
103 
 

Physics AUC, vol. 32, 103-113 (2022)       PHYSICS AUC 
 

Analytical Treatment of the Non-Relativistic System  
for Diatomic Molecules 

 
C.A. ONATE1,*, I.B. OKON2, E. OMUGBE3,5, G. O. JUDE2 AND D.B. OLANREWAJU4  

1Department of Physics, Kogi State University, Anyigba, Nigeria 
2Theoretical Physics Group, Department of Physics, University of Uyo, Nigeria 

3Department of Physics, Federal University of Petroleum Resources, Effurun, Nigeria 
4Department of Physical Sciences, Landmark University, Omu-Aran, Nigeria 

5Department of Science Laboratory Technology, Delta State Polytechnic, Otefe Oghara, 
Nigeria 

 
Corresponding Author’s Email: *oaclems14@physicist.net 

 
Abstract 

The solutions of a radial Schrödinger equation are obtained for an improved 
generalized Pὅschl-Teller potential models. Using the supersymmetric 
approach, we calculated the non-relativistic energy and its corresponding 
un-normalized radial wave function for each potential model. Three 
different expectation values were calculated using Hellmann Feynman 
Theory (HFT) for the interacting potential model. The energy equation 
obtained and the various calculated expectation values were used to study 
NO, CH, H2 and N2 molecules. Our results showed that these molecules 
exhibit some similarities and some differences under the eigenvalues due to 
the differences in the values of the spectroscopic parameters. 
 
Keywords: Eigensolution; Wave equation; Bound state, Potential model; 
Schrödinger equation. 

 

1. Introduction 

The solutions of the Schrὅdinger equation for some different physical potential models has 
drawn much attention in the theoretical sciences over the years due to their importance in 
both quantum physics and quantum chemistry. The solutions of the Schrὅdinger equation for 
these potential terms contain useful information that completely describes a quantum system. 
These solutions are obtained for any  states using different traditional methodologies such as 
the asymptotic iteration method [1-3], Nikiforov-Uvarov method including the parametric 
type [4-8] recently derived by Tezcan and Sever, supersymmetric approach [9-12], exact and 
proper quantization rule [13, 14], formula method for bound state problem [15, 16] and 
others. However, there are some special types of potential models that do not admit the 
solution for due to the inverse squared term. Therefore, to obtain the solutions for any of 
these type of the potential, an approximation scheme suitable for such potential model must 
be employed. Generally, the solutions of the radial Schrὅdinger equation for various potential 
terms of interest required the use of approximation scheme suitable for them. The frequently 
used approximation include the Pekeris approximation type [17], Greene-Aldrich 
approximation type [18] and the recent approximation scheme proposed by Dong et al. [19]. 
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One of the physical potential model that drawn attention in the bound state solutions recently 
is the Pὅschl-Teller potential. The Pὅschl-Teller potential model is an important molecular 
potential that can be use to describe the vibration of polyatomic molecules like ammonia. The 
Pὅschl-Teller potential has been studied for both the relativistic and non-relativistic systems 
in different forms. For instance, Dong and Gonzalez-Cisneros [13], studied bound state 
solutions of the Schrὅdinger equation for a Pὅschl-Teller type of potential called the second 
Pὅschl-Teller. Ahmed [20] obtained real and complex discrete eigenvalues of the Schrὅdinger 
equation for another form of Pὅschl-Teller referred to as the complex PT-invariant potential. 
In ref. [21], Wei and Dong, studied the pseudospin symmetry of the relativistic Dirac 
equation for another Pὅschl-Teller potential they called modified Pὅschl-Teller potential 
model. Recently, Tang and Jia [22], modified one of the existing Pὅschl-Teller potential 
model to suit their study and named it a simplified Pὅschl-Teller potential model. In a similar 
way, Khordad et al. [23] studied another form of Pὅschl-Teller called improved generalized 
Pὅschl-Teller potential model. The improved generalized Pὅschl-Teller potential model has 
not been adequately studied. Motivated by the interest in the Pὅschl-Teller form of potential 
model, the present study wants to examine the non-relativistic solutions of the improved 
generalized Pὅschl-Teller potential model using the elagent supersymmetric approach. The 
improved generalized Pὅschl-Teller potential model is given as [20] 
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The scheme of our presentation is as follows. In the next section, we present the bound state 
solution. In section 3, we calculate the expectation values. Section 4 is the results and 
discussion while the concluding remark is given in the final section. 

2. Bound State Solutions 

To solve any quantum system in the presence of a given physical potential term of interest, 
the three-dimensional Schrödinger equation that describes the eigenvalue and eigenfunction 
can be written as 
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Setting the wave function as 1
, ,( ) ( ) ( , ) ,n mr R r Y r      and consider the radial part of the 

Schrödinger equation, Eq. (2) turns out to be 
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where 
2

2

( 1)

2 r
  

has been introduced, ( )V r is the interacting potential given in Eq. (1), 

nE  is the non-relativistic energy of the system,  is the reduced Planck’s constant,  is the 

reduced mass of the particle, n  is the quantum number, ( )nR r is the wave function. The 

centrifugal term in Eq. (3) can be approximated using the formula 
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Substitute Eq. (1) and Eq. (4) into Eq. (3), we have a second-order differential equation of the 
form 
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To proceed to the next level under the methodology of the powerful supersymmetric quantum 
mechanics, we write out the ground state wave function in the following form 

                                                       0, ( ) ( ) ,R r exp W r dr                                                  (6) 

where ( )W r is the called the superpotential function in supersymmetric quantum mechanics. 

The superpotential function plays a key role in the deduction of energy eigenvalue equation. 
It gives a solution to Eq. (5) through a non-linear Riccati equation. For each potential model, 
a specific superpotential function is suitable for it. Considering the interacting potential in 
this case, we propose a superpotential function of the form 
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The parameters 0 , 1 and 2 in the above equation are known to be superpotential 

parameters. Substituting the superpotential function in Eq. (7) into the ground state wave 
function in Eq. (6) leads to another equation of the form           
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To proceed towards the deduction of the energy equation of the system, we must obtain 
different equations for the parameters 0 , 1 and 2 which will enhance a concrete 

establishment relationship and formula for a residual term. Using Eq. (5) and Eq. (8) with 
some mathematical manipulations and simplifications, the three superpotential constants are 
deduce as follows 
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To deduce the energy equation using supersymmetric approach, we examine the shape 
invariance system via the proposed superpotential function. This is only achieved via the 

construction of partner potentials 2 ( )
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Eq. (14) and Eq. (15) are connected via a simple formula/relation that satisfied the partner 
potentials :V  

                                                    0 1 1( , ) ( , ) ( ),V r a V r a R a                                                  (16) 

where 1a  is a new set o f parameters uniquely determined from 0a an old set of parameter via 

mapping of the form 1 0 0( ) ,a h a a    and the remainder or residual 1( )R a is independent 

of the variable .r From the mapping, it can be deduce that 

2 0 2 ,a a   3 0 3 ,a a   4 0 4a a    and subsequently, 0 .na a n  Taking then Eq. (14) 

and Eq. (15) satisfied the shape invariance concept as shown by Eq. (16). Hence 
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The energy spectrum can be exactly be determined following   
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from which we actually determine the real energy equation of the system as 
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3. Expectation Values 

In this section, we calculate some expectation values using Hellmann-Feynman Theorem 
(HFT) [23, 24]. Given a Hamiltonian H for a quantum system as a function of some 
parameter say ,v the energy-eigenvalue ,nE  and the eigenfunction , ( )nR v of H are given by            
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with the effective Hamiltonian as 
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To obtain the expectation value 2

,n
p
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n
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Figure1. Variation of energy against the dissociation energy 
with 1    0.05,  0.5er  for the three first quantum states. 
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Figure 2: Variation of energy against the screening parameter 
with 1,    0.05,eD  0.5er  for the first three quantum state. 
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Figure 3: Variation of energy against the reduced Planck’s constant 
with 1,  0.05eD  1.5er    2.5  and for the first three quantum state. 

 
                           Table 1. Spectroscopic parameters for NO, CH, H2 and N2. 

Parameter   NO     CH    2H     2N  

 eD  ( )eV  8.043729855 3.947418665 4.7446 11.938193820 

 er   ( Ȧ) 1.1508 1.1198 0.7416 1.0940 

   (amu) 7.46844100 0.929931 0.50391 7.00335 

 
 
 
Table 2. Ro-vibrational energy of the improved generalized Pὅschl-Teller potential for 
various states with 1,   5eD  and 0.15   for three values of the bond length. 

state 0.25er      0.75er     1.50er   

  2p 0.453730168 0.428186644 0.356430157 
  3p 0.677071456 0.652162371 0.582178722 
  3d 0.666614232 0.641186376 0.563690088 
  4p 0.894787744 0.870513099 0.802302288 
  4d 0.884597089 0.859816088 0.784279662 
  4f 0.869315598 0.844314225 0.765511804 
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Table 3. The ro‐vibrational energy spectra of improved generalized Pὅschl‐Teller potential for NO, 

CH, H2 and N2 molecules for various n and    with  1.25.   

 n               NO         CH          2H         2N  

  0   0 0.066811645 0.173443495 0.292658796 0.083245290 
  1   0 

  1 
0.176052295 
0.246411150 

0.384092456 
0.575103909

0.602341516 
0.889270254

0.220841820 
0.306602810 

   2   0 
  1 
  2 

0.284539780 
0.354410770 
0.446605120 

0.588692580 
0.774062553 
0.954909985

0.900861529 
1.177068923 
1.434893930

0.357635160 
0.442893160 
0.557790060 

  3   0 
  1 
  2 
  3 

0.392274095 
0.461657220 
0.553204425 
0.650399120 

0.787243870 
0.966972359 
1.142154817 
1.308027722

1.188218834 
1.453704885 
1.701140761 
1.930594194

0.493625320 
0.578380320 
0.692596400 
0.815049810 

   4   0 
  1 
  2 
  3 
  4 

0.499255240 
0.568150495 
0.659050565 
0.755553850 
0.853408985 

0.979746323 
1.153833331 
1.323350815 
1.483694337 
1.634726411

1.464413431 
1.719178137 
1.956224886 
2.175659698 
2.378465710

0.628812290 
0.713064290 
0.826599560 
0.948319200 
1.072414820 

   5   0 
  1 
  2 
  3 
  4 
  5 

0.605483220 
0.673890605 
0.764143535 
0.859955410 
0.957104770 
1.054183705 

1.166199940 
1.334645467 
1.498497975 
1.653312117 
1.798968821 
1.935777081

1.729445318 
1.973488684 
2.200146303 
2.409562496 
2.602721103 
2.780656681

0.763196070 
0.846945080 
0.959799530 
1.080785380 
1.204128730 
1.327853920 

 
Table 4. Expectation value

n
p of improved generalized Pὅschl-Teller forNO, CH, H2 and N2 

for various quantum states with 1.25  and 0.  
  n      NO     CH      2H        2N  

  0 -6.764512182 -0.287558072 2.122543234 -9.985587504 
  1 -6.351217766 -0.875042212 -0.261014848 -9.479203968 
  2 -5.927838651 -0.812065632 -0.429354412 -8.961351820 
  3 -5.494374845 -0.098628330 1.617524541 -8.432031056 
  4 -5.050826346  1.265269691 5.879622010 -7.891241688 
  5 -4.597193159  3.279628433 12.35693799 -7.338983702 
  6 -4.133475278  5.944447895 21.04947250 -6.775257108 

   
Table 5. Expectation value

n
V of improved generalized Pὅschl-Teller for NO, CH, H2 and 

N2 for various quantum states with 1.25  and 0.  
  n      NO     CH      2H        2N  

  0 0.034222788 0.139312551 0.180800185 0.029007980 
  1 0.102667459 0.417645942 0.532498685 0.087023247 
  2 0.171112131 0.695979332 0.884197186 0.145038514 
  3 0.239556802 0.974312723 1.235895686 0.203053782 
  4 0.308001474 1.252646113 1.587594187 0.261069050 
  5 0.376446145 1.530979504 1.939292687 0.319084317 
  6 0.444890817 1.809312894 2.290991188 0.377099585 

 



111 
 

Table 6. Expectation value
2

n
r of improved generalized  Pὅschl‐Teller potential for NO, CH, H2 and 

N2 for various quantum states with 1.25  and  0.  

  n      NO     CH      2H        2N  

  0 -1.781567677 -1.927348488 -4.016970651 -1.973269644 
  1 -1.802343278 -2.018406647 -4.377990010 -1.994410690 
  2 -1.823118879 -2.109464806 -4.739009374 -2.015551736 
  3 -1.843894480 -2.200522964 -5.100028735 -2.036692783 
  4 -1.864670080 -2.291581124 -5.461048090 -2.057833830 
  5 -1.885445682 -2.382639282 -5.822067450 -2.078974876 
  6 -1.906221282 -2.473697441 -6.183086810 -2.100115922 

 
4. Discussion 

Figure 1 showed the effect of dissociation energy on energy eigenvalue for the improved 
generalized Pὅschl-Teller potentials. There is a direct variation between the energy and the 
dissociation energy for the ground state and the first two excited states studied. It is also seen 
that the more the excited state, the more the energy of the system. In Figure 2, we plotted 
energy against the screening parameter for the ground state and the first two excited states. 
The energy is seen to have inverse variation with the screening parameter. As the screening 
parameter increases, the ground state energy is seen to be greater than the excited states. The 
variation of the energy against the reduced Planck’s constant are shown in Figure 3. The 
energy of the system and the reduced Planck’s constant has inverse variation with each other. 
We presented the spectroscopic parameters for NO, CH, H2 and N2 in Table 1. For all 
computations in this work, the screening parameter has a constant value 1.25   except 
where stated. The energy eigenvalues for 2p, 3p, 3d, 4p, 4d and 4f with three different values 
of er  are presented in Table 2. There is an inverse variation between energy and the 

equilibrium bond length for the improved generalized Pὅschl-Teller potential. However, there 
is a turning point at 4d state. Using Eq. (18) and the spectroscopic parameters in Table 1, we 
computed numerical results for four molecules (NO, CH, H2 and N2) as presented in Tables 3. 
Tthe variation of energy with the quantum states and angular momentum quantum state is the 
same for all the molecules. At the ground state, H2 with the least value of the equilibrium 
bond length has the highest energy value while NO with the highest reduced mass has the 
least energy. The momentum expectation value for NO, CH, H2 and N2 molecules for 
different quantum states are presented in Table 4. The momentum expectation value and the 
quantum state have a direct variation. However, the ground state expectation value for NO 
and N2 are higher than the expectation value of the first excited state for CH and H2. In Table 

5, we presented the numerical values of .
n

V  The expectation value 
n

V  varies linearly 

with the quantum states for all the four molecules. In Table 6, there is an inverse variation 

between the expectation value 2

n
r and the quantum state for all the molecules. However, 

the expectation value presented for the four molecules are bounded below zero. 
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5. Conclusion 

The solutions of the non-relativistic improved generalized Pὅschl-Teller potential models 
were obtained by applying a suitable approximation scheme to the centrifugal term. The 
energy equations obtained were used to calculate the expectation values via Hellmann 
Feynman Theory. Our studies reviews that the behaviour of the molecules interacting in a 
system are subject to the values of the various spectroscopic parameter of the molecules.  
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