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Abstract

Recent progress in holographic correspondence uncovered remarkable relations
between key characteristics of the theories on both sides of duality and certain
integrable models.

In this paper we consider simple application of the Fredholm method to ob-
tain important characteristics of holographic duality. We consider two different
lines along which one can develop techniques using Fredholm method and Fredholm
operators. The first one is focused on obtaining dispersion relations (anomalous di-
mensions in the dual theory) for the class of pulsating string solutions. The second
direction is the study of deformations by single/double-trace operators. In this case
we give sketchy qualitative description of how the Fredholm operators can be use.

1 Introduction

For the last forty years there have been attempts to realize a correspondence between
gauge theories with large number of colors and string theory. Having graviton in its
closed string spectrum at the same time, it is challenging to somehow collect all the
interactions under a common ”roof” - string theory. Over the years, this idea has its
highs and downs. It is amazing that the physical community always discovers new ideas
and challenges and keeps that dream alive.
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The discovery of string/gauge theory duality (in particular, AdS/CFT correspondence
or holographic correspondence [1, 2]) has been profound boost in our thinking not only
about those theories but also about fundamental laws of Nature and in particular the
quantum features of spacetime itself. For instance, the idea of ”emergent spacetime”
however has been putted forward and seriously developed last years bringing together
seemingly unrelated issues. Another attractive point is the appearance of strong evidences
that gauge theories, some of which already experimentally proven, are related to string
theory. Along with these, over the last years the ideas of holographic correspondence
received wide applications in various areas of contemporary theoretical physics - from
condensed matter and relativistic fluids to cosmological models.

Currently String/gauge theory duality is one of the hottest topics. String(gravity)/gauge
theory duality, along with its tremendous success, poses also a number of conceptual is-
sues. Such as, for instance, the following ones: (a) if gravity(string) theory is dual to
certain gauge theory, it should be possible to re- construct any of them from the others!
How can this holographic correspondence be explicitly realized? (b) if the above state-
ment is true, the (quantum) gravity should be encoded in the boundary theory! How then
is this information stored on the boundary and how can it be extracted? Moreover, can
we think of space-time, ergo gravity as an emergent phenomenon?

The promotion of the idea that collective dynamics of more fundamental non-gravitational
degrees of freedom is entangled to produce emergent gravity poses even more fundamental
questions about emergence phenomena- emergence of what, from what or what kind of
emergence?

One should note that, along with all other things, one of the most attractive features
of this duality is that it offers a way to resolve many puzzles of the weak/strong coupling
phenomena.

Let us first briefly remind the basic points of the conjecture of AdS/CFT correspon-
dence following mainly the Witten’s arguments.

The main components of the correspondence are defined as follows.

� Consider a spacetime M supplied with a boundary ∂M = Σ.

� The fields in the bulk we denote by Φi (the index stands for arbitrary tensorial
structure) while the fields on the boundary are φk.

� The metric of M is gµν while the induced metric on the boundary ∂M is g|∂M = γ.

� Consider a radial slice of the spacetime Σρ at fixed ρ. The fields on this slice will
be also denoted by φk.

� At given slice Σρ one can consider the amplitude

ΨΣρ [φi] =

∫
Φi|Σρ=φi

DΦie
iSB,M (Φi), (1.1)

where SB,M is the bulk action and the integral is evaluated with Dirichlet boundary
conditions for the fields on Σρ.

� One can define and compute the quantum Hamilton-Jacobi functional

S(φi) = Γ(Φi)| δΓ
δΦi

=0,Φi|∂M=φi
. (1.2)
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� The fields on the boundary φi are characterized by their tensor structure and the
conformal transformations of the boundary metric, namely

γ → ρ−2γ =⇒ φi → ρd−∆iφi. (1.3)

The quantity ∆i is associated with the conformal dimension of a primary operator
Oi on the CFT side of the correspondence (actually it is coupled to it).

� For any given CFT one can define the generating functional of connected correlation
functions

ZCFT [φi] = 〈e
∫
Σ φiOi〉. (1.4)

Before stating the correspondence let us make a short remark. It has been shown
explicitly that in the case of asymptotically flat spaces this Dirichlet amplitude is nothing
but the S-matrix functional! The standard S-matrix elements can be extracted by taking
derivatives of the quantum Hamilton-Jacobi functional. Thus, one can think of ΨΣρ [φi] =
eiS(φi) as on-shell amplitude defining connected S-matrix elements. Note also that in
the flat space the quantum Hamilton-Jacobi functional is the generating functional of
connected S-matrix elements.

The AdS/CFT correspondence states the equality of

ZCFT [φi] = ΨΣ0 [φi], (1.5)

where Σ0 is the (asymptotic) boundary of the spacetime.
Let us comment briefly on the bulk reconstruction in this setup.

� In principle ΨΣρ represents the quantum spacetime but only trough the dependence
on the boundary metric!

� Changing the radial slice changes the induced metric on Σρ! Thus, knowing Σρ for
all ρ (i.e. all possible γ) allows to reconstruct the semi-classical spacetime!

� On the other hand, assuming the correspondence, the variation of the boundary
means moving the radial slice in the bulk !

If our boundary lies at infinity, the induced metric on the slice Σρ scales as ρ−2γ, where
γ is a representative of the conformal class of the metric induced on the boundary. Thus,
it is natural suggest that the asymptotic property of the spacetime encoded in Ψ is given
by the behavior of the wave functional Ψ[ρ−2γ] in the limit when ρ→ 0.

Let us briefly comment on the effect of deforming the dual CFT with a multi-trace
operator. In general, this deformation schematically can be described by the following
modification of the action

S0 → SW = S0 +W [Ô(φi)], (1.6)

where φi are the fundamental degrees of freedom. When Ô(φi) is single-trace it has the
from

Ô(φi) = Tr

(∏
i

φi

)
. (1.7)

According to the AdS/CFT correspondence one writes

Z[J ] = 〈e
∫
JÔ〉CFT =

∫
D[φi]e

−S0[φi]eJD[φi] '
∫
D[ϕ]e−Sgrav [ϕ,J ] ∼ e−Sgrav [ϕ;J ]. (1.8)
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The source J is classical one and the expectation value is taken with respect to the
undeformed action. Note that Ô is the operator acting on the Hilbert space states while
O is just the function entering the path integral!

Following the AdS/CFT correspondence logic, one has the chain of relation

ZWCFT [J ] = 〈eJÔ〉WCFT ≡ 〈eJÔ−W [Ô]〉CFT

=

∫
D[φi]e

−S0[φi]−W [O]+JO =

∫
D[φi]e

−S0[φi]e−W [O]eJO

= e−W [ δ
δJ

]〈eJÔ〉CFT = e−W [ δ
δJ

]

∫
D[ϕ]e−Sgrav [ϕ;J ]

=

∫
Dϕe−Sgrav [ϕ;J ;W ] ∼ e−Sgrav [ϕcl;J ;W ]. (1.9)

The functional dependence on W above is important and it depends on the specific fields
entering the theory, see for some comments on this point [3] for instance.

Below we sketch briefly how these arguments work.
Let us briefly comment on the non-local effective action contributions. As discussed

in [4], the non-local part, Γ[φ, g] satisfies

1
√
g

(
gµν

δ

δgµν
− βI(φ)

δ

δφI

)
Γ[φ, g] = 4-derivatives terms. (1.10)

The Callan-Symanzik equations for expectation values of local operators can be ob-
tained by varying above relation with respect to fields φI . After the variation is done, one
puts the fields to their constant average value given by the couplings of the gauge theory.
Taking the metric to be gµν = a2ηmuν and defining∫

gµν
δ

δgµν
= a

∂

∂a
,

∫
δ

δφI
=

∂

∂φI
, (1.11)

a little algebra is needed to obtain the standard Callan-Simanzyk equations(
a
∂

∂a
− βI ∂

∂φI

)
〈OI1(x1) . . .OIn(xn)〉 − γIiJi〈OI1(x1) . . .J〉(xi)OIn(xn)〉 = 0. (1.12)

Here the anomalous scaling dimensions of the operators OI are given by

γI
J = ∇Iβ

J . (1.13)

� On any CFTd , there is a mapping between operators Oa(x) and states on a Hilbert
space of he theory on R× Sd−1,

Oa(x) ↔ |OaSd−1〉.
� The eigenvalue for the translation generator along the R direction (τ) is ∆a =

scaling dimension of Oa such that,

Oa(λx) = λ−∆aOa(x) =⇒ eτHτ |Oa〉 = e−i∆a|Oa〉,
where Hτ is the Hamiltonian corresponding to the dilatation operator in radial quantiza-
tion.

∆a (inCFT) = LEa (globalAdS). (1.14)

From string side the anomalous dimensions are determined by the dispersion relations !
To solve the problems in holography various approaches and techniques have been

used. However, to my opinion the usage of Fredholm method and Fredholm determinants
is somehow underestimated. The purpose of this paper is to bring attention on this
method and demonstrate on simple examples how it could be used.
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2 Aspects of holographic correspondence and Fred-

holm alternative

2.1 Basics of Fredholm equations

In this subsection we will list very sketchy, and without details and proofs, the basic
properties of Fredholm equations and method for solving them. We will focus only on
those which will be used in what follows. More details can be found in any good book on
Integral equations, as well as in few references with more specific focus say [5]- [11].

Fredholm integral equations are two types

� Fredholm’s integral equation of the I-st kind:

b∫
a

K(x, y)u(y)dy = f(x) K̂u = f non-homogeneous

b∫
a

K(x, y)u(y)dy = 0 K̂u = 0 homogeneous eqn.

� Fredholm’s integral equation of the II-nd kind: (λ - parameter)

u(x) = λ

b∫
a

K(x, y)u(y)dy + f(x); K̂u = f non-homogeneous

Generically the Fredholm has a solution if the parameter λ is not a spectral eigenvalue

u(x) = f(x) +

b∫
a

D(x, y;λ)

D(λ)
f(y)dy, (2.1)

where D(x, y;λ) and D(λ) are called Fredholm minors and Fredholm determinant and
they are entire functions of the complex variable λ. The eigenvalues satisfy D(λ) = 0.
They are isolated and since D(λ) is entire only a finite number of them can lie in a
bounded region.

The Fredholm minors and Fredholm determinant have representation in power series

D(x, y;λ) =
∞∑
n=0

(−1)n

n!
An(x, y)λn, D(λ) =

∞∑
n=0

(−1)n

n!
Bnλ

n

The coefficients An with A0 = K(x, y)

An(x, y) =

b∫
a

· · ·
b∫
a︸ ︷︷ ︸

n

∣∣∣∣∣∣∣∣
K(x, y) K(x, y1) · · · K(x, yn)
K(y1, y) K(y1, y1) · · · K(y1, yn)

...
...

. . .
...

K(yn, y) K(yn, y1) · · · K(yn, yn)

∣∣∣∣∣∣∣∣ dy1dy2 . . . dyn.
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The coefficients Bn (B0 = 1)

Bn =

b∫
a

· · ·
b∫
a︸ ︷︷ ︸

n

∣∣∣∣∣∣∣∣
K(y1, y1) K(y1, y2) · · · K(y1, yn)
K(y2, y1) K(y2, y2) · · · K(y2, yn)

...
...

. . .
...

K(yn, y1) K(yn, y2) · · · K(yn, yn)

∣∣∣∣∣∣∣∣ dy1dy2 . . . dyn.

Beside using Fredholm minors and determinants, there are also two other methods of
solving Fredholm equations deserving attention.

Iterated Kernels. We start with the equation

u(x)− λ
b∫

a

K(x, y)u(y)dy = f(x), a ≤ x ≤ b. (2.2)

As we discussed, for small enough λ and under certain square integrability conditions
there exist a solution as Neumann series

u(x) = f(x) +
∞∑
n=1

λnψn(x), (2.3)

Substitute (2.3) into (2.2) and compare the terms of equal powers in λ. The comparison
yields

ψ1(x) =

b∫
a

K(x, y)f(y)dy

ψ2(x) =

b∫
a

K(x, y)ψ1(y)dy =

b∫
a

K2(x, y)f(y)dy

ψ3(x) =

b∫
a

K(x, y)ψ2(y)dy =

b∫
a

K3(x, y)f(y)dy (2.4)

· · · (2.5)

The kernels Kn(x, y) are called iterated kernels and are defined as

Kn(x, y) =

b∫
a

K(x, z)Kn−1(z, y)dz, n ≥ 2, K1(x, y) = K(x, y). (2.6)

Actually one can write

Kn(x, y) =

b∫
a

Kl(x, z)Kn−l(z, y)dz, 1 ≤ l < n. (2.7)

Written in terms of the original kernel, the n-th one is

Kn(x, y) =

b∫
a

b∫
a

· · ·
b∫

a

K(x, s1)K(s1, s2) . . . K(sn−1, y)ds1ds2 . . . dsn−1. (2.8)
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Successive Approximations. The method uses quite similar to the iterated kernels
concept. In this case one should use the recurrent formula

un(x) = f(x) + λ

b∫
a

K(x, y)un−1(y)dy, u0(x) = f(x), (2.9)

with the very same output.
The Resolvent. The resolvent of the integral equation can be defined via the iterated

kernels by the formula

R(x, y;λ) =
∞∑
n=1

λn−1Kn(x, y). (2.10)

If

|λ| < 1

B
, B =

√√√√√ b∫
a

b∫
a

K2(x, y)dxdy

b∫
a

K2(x, y)dy ≤ A, a ≤ A ≤ b, (2.11)

then the Neumann series converges absolutely and uniformly on [a, b].
Thus, a solution of a Fredholm equation of the second kind is expressed by the formula

u(x) = f(x) + λ

b∫
a

R(x, y)f(y)dy. (2.12)

Thus, the problem reduces to obtaining the Resolvent.

2.2 Pulsating strings, anomalous dimensions and Fredholm method

As discussed earlier, the duality connects perturbative and non-perturbative corners of
given theories. Thus, to obtain anomalous dimensions of operators in field theory at
strong coupling we can use perturbative regime in its holographic dual. In this respect
the Fredholm method becomes valuable tool in holographic correspondence.

Let us discuss a simple example of application of Fredholm integral equation in the
perturbation theory. We frequently have certain symmetries and, after appropriate re-
duction, the problem of finding wave function reduces to solving ordinary differential
equation. To see how the method works let us consider the Schrödinger radial equation

d2ψ(r)

dr2
+
[
q2 − Vunprt(r)− λVprt(r)

]
ψ(r) = 0, (2.13)

where q is a certain quantum number and λ is small perturbation parameter. The form of
Vprt(r) is fairly complicated in general and the exact solutions is hard to obtain. Another
rewriting suggests different point of view

d2ψ(r)

dr2
+
[
q2 − Vunprt(r)

]
ψ(r) = λVprt(r)ψ(r), (2.14)
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namely, the solution of (2.14) can be considered as the solution of the following Fredholm
equation

ψ(r) = φ(r) + λ

∞∫
0

K(r, r′)ψ(r′)dr′. (2.15)

In (2.15) the symbol φ(r) stands for the analytic solution of the unperturbed problem,
namely (2.14) with vanishing right hand side,

d2φ(r)

dr2
+
[
q2 − Vunprt(r)

]
φ(r) = 0. (2.16)

Also, K(r, r′) is the integral kernel

K(r, r′) = G(r, r′)Vprt(r
′). (2.17)

The Green’s function satisfies the equation[
d

dr
+ q2 − Vunprt(r)

]
G(r, r′) = δ(r − r′). (2.18)

Then the solution can be represented as a perturbation series

ψ(r) =
∞∑
k=0

λkψ(k)(r), (2.19)

where

ψ(0)(r) = φ(r), ψ(1)(r) =

∞∫
0

K(r, r′)φ(r′)dr′, ψ(k)(r) =

∞∫
0

K(r, r′)ψ(k−1)(r′)dr′.

(2.20)
By making use of the interated kernel method described above, one writes

ψ(n)(r) =

∞∫
0

Kn(r, r′)φ(r′)dr′. (2.21)

• One can construct the resolvent as series expansion in λ

K(r, r′, λ) =
∞∑
k=0

λkKk+1(r, r′). (2.22)

According to (2.19) and (2.22) the solution (2.15) can be written as

ψ(r) = φ(r) +

∞∫
0

K(r, r′, λ)φ(r′)dr′. (2.23)

Let us summarize the discussion so far. The wave function is perturbatively expressed
in (2.19). Assume that the system is governed by a Hamiltonian H with quantized
eigenvalues labeled by principal quantum number n. In the same way we will enumerate
the eigenfunctions Ψn and the energies En expressing them as series in λ

En =
∞∑
k=0

λkE(k)
n , ψn =

∞∑
k=0

λkψ(k)
n . (2.24)
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Next, for any ψn of quantum number n we are free to further impose orthogonality
conditions

〈ψ(0)
n |ψ(m)

n 〉 = δm,0, (2.25)

which in particular means normalization of ψ
(0)
n

〈ψ(0)
n |ψ(0)

n 〉 = 1. (2.26)

In AdS/CFT correspondence the dispersion relation on bulk theory side determine
anomalous dimensions of the gauge theory operators. Let us take a look at the energies in
our example. Taking H0 to be the unperturbed Hamiltonian, perturbation theory energies
are

H0 ψ
(0)
n = E(0)

n ψ(0)
n

H0ψ
(1)
n + Vprtψ

(0)
n = E(0)

n ψ(1)
n + E(1)

n ψ(0)
n

H0ψ
(2)
n + Vprtψ

(1)
n = E(0)

n ψ(2)
n + E(1)

n ψ(1)
n + E(2)

n ψ(0)
n (2.27)

· · ·

The orthogonality relation (2.25) leads to the tower

E(0)
n = 〈ψ(0)

n |H0|ψ(0)
n 〉,

E(1)
n = 〈ψ(0)

n |Vprt|ψ(0)
n 〉,

E(2)
n = 〈ψ(0)

n |Vprt|ψ(1)
n 〉,

E(3)
n = 〈ψ(0)

n |Vprt|ψ(2)
n 〉,

. . .

E(m)
n = 〈ψ(0)

n |Vprt|ψ(m−1)
n 〉,

(2.28)

Since we already have the first order corrected wave function, we are able to analyti-
cally find the second order correction to the energy as

E(2) =

∞∫
0

φ∗V̂pertψ
(1)dr. (2.29)

Let us turn to applications in holographic theories calculating the corrections to the
classical energy using the approach initiated in [12,13]1. Consider a circular string, which
pulsates on S5 by expanding and contracting its length. In this case the metric of S5 and
relevant part of AdS5 are given by

ds2 = R2
(
cos2 θdΩ2

3 + dθ2 + sin2 θdψ2 + dρ2 − cosh2ρdt2
)
, (2.30)

where R2 = 2πα′
√
λ with λ the ’t Hooft coupling. One can obtain the simplest pulsating

string solution by identifying the target space time with the worldsheet one, t = τ , and
setting ψ = mσ, which corresponds to a string stretched along ψ direction. We also set
the ansatz for θ = θ(τ) and ρ = ρ(τ). Hence, the Nambu-Goto action reduces to

S = m
√
λ

∫
dt sin θ

√
cosh2ρ− θ̇2. (2.31)

1In the examples below, the Fredholm operator actually reduces to Volterra’s one.
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In order to obtain the solution and the string spectrum it is useful to pass to Hamiltonian
formulation. For this purpose, after identifying the canonical momenta,

Πρ =
m
√
λ sin θ ρ̇√

cosh2ρ− ρ̇2 − θ̇2

, Πθ =
m
√
λ sin θ θ̇√

cosh2ρ− ρ̇2 − θ̇2

, (2.32)

we can write the Hamiltonian in the form [12]

H = coshρ
√

Π2
ρ + Π2

θ +m2λ sin2 θ. (2.33)

If the string is placed at the origin of AdS5 space (ρ = 0), we see that the squared
Hamiltonian have a form similar to a point particle. Here, the last term in (2.33) can be
considered as a perturbation. Therefore one can first find the wave function for a free
particle in the above geometry

− cosh ρ

sinh3ρ

d

dρ

(
cosh ρsinh3ρ

d

dρ
ψ(ρ, θ)

)
− cosh2ρ

sin θcos3θ

d

dθ

(
sin θcos3θ

d

dθ
ψ(ρ, θ)

)
= E2ψ(ρ, θ).

(2.34)
The solution to this equation is

Ψ2n(ρ, θ) = (cosh ρ)−2n−4P2n(cos θ), (2.35)

where P2n(cos θ) are spherical harmonics on S5 and the energy spectrum is given by

E2n = ∆ = 2n+ 4. (2.36)

Next step consists in finding the states Ψ2n. Since we are looking for the first few
corrections, we will give here only Ψ

(1)
2n . Since the perturbation term does not depend on

ρ and due to the normalization condition, the corrections does not involve ρ-part of Ψ2n.
Thus, we will give below only θ-dependent part Ψ̃

(1)
2n (θ)

Ψ̃
(1)
2n (θ) =

∫
G(θ, θ′)m sin2 θ′ P2n(cos θ′)dµ(θ′) = A2nP2n(x), (2.37)

where

A2n =
(4n− 1)(4n+ 3)− 4n2(4n+ 3)− (4n+ 1)2(4n− 1)

4n+ 1
. (2.38)

The first order correction to the energy in perturbation theory now yields

δE2 =

π/2∫
0

dθΨ
∗(0)
2n (θ)m2 sin2 θΨ

(0)
2n (θ) =

m2

2
. (2.39)

and, taking into account the first order correction contribution, the anomalous dimension
turns out to be

∆− 4 = 2n

[
1 +

1

2

m2λ

(2n)2

]
. (2.40)

Another more involving example is the case of generalized pulsating strings [14]. Let
us consider a circular pulsating string expanding and contracting on S5, which has a center
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of mass that is moving on an S3 subspace. We will assume that the string is with fixed
spatial coordinates in AdS5 (exept the time variable), so the relevant metric is:

ds2 = R2 (−dt2 + dγ2 + cos2 γ dχ2 + sin2 γ dΩ2
3), (2.41)

where dΩ2
3 = gij dϕ

i dϕj is the metric on the S3 subspace, i. e. gij = diag(1, cos2 ϕ1, sin2 ϕ1)

and R2 = 2πα′
√
λ. If we identify t with τ and use following classical ansätz:

γ = γ(τ), χ = χ(τ), ϕi = niσ + αi(τ), i = 1, 2, 3, (2.42)

the Nambu-Goto action

S = − 1

2πα′

∫
dτ dσ

√
−det(∂αXµ∂βXµ) (2.43)

then reduces to

S = −
√
λ

∫
dτ dσ sin γ

×
√
gijninj (1− γ̇2 − χ̇2 cos2 γ) + sin2 γ

[
(gijniα̇j)

2 − (gijα̇iα̇j) (gijninj)
]
. (2.44)

Now we are going to apply the procedure for calculation of the anomalous dimensions
developed in [12]. For this purpose, we find first the canonical momenta of our system.
Straightforward calculations give for the momenta

Πγ =

√
λ sin γ (gijn

inj) γ̇√
gijninj (1− γ̇2 − χ̇2 cos2 γ) + sin2 γ

[
(gijniα̇j)

2 − (gijα̇iα̇j) (gijninj)
] , (2.45)

Πχ =

√
λ sin γ (gijn

inj) cos2 γ χ̇√
gijninj (1− γ̇2 − χ̇2 cos2 γ) + sin2 γ

[
(gijniα̇j)

2 − (gijα̇iα̇j) (gijninj)
] , (2.46)

Παk =

√
λ sin3 γ [(gijn

inj) α̇s − (gijn
iα̇j)ns] gsk√

gijninj (1− γ̇2 − χ̇2 cos2 γ) + sin2 γ
[
(gijniα̇j)

2 − (gijα̇iα̇j) (gijninj)
] . (2.47)

Solving for the derivatives in terms of the canonical momenta and substituting back into
the Hamiltonian, we find

H =

√
Π2
γ +

Π2
χ

cos2 γ
+
gijΠiΠj

sin2 γ
+ λ (gijninj) sin2 γ, (2.48)

or

H2 = Π2
γ +

Π2
χ

cos2 γ
+
gijΠ

iΠj

sin2 γ
+ λ (gijn

inj) sin2 γ. (2.49)

Since we consider high energies, one can think of this Hamiltonian as of square root of a
point particle one2. Hence, we can consider the potential terms as a perturbation. The
potential itself has the form

V (ϕ1, γ) = λ
[(

(n1)2 + (n2)2
)

+
(
(n3)2 − (n2)2

)
sin2 ϕ1

]
sin2 γ. (2.50)

2When we apply quasiclassical quantization we are dealing actually with a family of solutions. Each
of them looks like ¨almost¨ as for point particle (for more comments see for instance [12,13]
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The above perturbation to the free action will produce the corrections to the energy and
therefore, to the anomalous dimension.

Thus, we proceed with the consideration of the free wave-functions on S5 and S3, and
then use the perturbation theory to first order to find the correction of order λ. The
total S5 angular momentum quantum number will be denoted by L and the total angular
momentum quantum number on S3 is J . In these notations we have for S3 and S5 :

4(S3) =
1

sinϕ1 cosϕ1

∂

∂ϕ1

[
sinϕ1 cosϕ1 ∂

∂ϕ1

]
+

1

cos2 ϕ1

∂2

∂(ϕ2)2
+

1

sin2 ϕ1

∂2

∂(ϕ3)2
, (2.51)

4(S5) =
1

sin3 γ cos γ

∂

∂γ

[
sin3 γ cos γ

∂

∂γ

]
+

1

cos2 γ

∂2

∂χ2
+

1

sin2 γ
4(S3). (2.52)

Next step is to find the wave function for our system. For this purpose we consider
the Schrodinger equations which take for three-sphere the form:

∆S3 =

[
1

cosϕ1 sinϕ1

d

dϕ1

(
cosϕ1 sinϕ1 d

dϕ1

)
− m2

cos2 ϕ1
− l2

sin2 ϕ1
+ J(J + 2)

]
∆S5(ϕ1)U(ϕ1) = 0, (2.53)

and for five-sphere correspondingly

∆S5 =

[
1

cos γ sin3 γ

d

dγ

(
cos γ sin3 γ

d

dγ

)
− M2

cos2 γ
− J(J + 2)

sin2 γ
+ L(L+ 4)

]
∆S3(γ)U(γ) = 0. (2.54)

After separation of variables, the three-sphere (ortho-normalized) wave function is
given by

ΨJ
m,l(ω) =

√
2(2k + l +m+ 1) k! Γ(k + l +m+ 1)

Γ(k + l + 1) Γ(k +m+ 1)
ω
l
2 (1− ω)

m
2 P

(l,m)
k (1− 2ω), (2.55)

Here J, k, l are quantum numbers associated with the three-sphere.
On the other hand, the normalized wave-function of the five-sphere takes the form

ΨL
M,J(z) =

√
2(2n+ α + β + 1)n! Γ(n+ α + β + 1)

Γ(n+ α + 1) Γ(n+ β + 1)
z
α−1

2 (1− z)
β
2 P (α,β)

n (1− 2z).

(2.56)
The potential depende only on γ and can also be rewritten in terms of the new variables.
We find for it

V (ϕ1, γ) = λ
[(

(n1)2 + (n2)2
)

+
(
(n3)2 − (n2)2

)
ω
]
z = V (ω, z). (2.57)

Since the variables are separated, one can apply Fredholm method for the two variables
at once. After straightforward calculations the final result for the first order correction to
E2 is found to be

E2
(1) = λ

[(
(n1)2 + (n2)2

)
+

((n3)2 − (n2)2)

(2k + l +m+ 1)

(
(k + l) (k + l +m)

(2k + l +m)
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+
(k + 1) (k +m+ 1)

(2k + l +m+ 2)

)]
1

(2n+ α + β + 1)
×

×
[

(n+ α) (n+ α + β)

(2n+ α + β)
+

(n+ 1) (n+ β + 1)

(2n+ α + β + 2)

]
. (2.58)

Here we used the same notation as in [14] just to demonstrate the perfect agreement
of presented technique with the known results.

In conclusion, we find very useful the usage of Fredholm method not only for finding
corrections to the energy, but also for building relevant states which can be useful for
computing correlation functions.

2.3 Deformations and Fredholm determinant

In this subsection we will only give an idea of how Fredholm determinants appear when
we deform in a certain way the original theory.

Lets us focus on the deformations by single- and double-trace operators and how it
reflects on the other side of holographic duality. While the single-trace deformations are
old and fairly well (in many cases) understood problem, double-trace deformations still
surprises the physics theory community.

Let’s come to the problem. Deformations in one side of duality translates to the other
one, as discussed in the beginning of this manuscript. Below we will stick to the notation
in the Introduction. To account for such deformations we consider the partition function
of a theory with a gravity dual

Zρ[J ] =

∫
De−S[φ]−

∫ ρ
2
O2+

∫
JO = 〈e−

∫ ρ
2
O2+

∫
JO〉0,

where O is a single trace operator, ρ is a constant (matrix), but J is generically not.
Next step is to use Hubbard-Stratonovich transformation

Zρ[J ] =
√

det(−(ρ)−11)

∫
Dσ〈e

∫
( 1

2
(ρ)−1σ2+σO+JO2)〉,

with the assumption that higher point functions of O are suppressed in 1/N and the
expectation value can be considered as

〈e(σ+J)O〉0 ≈ e
1
2
〈(
∫

(σ+J)O )2〉0 .

To bring Zρ[J ] into pure square involving J , we introduce operators of Fredholm type

B̂[σ](x) =

∫
〈O(x)O(z)〉0σ(z), K̂ = 1 + ρ B̂, Û =

B̂

1 + ρ B̂

Simple and straightforward calculations shows that the deformed partition function
becomes

Zρ[J ] = exp
1

2

[
〈J |ÛJ〉 − tr log K̂

]
.

The two-point function in deformed theory can be also easily extracted∫
De−S[φ]−

∫ ρ
2
O2+

∫
JO = Zρ[J ] = exp

1

2

[
〈J |ÛJ〉 − tr log K̂

]
=⇒ 〈O(x)O(0)〉ρ =

∂2 logZρ[J ]

∂J(x)∂J(0)
= U(x, 0).
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Let us assume now that the double-trace operators have a support over a finite interval.
Such theories are for example, dipole theories dual to Schrödinger spaces. The deformed
action takes the form

S̃ = S0 +

∫ (
J(x)O(x) +

∫
x′
ρ(x− x′)O(x)O(x′)

)
.

where ρ(x− x′) is the source for the bi-local double trace operator. Such pictures exactly
matches above consideration and we can define immediately the corresponding Fredholm-
like operator

B̃[O](x) =

∫
x′
ρ(x− x′)O(x′)

It is straightforward to compute the effective action which has the form

Γ[O] = (J,O)−Wρ[J ], O(x) =
δWρ[J ]

δJ(x)
.

Then

ρ(x− x′) =
δ2Γ[O]

δO(x)δO(x′)
.

the analysis proceeds according to the above prescription.
Recently deformations by irrelevant double-trace operators in two dimensions at-

tracted a lot of attention [15]. It has been proven that deformation with operators of
the form T T̄ , where T is the stress tensor, are integrable [15, 16]. Some of the ap-
proaches [17, 18] are pretty similar in spirit of what has been discussed above. Indeed,
if we treat single- and double-trace deformations at once, it is useful to introduce ρ,
2 × 2 matrix that sources T T̄ , T J̄, JT̄ , JJ̄ deformations. Now we are interesting in the
generating functional in the deformed theory

e−Wρ[J̃ ] =

∫
Dϕe−S[ϕ]+

∫
J̃AOA− 1

2
ρABOAOB , (2.59)

where J̃A denote the sources in the deformed theory that couple to OA and ϕ denotes the
fundamental degrees of freedom in the CFT, over which the path integral is performed,
weighted by the action S[ϕ]. To this end, let us rewrite (2.59) as

e−Wρ[J̃ ] =

∫
DσA

∫
Dϕe−S[ϕ]+

∫
σAOA+

∫
J̃AOA−

∫
σAOA− 1

2
ρABOAOB

=

∫
DσAe−W [σA]e−

∫
(σA−J̃A)OA− 1

2
ρABOAOB

=

∫
DσAe−W [σA]+ 1

2

∫
(σA−J̃A)(ρ−1)AB(σB−J̃B). (2.60)

In the last term of (2.60) we used the trick of inserting identity√
det ρ−1

∫
Dσ̃Ae

1
2
σ̃A(ρ−1)AB σ̃

B

= 1, (2.61)

and performed the shift
σ̃A = σA − J̃A + ρABOB. (2.62)
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The undeformed theory has as sources σA = JA while for the deformed theory the sources
are σ̃A. Evaluated at the saddle point one finds

−δW [σA]

δσA

∣∣∣
σa∗

= 〈OA〉 = −(ρ−1)AB(σB∗ − J̃B), (2.63)

where
σA∗ = JA = J̃A + ρAB〈OA〉 or J̃A = JA − ρAB〈OB〉. (2.64)

The two generating functions are related as follows

Wρ[J̃
A] = W [JA]− 1

2

∫
ρAB〈OA〉〈OB〉. (2.65)

As it is clear from the above sketchy description, the Fredholm determinant techniques
can be successfully applied to find many of features of given theory such like correlation
functions, entanglement entropies, complexities etc. We will present qualitative and quan-
titative discussion of these issue in the near future [20].

3 Concluding remarks

In this paper we consider simple application of the Fredholm method to obtain important
characteristics of holographic duality. After some basic information about Fredholm equa-
tions, we focused on dispersion relations of pulsating strings in AdS5 × S5 background.
The later define the anomalous dimensions of the gauge theory operators, which are at
strong coupling regime and there is no other relevant tools fo obtaining them. This prob-
lem is actually studied and we have chosen it to compare results and demonstrate the
effectiveness of the Fredholm method. It is interesting to note that along with obtaining
physically relevant results, the method allows to construct a system of states ψ

(k)
n asso-

ciated with ψn, which could be considered as refinement gining kind of ”fine structure”.
The later may be used to compute entanglement and may provide additional important
information.

Another issue has been the deformations of holographic theories by higher-trace op-
erators. We have shown that the partition function for double-trace operators can be
obtained by applying certain Fredholm-like operator. This can be used to obtain corre-
lation functions in the deformed theory as well. One can think of deforming theories in
two dimensions with higher projective invariants, starting with Schwarzian [19]. This is
expected to bring a bridge between higher projective invariants, tau-functions and Fred-
holm determinants, see [10]. We will return to some issues raised in this paper in the near
future [20].

To conclude, it seems that there are many unexplored directions of applying Fredholm
method which could be used to solve highly non-trivial problems.
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