. The dark energy has strong negative pressure with equation of state 

parameter


 P
 , where P is pressure and    is energy density of dark energy. The 

cosmological constant with 1  is candidate of dark energy. However, the cosmological 
constant has a fine tuning problem. For this region, other candidates of dark energy were 
proposed. When 1 , the candidate for dark energy is called Phantom [10].  A 
cosmological model with anisotropic equations of state parameters was investigated by 
Koivisto and Mota [11]. Singh and Beesham [12] studied anisotropic dark energy in the 
general theory of relativity. 

Bulk viscosity leads to galaxy formation [13]. Padmanabhan and Chitre [14] have 
obtained inflationary like solutions in the presence of bulk viscosity. Inflationary solutions 
are also discussed in the literature [15, 16]. Singh et al.[17] have studied higher-dimensional 
model with variable bulk viscosity in Lyra geometry. One can develop a singularity free 
model by considering imperfect cosmic fluids [18]. Singularity-free cosmological models 
with viscosity and zero mass scalar fields are obtained by Roy and Maiti [19]. 
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Motivating with the above discussion, we consider anisotropic dark energy with 

viscosity in the context of BDT and SBT. Section 2, devoted to basic equation. Section 3, 
represents the solution of BDT field equations. In section 4, we derive solution SBT field 
equations. In section 5, we conclude our results.  

 
2. Basic equation 

Bianchi type I-IX space-times are important for the study of early stages of evolution of 
the universe. The present state of the universe is well described by Friedman-Robertson-
Walker (FRW) universe. Early stages of the universe may not be equal to the present. 
Therefore, Bianchi type II,VIII and IX are of special interest because it correspond to familiar 
solutions like Friedman-Robertson-Walker metric with positive curvature, the de Sitter 
universe, the Taub-Nut solutions etc. We consider Bianchi type II, VIII and IX metric in the 
following form 

  dxdzyhAdzhAIBdyBdxAdtds )(2 222222222222   (1) 
where A  and B  are functions of cosmic time t . It represents  
Bianchi type II: if 1)( yI  and yyh )( . 
Bianchi type VIII: if yyI cosh)(   and yyh sinh)(   
Bianchi type IX: if yyI sin)(   and yyh cos)(    
The examination of isotropy of the universe has a long history. When metric and fluid are 
allowed to exhibit anisotropy, what happens at early and late time? Whether both metric and 
fluid tends to be isotropy? Such questions require the study of anisotropic models. Late tile 
isotropization of the universe is related to dark energy. The general form of the anisotropy 
parameter with Bianchi type III was studied by Akarsu and Kilinc [20]. In this paper, we 
consider the energy momentum tensor as 

  ,3)(,3)(,3 HHHdiaT ij   (2) 

where    is the energy density of fluid,  is equation of state parameter,   and   are 
deviation parameters.   and   are deviations from   on both y  and z  axis respectively. 
We assume that   ,   and   are not necessarily constants and can be functions of t . 
 

3. Brans-Dicke Theory 

BDT is simple and reduces to general relativity in some limit; therefore it si natural choice as 
generalization of general relativity. The present acceleration is derived in BDT in the matter-
dominated era. However, the transition is not achieved in BDT [21]. Singh and Kale [22] 
have studied role of viscosity in BDT. The field equations of Brans-Dicke theory are given by 

 kkijij
k

kijjiijijij ggwTRgR ,
;

1,
,,,

21

2

1
8

2

1  





        (3) 

where R is the scalar curvature. The semicolon denotes covariant differentiation. The comma 
denotes partial differentiation. The scalar field   satisfy the equation. 

 

w

T

23

8


              (4) 

where w  is a dimensionless coupling constant. When 0w , BDT resembles to super 
gravity [23]. 
For the metric (1) and energy momentum tensor (2), Brans-Dicke field equations written as 
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From equations (6) and (7), we obtain 
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Using equations (5),(6) and (9), we get 
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We assume the volume of the universe is given by  
2ABV                        (11) 

Using equation (11), we arrive at the following equation 

dt
B
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The integral term in equation (12) vanish for the following value of deviation parameter 
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We obtain solutions under three assumptions viz. hyperbolic volumetric expansion, relation 
between coefficient of bulk viscosity and energy density and relation between scalar field and 
volume of the universe. The following hyperbolic volumetric expansion assumed to solve 
equation (12): 

tV 2cosh                       (14) 
Using equations (13), (14) in (12), the metric potentials A and B are obtained as 
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The relation between scalar field  and volume V is assumed as 

tbbV mm cosh                      (17) 
where m is constant. The deviation parameter is found to be 
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We assume that coefficient of viscosity is proportional to the energy density 
 k                      (19) 

This type of assumption is also known as radiation fluid when 1 . Arab [24] has found de 
Sitter type inflationary solutions. Roy and Maiti [25] developed a singularity free FRW 
viscous fluid cosmological model. Bali and Yadav [26] have investigated Bulk viscous model 
in Bianchi type IX universe. Weinberg [27] has assumed bulk viscosity as a power function 
of energy density. Murphy [27] has studied bulk viscous models. Using equations 
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(5),(8),(15),(16) and (19), we obtain the expressions of energy density (  ), and equation of 
state parameter ( ) as 
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Fig.1 Plot of equation of state parameter versus time. 

 

 
Fig2. Plot of energy density versus time 

 
Figure (1) describes plot of equation of state parameter with cosmic time in the range 

20  t .We observe that at 1,0  t  i.e. universe is matter-dominated and as t increases, 
 crosses phantom divide line and as 2t , 1 . Trajectory of  is same for all Bianchi 
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taken as 000,10w .  Also, when we take small values of w , the EoS parameter becomes 
greater than one. It implies that 2.1  is condition of dark energy. 
 Figure (2) describes evolution of energy density with time (\ 20  t ) for Bianchi type II, 
VIII and IX universe. It is seen that at 0,0  t  and as t increases,  increase to its 
maximum and then decrease to constant. When the amount of energy density is zero it is 
called as a zero-energy universe or a universe from nothingness [29]. Thus, the universe starts 
to evaluate from a state of nothing to its maximum.   
 

4. Saez-Ballester theory 

SBT is useful to give answers to the problem of missing matter. In SBT, the metric is coupled 
with scalar field  . The dimensionless scalar field coupling with metric describes weak fields 
in SBT.Reddy [30] studied cosmic strings in SBT. Singh [31] presented Bianchi type V 
cosmology in SBT. The Saez-Ballester field equations are given by 
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The scalar field  satisfy the equation 
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where n and  are constants.  Bianchi type II, VIII and IX space time for anisotropic dark 
energy in Saez-Ballester theory of gravitation is investigated by Rao et al.[32]. Adhav [33] 
has explored Bianchi type II for anisotropic dark energy in the general theory of relativity. 
For the metric (1) and energy momentum tensor (2), Saez-Ballester field equations written as 
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From equations (25) and (26), we get 
                         (28) 

In order to avoid the repetition and proceeding as in the case of Brans-Dicke theory, we get 
the same equation (10) and the value of the deviation parameter  as 
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The scalar field  is found to be 
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For the solution (15) and (16), the expansion scalar ( ), mean anisotropic parameter ( ), 
Shear scalar ( ) and deceleration parameter (q ) are obtained as 
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Using equations (5),(8),(24) and (27), we obtain the expressions of energy density (  ), 
deviation parameter ( ) and equation of state parameter ( ) as 
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Fig 3. Plot of shear scalar and deceleration parameter  versus time 
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Fig4. Plot of expansion scalar and mean anisotropic parameter versus time 

  
Fig5. Plot of equation of state parameter versus time 

Fig6. Plot of equation of state parameter versus time 

 
Fig7. Plot of energy density versus time 
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Fig8. Plot of energy density versus time 

Fig9. Plot of deviation parameter versus time 
The sign of the deceleration parameter is negative. The positive sign of the deceleration 
parameter indicates a decelerating universe, whereas the negative sign stands for an 
accelerating universe. From figure (3), it is clear that the sign of the deceleration parameter is 
negative; i.e. the universe is accelerating. From figure (4), it is observed that the mean 
anisotropic parameter tends to zero; i.e. the universe is isotropic at late time. Initially it was 
anisotropic. It is consistent with observational results. The expansion scalar is constant, i.e. 
the universe is expanding. 
Figure (5) and (6), describes evolution of equation of state parameter versus cosmic time for 

,200  and 2   respectively. We found that when  is large, the EoS parameter is 
negative near ,0t  and tends to positive value for large value of t . When  is small, the 
EoS parameter is positive near ,0t and tends to negative value for large value of t . 
An important point is that the EoS parameter behaves alike for large value of w  in BDT and 
 in SBT. For small values of w in BDT EoS parameter is positive large whereas for small 
values of  in SBT, EoS parameter tends to negative at later time. Also note that value of 
in BDT is 2.1  and in SBT is 2. Adhav [33] have found that the EoS parameter tends to 1 in 
the case of general relativity. In scale covariant theory, the trajectory of EoS parameter lies in 
the range 45    [34] whereas it is 13    in BDT and 200800    in SBT. 
This variation of trajectory in different theories shows the effect of scalar field and viscosity. 
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Figure (7) and (8) describes evolution of energy density with time  ,20  t  for 2  and 
,200 respectively. It indicates that when  large energy density is is decreasing function 

of time. It is large near ,0t and tends to zero at large times. When  is small, it is negative 
near ,0t and tends to constant positive value at large time.  
Figure (9), it is clear that the deviation parameter is negative near ,0t and tends to zero as 
time increases; i.e. the anisotopic fluid tends to be isotropic at initial later time. It is 
interesting to note that both metric and fluid (figures 4 and 9) were initially anisotropic and 
tend to be isotropic at later times.  
 

5. Conclusion 

In this study we have considered anisotropic dark energy embedding viscosity in the 
context of Brans-Dicke and Saez-Ballester theory of gravitation for Bianchi type II,VIII and 
IX metric. We found that the universe is accelerating and expanding, which is consistent with 
observational results [7-9]. The universe was anisotropic in the past and it is isotropic in the 
present and in the future. The viscosity and scalar field contributed significantly to the 
deviation of the EoS parameter.  In BDT [35] and SBT [32] in the absence of viscosity, the 
behaviour of the energy density is a decreasing function of time. Initially it is constant and 
tends to zero at infinite times. In the presence of viscosity in BDT start from Vacuum and 
tends to constant. In SBT, for small values of  , energy density initiated from negative and 
tends to constant, whereas for large value of  , it starts to decrease from constant and tends 
to zero at later time. The isotropy of the model is not affected by viscosity.  In self-creation 
theory, models do not approach isotropy [36]. The novelty of the work is that, due to 
viscosity there are constraints on constants. The coupling constant value should be large. The 
constant m is negative. Further, for small values of  we get negative energy density. The 
range of EoS parameter is too small as compare to the observational limit 

785.046.1   [7-9]. 
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