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Abstract

In this paper we make a quantitative check of the gauge/gravity correspondence for
holographic systems with non-relativistic symmetries. The focus is on the calculation
of Fisher information metric on the space of coupling constants on both sides of
the duality. We consider the particular duality between non-relativistic dipole field
theory and string theory in Schrödinger spacetime. Our study shows exact match
between the relevant quantities on both sides of the correspondence, thus suggesting
its validity in this case.

1 Introduction
One of the most powerful and revealing discoveries in recent years is the realization of the
holographic principle in the context of string theory [1]. At the heart of this idea lies the
confidence that there is a unifying framework of all forces of nature at the fundamental level.
In this regard, the holographic principle conjectures the existence of a particular duality
between quantum and gravitational theories, which greatly extends our understanding of
spacetime and matter. Known also as the gauge/gravity correspondence it relates a higher
dimensional gravitational (string) theory in the bulk of spacetime to a quantum field theory,
living on the lower dimensional asymptotic boundary.

The specific dictionary of the duality relates not only the symmetries in both theories,
but also their strong/weak coupling regimes. It turns out that if the quantum system
is strongly correlated and thus nonperturbative, its dual gravitational theory is weakly
coupled and allows perturbative calculations. The latter can be extended back to the
quantum theory by duality. Ever since the original proposal [1] of this conjecture1 it has
been repeatedly shown to hold in many cases.
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1The AdS/CFT correspondence.

85

Physics AUC, vol. 30 (part II), 85-95 (2020)      PHYSICS AUC



An important consequence of the holographic correspondence is that spacetime can be
an emergent phenomenon from the dynamics of the quantum degrees of freedom. In this
case, a key concept is the boundary entanglement entropy, which is conjectured to be the
dual quantity of a codimension-2 extremal surface2, referred to as the Ryu-Takayanagi
(RT) surface, in the bulk [2, 3]. On the other hand, the volume, enclosed by this surface,
is dual to another key concept called the quantum Fisher information metric (QFIM).
The latter gives in general a measure for the distance between two quantum states, while
its holographic dual Fisher metric (HFIM) encodes information about the shape of the
entangling region enclosed by the RT surface [4, 5].

In general, the bulk entanglement entropy, which is interpret as the 1/N quantum
correction to the boundary entanglement entropy, is hard to obtain directly from a generic
bulk state. However, as pointed out in [5], the leading 1/N quantum correction to the Fisher
information metric is related to the corresponding quantum correction to the boundary
entanglement entropy. Due to the fact that one can calculate the holographic Fisher
metric in the bulk perturbatively, as shown by [6], we are compelled to study this quantity
in both sides of the gauge/gravity correspondence.

Particular cases, where the holographic principle has not been thoroughly checked,
are holographic systems with non-relativistic symmetries. Important features of non-
relativistic holography have been uncovered in [7], where strong arguments for integra-
bility and quantitative matching between string and gauge theory predictions have been
presented. Furthermore, new studies have lead to several interesting applications of non-
relativistic holography in condensed matter physics and string theory such as the descrip-
tion of SQCD-like gauge theories in the context of D-brane constructions [8–14], Sachdev-
Ye-Kitaev (SYK) model [15], Fermi unitary gas [16], and models with trapped super cooled
atoms [17,18]. One of the main reasons for studying such non-relativistic models from the
holographic point of view is the fact that in most cases they appear as strongly coupled
system.

In this paper we will quantitatively check the holographic principle by explicitly cal-
culating and comparing the Fisher information metric from both sides of a particular
realization of the non-relativistic holographic correspondence. Namely, when there is a
duality between a strongly correlated dipole gauge theory and Schrödinger gravitational
background. The structure of the paper is the following. In Section 2 we briefly discus
the procedure, known as null-Melvin twist, allowing us to generate backgrounds with non-
relativistic symmetry, such as the Schrödinger spacetime. In Section 3 we will perform an
exact match of the quantum Fisher metric from both sides of the gauge/gravity correspon-
dence, thus proving that the holographic principle holds in Schrödinger spacetime. Finally,
in Section 4, we will briefly comment on the result.

2 Generating the Schrödinger background
Well-established fact is that the symmetry of the free Schrödinger equation is the so called
Schrödinger group, which consists of spatial translations, rotations, Galilean boosts, di-
latations (where time and space dilate with different factors) and one additional special
conformal transformation. From group theoretic point of view, the Schrödinger group can
be thought of as a non-relativistic analogue of the conformal group. In fact, the Schrödinger

2The entanglement entropy for an entangling region in the boundary conformal field theory of an
asymptotically AdS spacetime is proposed to be given by a minimal codimension-2 area in the bulk.
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group in d dimensions can be embedded into the relativistic conformal group SO(2, d+ 2)
in (d+ 1) dimensions [18–20].

The holographic construction of spaces with the Schrödinger group being the max-
imal group of isometries3 can be achieved by particular TsT (T-duality-shift-T-duality)
transformations along some of the null coordinates of the metric. In order to realize the
Schrödinger symmetry geometrically, we will consider the maximally symmetric AdS5×S5

space in light-cone coordinates

ds2

L2
=

2dx+dx− + dxidxi + dz2

z2
+

(
dχ+

1

2
sin2 µ (dα + cos θ dφ)

)2

+ ds2
CP2 , (1)

which is invariant under the whole conformal group. However, it can consequently be
TsT deformed to reduce the symmetry down to the Schrödinger group. This type of
deformations are known also as null-Melvin twist. Here, the metric of the round S5 is
written in the form of Hopf fibration, where χ is a coordinate for the Hopf fibers. To
generate the null-Melvin twist we perform the following steps:

• Make a T-duality along χ following the standard Buscher rules.

• Make a shift, x− → x− + µ̂χ̂, with parameter µ̂, where χ̂ is the T-dualized χ.

• Make T-duality back on χ̂.

Following these rules one easily finds [22]

ds2 = L2

(
−(µ̂dx+)2

z4
+

2dx+dx̂− + dxidxi + dz2

z2

)
+ ds2

Ŝ5 , (2)

where the metric on the new 5-sphere is now given by4

ds2
Ŝ5

L2
= dχ̂2 + dµ2 +

1

4
sin2 µ

(
dα2 + dθ2 + dφ2

)
+ sin2 µ dχ̂ dα + sin2 µ cos θ dχ̂ dφ+

sin2 µ cos θ

2
dα dφ. (3)

The first part of the metric (2) is the desired Schrödinger background. For our considera-
tions it will be useful to write the metric of the Schrödinger spacetime in (d+3)-dimensional
global coordinates, as written originally by [18,19],

ds2
Schrd+3

= L2

(
− dt

2

r4
+

2dξdt+ d~x 2

r2
+
dr2

r2

)
, (4)

where ~x is a d-dimensional vector. The boundary of the background (4) is at r = 0 and
the generator associated with translations along the compact ξ direction can be identified
with the mass operator M = i∂ξ. The latter is not a geometric dimension in the usual
sense, because each operator of the boundary theory can be taken to have a fixed discrete
momentum conjugate to ξ.

3For a detailed group-theoretical perspective on non-relativistic holography see [21].
4Additionally, the deformed TsT background acquires also a non-zero B-field, while in the original

AdS5 × S5 theory there was no initial B-field turned on. Anyway, the B-field is not important for our
current investigation.
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It is conjectured that the dual quantum field theory of the Schrödinger spacetime is a
specific non-relativistic and primarily non-local field theory, called dipole theory. It lives
on the (d+ 1)-dimensional boundary at r = 0, which is coordinazied by (t, ~x).

In what follows, we will consider the computation of the quantum Fisher information
metric and its dual holographic counterpart, considering only the local sectors of the the-
ories from both sides of the holographic correspondence.

3 Check of the Non-Relativistic Holography

3.1 Exact computation of QFIM

Let us consider a conformal field theory (CFT) living on the (d+1)-dimensional boundary of
the Schrödinger spacetime, described by the Lagrangian L0 for an Euclidean time interval5
τ ∈ (−∞, 0). At τ = 0 we perturb the original theory by some quantum operator λO(τ)
with a coupling λ. In this way, we have a new theory with L1 = L0 + λO, for τ > 0.
Traditionally, we can compute the quantum Fisher information metric Gλλ, between the
ground states of both theories, by the series expansion of the quantum fidelity at temporal
infinities,

F(λ+ δλ) ≡ |〈ψ1(τ →∞)|ψ0(τ → −∞)〉| = 1−Gλλδλ
2 +O(δλ3), (5)

where |ψ0〉 and |ψ1〉 are the ground states in the first and the second theory, correspondingly.
The generic expression for Gλλ is given by [6, 23]

Gλλ =
1

2

∫
VRd

ddx1

∫
VRd

ddx2

−ε∫
−∞

dτ1

∞∫
ε

dτ2 (〈O(τ1, x1)O(τ2, x2)〉 − 〈O(τ1, x1)〉〈O(τ2, x2)〉). (6)

The presence of the cutoff ε around τ = 0 is necessary to address any ultraviolet divergences
in case there is a discontinuity when passing from the original to the deformed Lagrangian.

Considering primary operators with conformal dimension ∆ and taking into account
that for such operators 〈O〉 = 0, then only the 2-point function, 〈O(τ1, x1)O(τ2, x2)〉,
contributes to the QFIM. The computation of the 2-point correlator, between primary
operators from the dual gauge field theory in the Schrödinger case, has been performed
by [24,25]. Its explicit form yields

〈O(τ2, ~x2)O(τ1, ~x1)〉 =
i∆
(
M
2

)∆−1
e−iπ

∆
2

πd/2 Γ
(
∆− d

2
− 1
) θ(τ2 − τ1)

(τ2 − τ1)∆
e
iM
2

(~x2−~x1)2

τ2−τ1 , (7)

where d is the dimension of ~x space, θ(τ2 − τ1) is the unit step function for an Euclidean
time interval, M is the quantized momentum along the compact direction ξ with radius
1/M , and the conformal dimension of the operators is6

∆ = 1 +
d

2
+

√(
1 +

d

2

)2

+m2 +M2. (8)

5We will refer to t as the real time and τ = −it as the Wick-rotated time.
6The parameter m is the mass of the dual bulk scalar field probing the Schrödinger background.
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We will consider τ1 ≤ τ2, thus the QFIM for a single marginal deformation yields

G
(CFT )
λλ =

1

2

∫
ddx1

∫
ddx2

−ε∫
−∞

dτ1

∞∫
ε

dτ2 〈O(τ1, x1)O(τ2, x2)〉 = Cε2+ d
2
−∆, (9)

where the normalization constant is7

C =
∆2d−2∆+3e−

iπ
4

(d+2∆)M∆− d
2
−1VRd

(d− 2∆ + 4) Γ
(
∆− d

2

) . (10)

The integrals over τ1 and τ2 converge only for

2∆ > d+ 4, (11)

which falls within the scope of some previous conditions for holographic systems [6, 26].
Note that the divergence behavior of the QFIM is determined only by the regulator ε.

In the next Section we proceed with the computation of the holographic Fisher infor-
mation metric in the dual Schrödinger gravitational background, which will show more
complex behavior than QFIM. The analysis of the relativistic AdS case was performed
in [6].

3.2 Perturbative computation of HFIM

As we already mentioned, the holographic correspondence states a duality between the
operators from the boundary gauge theory and a classical scalar field probing the dual
gravitational background. Any changes in the boundary gauge theory will produce changes
in the profile of the scalar field from the dual gravitational theory.

In order to encode the relevant quantum information onto the dynamics of the massive
scalar field φ(x) on the gravity side, one has to consider the following picture. Initially,
we have an undeformed CFT with an Euclidean Lagrangian L0 and primary operators
dual to a probe scalar field φ0(x) in the bulk. This theory can exist unrestricted for an
Euclidean time interval τ ∈ (−∞,+∞). On the other hand, we can consider the deformed
theory L1 = L0 + λO as an independent theory from L0 within the same time interval
τ ∈ (−∞,+∞). Its operator content is dual to a new profile of the probe scalar field,
namely φ1(x) in the bulk. However, turning on a deformation λO at τ = 0 in the original
theory L0, will produce a third theory with L2 = L1, valid only for τ > 0. Its content is
dual to a bulk scalar field with a profile φ2(x).

As suggested by [6], the first step in finding the HFIM is to rewrite the fidelity (5) in
terms of the partition functions of the three different theories, namely

〈ψ1|ψ0〉 =
Z2√
Z0Z1

, (12)

were Z0 and Z1 are the partition functions for the original and the deformed theories in
the range τ ∈ (−∞,+∞), while Z2 is the partition function for the deformed theory only
for τ > 0. The second step is to consider the large N limit on the gravity side, where
Zk = e−Ik , k = 0, 1, 2, with Ik being the on-shell action of the gravity solution dual to the

7 With VRd we notate the volume of Rd space.
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corresponding field theory configuration. In this case, it is the action of the massive scalar
field φk(x), probing the Shrödinger geometry8 gµν(x):

Ik = − 1

κ2

∫
M

dDx
√
|g|
(

1

2
(R− 2Λ)− 1

2
gµν∂µφk∂νφk −

1

2
m2φ2

k + V (φk)

)
+ I∂M, (13)

where I∂M is some proper boundary term. Therefore, one finds

〈ψ1|ψ0〉 =
Z2√
Z0Z1

= e
1
2

(I0+I1)−I2 . (14)

In this picture, the deformation of the CFT by a single primary operator induces an
interaction term λO with a coupling λ in the CFT Lagrangian, thus changing the initial
dual bulk gravitational action I0 by Ik = I0 + δIk(λ) with δI0 = 0. Hence, one has

〈ψ1|ψ0〉 =
Z2√
Z0Z1

= e
1
2

(I0+I1)−I2 = e
1
2

(I0+δI0+I0+δI1)−I0−δI2 = e
1
2
δI1−δI2 . (15)

This reduces the computation of HFIM only to finding the variations δI1 and δI2 of
the on-shell gravitational action. In particular, when the massive field is turned off
(φ0(x) = 0), one has the initial Schrödinger background geometry with metric g(0)

µν , i.e.
Z0 = exp

(
−I0[φ0, g

(0)
µν ]
)
. On the other hand, the profiles φ1,2(x) of the scalar field for I1

and I2 will in general be spacetime depended and can be calculated by the corresponding
bulk-to-boundary propagators. Since we are interested in perturbative solutions in lower
powers of λ we can insist on the following transformations of the fields9

φ(x) = φ0(x) + λϕ(x), gµν(x) = g(0)
µν (x) + λ2hµν(x), (16)

where ϕ(x) and hµν(x) are some perturbations generated after turning on the deformation
in the dual CFT. Notice that the metric receives corrections at order λ2 since the scalar
field enters quadratically in Einstein field equations. Hence, the variation of the bulk action
δI to lowest orders of λ yields

δI = I[φ, gµν ]− I0[φ0, g
(0)
µν ] = λ2

∫
δ2I

δφ(x)δφ(y)

∣∣∣∣
λ=0

ϕ(x)ϕ(y) +O(λ3).

Note that the first variations of the action with respect to the metric and the scalar field
vanish due to the equations of motion. Now, we can easily compute the second variation
of the action with respect to the scalar field to find

δIk =
1

2κ2

∫
dd+1x

√
|g|
(
g(0)µν∂µφk ∂νφk +m2φ2

k

)
=

1

2κ2

∫
ddx

√
|γ|nµ g(0)µνφk ∂νφk, (17)

with nµ being the unit normal vector, γ is the determinant of the induced metric on
the boundary, and φk(x) are the scalar field configurations dual to the operators of the
corresponding deformed and undeformed CFTs, while probing the fixed background g(0)

µν .
8This is valid only in the probe limit, where the backreaction of the scalar field on the geometry can

be neglected, i.e. the coupling λ is small.
9We will consider perturbations around the original undeformed theory, thus φ0(x) = 0.
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Clearly, one can obtain these profiles by using the bulk-to-boundary propagator in the
Schrödinger spacetime, namely10 [27]

φ1(r, ~x, t) = λ

∫
ddx1

+∞∫
−∞

dτ1K(r, ~x, τ ; ~x1, τ1) φ̂0(~x1, τ1) = iλ e−
iπd
2 rd−∆+2 (18)

for the first scalar field configuration and

φ2(r, ~x, t) = λ

∫
ddx1

τ∫
0

dτ1K(r, ~x, τ ; ~x1, τ1) φ̂0(~x1, τ1) =
iλ e−

iπd
2

Γ(a)
rd−∆+2 Γ

(
a,
µ

t

)
(19)

for the second scalar field configuration. Here, Γ(a, µ/t) is the incomplete gamma function
and we have further defined the parameters

a = ∆− d

2
− 1, µ =

1

2
Mr2. (20)

One also notes, that the field φ̂0(~x1, τ1) = 1 is the source function on the boundary at r = 0
(see [19]), and the bulk-to -boundary propagator reads [24]

K(r, ~x, τ ; ~x1, τ1) =
i
(
M
2

)∆−1
e−iπ

∆
2

πd/2 Γ
(
∆− d

2
− 1
) θ(τ − τ1)

(τ − τ1)∆
r∆ e

iM
2
r2+(~x−~x1)2

τ−τ1 . (21)

In the final expression for φ2(x) we have restored the real time τ → −it, so that subse-
quent calculations with the incomplete gamma functions will attain the correct properties.
Furthermore, the integral converges only for a > 0 and M > 0.

Knowing the profiles of the fields φ1,2 we can write the HFIM integrals according to
(17), adopted for the Schrödinger case (4), namely

δIk =
1

2κ
lim
r→ε̃

∫
ddx

 −ε∫
−T

dt
√
|γ|nµ gµνφk ∂νφk +

T∫
ε

dt
√
|γ|nµ gµνφk ∂νφk

, (22)

where γ is the metric on the boundary, ε̃ > 0 is the regulator in the holographic direction
r near the boundary r → 0, nµ is the normal outward vector to the boundary, ε > 0 is a
regulator around t = 0, and T is a cut-off at temporal infinity. On the boundary only the
component nr is non-zero, thus

√
|γ|nrgrr = Ld r−1−d. However, one has to account for

the fact that φ1 and φ2 span different ranges for t, which leads to

δI1 =
LdVRd

2κ
lim
r→ε̃

 −ε∫
−T

dt r−1−d φ1(r) ∂rφ1(r) +

T∫
ε

dt r−1−d φ1(r) ∂rφ1(r)

 , (23)

δI2 =
LdVRd

2κ
lim
r→ε̃

T∫
ε

dt r−1−d φ2(t, r) ∂rφ2(t, r). (24)

10The integration is performed over the Euclidean time τ1 for τ1 ≤ τ .
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The non-trivial solutions to these integrals have been found in [27]. The final step is to ex-
pand the overlap (15) and write down the expression for the holographic Fisher information
metric in the Schrödinger spacetime, i.e.

Gλλ = a0(µ)(T − ε) +
7∑
i=1

[
ai(µ, T ) Γp

(
αi,

qµ

T

)
+ bi(µ, ε) Γp

(
αi,

qµ

ε

)]
, (25)

where Γ(α, z) is the incomplete gamma function with

α1 = α4 = a− 2, α2 = a, α3 = a− 1, (26)
α5 = 2a− 4, α6 = 2a− 2, α7 = 2a− 3. (27)

and
p =

{
1, i = 4÷ 7,
2, i = 1÷ 3.

q =

{
1, i = 1÷ 4,
2, i = 5÷ 7.

(28)

The holographic Fisher information metric (25) is equipped with three different diver-
gences near the Schrödinger boundary at r = 0, namely ε → 0, T → ∞ and µ → 0.
However, on the boundary the limit T → ∞ is not mandatory and the cutoff T could be
considered finite. Furthermore, one also has the relation bi(µ, ε) = −ai(µ, T → ε), where

a0 =
LdVRd

µa2a+1κ
Ma

[
2c0 + c2

(
Γ2 (a)− 2Γ(2a)B1/2(a, a)

)]
,

a1 =
LdVRd

4µa−1κ
c1(a− 1)(a− 2)2, a2 =

TLdVRd

2a+1µaκ
Mac2,

a3 = − LdVRd

2a+1µa−1κ
Mac2(a− 1) a4 =

T 2−ae−
µ
T LdVRd

2µκ
c1(a− 1)(a− 2),

a5 = − LdVRd

22a−3µa−1κ
c1(a− 1)(a− 2), a6 =

LdVRd

23a−1µa−1κ
(2ac1 − 2c2M

a) ,

a7 =
LdVRd

22a−2µa−1κ
c1(a− 1), a = ∆− d

2
− 1,

c0 =
e−iπd

2
(d−∆ + 2), c1 =

Ma e−idπ

2a−1 Γ2(a)
, c2 = − 2c0

Γ2(a)
, (29)

with B1/2 (a, a) being the incomplete beta function. We have explicitly kept the coefficients
by different names a’s and b’s to reflect the different asymptotic behavior of the arguments
of the incomplete gamma functions.

3.3 Asymptotic behaviour of HFIM near the boundary

In order to see if the holographic correspondence holds in the non-relativistic case, one
has to show that HFIM (25) asymptotically approaches QFIM (9), near the boundary at
r = 0. In this case, we effectively have two competing divergences, namely µ → 0, when
approaching r = 0 along r, and ε → 0 along t, near t = 0. Therefore, we can look at
different situations, e.g. one in which µ goes to zero asymptotically faster than ε, and the
other case, where ε goes faster to zero than µ. In both cases we have two possibilities for
the cut-off T , i.e. T →∞ or finite T .

After some careful analysis, one finds that the case of dominant11 ε over µ at T →∞,
does lead to the desired outcome near the boundary. To show this, one can use the

11This means that ε approaches zero sufficiently faster than µ.
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asymptotic expansion

Γ (a, z) ∼ za−1e−z
∞∑
k=0

Γ(a)

Γ(a− k)
z−k, |z| → ∞, (30)

which defines the explicit divergence structure of the bi terms, while for the ai terms we
can use

Γ (a, z) = Γ(a), z → 0, a > 0. (31)

Therefore, Eq. (25) acquires the following asymptotic form near the boundary r = 0

Gλλ

ε1−a
= A1

T εa−1

µa
− A2

(
ε

µ

)a
+ A3

T 2−a e−
µ
T εa−1

µ
+ A4

(
ε

µ

)a−1

+ e−
2µ
ε

7∑
i=1

∞∑
k=0

γi(a, k)

(
ε

µ

)δi(a,k)

, (32)

where A1,2,3,4, γi and δi are some finite constants, which do not dependent on the regulators.
Due to the fact that ε is dominant, all γi terms vanish by the suppressing factor of e−

2µ
ε .

Obviously the divergence structure of the Ai terms depend on the range spanned by the
parameter a. For example, the first term has a divergence structure T εa−1µ−a for T →
∞, µ→ 0, ε→ 0. Therefore, one can take A1T ε

a−1µ−a = K = const for a > 1, thus it can
be considered regular. This leads to a vanishing term A3T

2−ae−
µ
T εa−1µ−1 → 0. The terms

with εaµ−a and εa−1µ1−a also vanish for a > 1, because ε→ 0 is dominant. Therefore, one
can recover the divergence structure of the dual CFT quantum Fisher information metric
(9) from (32) for a > 1, namely

Gλλ = Kε1−a = Kε2+ d
2
−∆, a > 1, (33)

where K is the HFIM normalization constant. Imposing C = K, where C is defined in Eq.
(10), leads to

K = κ
(a0 + a2Γ2(a))(2a+ d+ 2)Γ(a− 1) e

iπ
2

(d−a−1)

2a−1Ld(2− 2a+ d)
(
Γ(a)Γ(a+ 1)− Γ(2a+ 1)B1/2(a, a)

) , (34)

which gives a complete match between HFIM and QFIM near the boundary at r = 0. This
analysis suggests that the the holographic principle extends to models with non-relativistic
symmetries.

4 Final Remarks
In this work we have considered a duality between dipole field theory and string theory in
Schrödinger spacetime, which is a particular example of gauge/gravity correspondence for
systems with non-relativistic symmetries. We focused our investigation on the derivation
of the quantum Fisher information metric on the space of coupling constants over the
conformal field theory and its dual holographic counterpart in the bulk of spacetime.

In the dual gauge theory side, we have used the 2-point correlation function between
two primary operators in order to calculate the quantum Fisher metric. It showed relatively
simple divergence structure along the time direction and dependence only on the conformal
dimension ∆ of the operators and the discrete non-relativistic particle number M .
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On the gravity side of the correspondence, we have adapted the perturbative method
for the computation of the holographic Fisher information metric, suggested by [6], to find
HFIM in the dual bulk Schrödinger geometry. The results for the HFIM showed com-
plicated divergence structure with some additional convergence conditions. By analyzing
the asymptotic behaviour of the bulk holographic Fisher information metric, we were able
to reduce it to the quantum Fisher metric near the boundary of the spacetime. The ex-
act match of these quantities from both sides of the gauge/gravity correspondence further
proved that one can extend the holographic principle to dual systems with non-relativistic
symmetries.
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