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Abstract 

In this paper we investigate the solutions of the important nonlinear partial 

differential equation Rosenau-Kawahara-RLW (RK-RLW).  Hyperbolic-type 

solutions,  harmonic-type solutions, and periodic-type solutions related to some values 

of parameters are pointed out. A part of these solutions are quite new, not being 

reported previously in literature. They describe the rich dynamics of the concerned 

system. Few graphical representations of these solutions support this statement. 
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Introduction 

Nonlinear phenomena are much more common in nature than linear ones and are 

commonly described by partial nonlinear differential equations (NPDEs). Therefore, solving 

them is a very important problem, because solutions give us important information on the 

dynamics of these phenomena. There is no clear and complete recipe for solving these 

equations, nor is it clear whether the equation can be integrable or not. The NPDEs do not 

have a single solution, but can admit several classes of solutions. These depend on the initial 

conditions or parameter values that appear in the equation. Some of these types of solutions 

are known as traveling wave solutions and there is a wide variety of methods that can be used 

to obtain them. 

Among the direct methods that allow to obtain the traveling wave solutions we mention 

the following: the sin-cos method [1], the hyperbolic tangent method [2 – 4], tanh-coth 

method [5, 6] F-expansion method [7], elliptical function method [8], the imposition of 

specific conditions of integrability [9], the extended equation test method [10], the GG /

method [11], the truncation method [12], the exponential function method [13], or the 

functional expansion introduced in [14]. 

To explain how the generalized Rosenau-Kawahara-RLW equation was reached, we will 

briefly outline the steps taken.  

Starting from the KdV equation: 

06 3  xxt uuuu  (1) 

 And the RLW equation (regularized equation of long waves), or the BBM equation: 

,02  xtxxt uuuuu

It has been observed that the KdV equation cannot also describe wave-wave or wave-wall 
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interactions, and therefore Rosenau proposed an equation called the Rosenau equation [15]: 

04  xtxxt uuuuu  (2) 

To this equation the term 
xtu2  is added  and thus the equation Rosenau-RLW [16]: 

024  xtxtxxt uuuuuu  (3) 

extended to the generalized Rosenau-RLW equation [17]: 

024  xtxt

n

xxt uuuuuu  (4) 

where 0n  is an integer showing the power of non-linearity. 

Returning to the Rosenau equation, the viscosity term of the KdV equation was 

introduced into it, thus obtaining the Rosenau-KdV equation [18]: 

034  xxtxxt uuuuuu  (5) 

By joining the Rosenau-RLW equation (3) with the Rosenau-KdV equation (5), the Rosenau-

KdV-RLW equation was obtained [19]: 

0234  xtxxtxxt uuuuuuu (6) 

This equation can be extended by increasing the power of nonlinearity by replacing the term 
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Solitary waves, shock waves, as well as conservation laws and asymptotic behavior for 

the extended or generalized Rosenau-KdV-RLW equation have been studied by [20]. 

On the other hand, the Kawahara equation, similar to the Rosenau-KdV equation with the 

distinction that instead of the term u4xt  contains the term u4x , it appeared in the modeling of

shallow water waves with shallow tension [21]: 

034  xxxxt uuuuuu  (7) 

By adding a new viscosity term 
xu5  to the Rosenau-KdV equation, Zuo [22] obtained the 

Rosenau-Kawahara equation: 

0534  xxxtxxt uuuuuuu  (8) 

and studied the solitary solution and its periodic solution. Biswas [23] analyzed the solitary 

wave solution and the two invariants of the equation of this type. 

The generalized Rosenau-Kawahara equation: 

0534  xxxt

n

xxt uuuuuuu  (9) 

has been extensively studied and new conservation laws have been found based on Lie 

symmetry analysis and soliton solutions [20, 24]. In 2015, J. Zuo [25] obtained solutions for 

this equation using the hyperbolic secant method. 

By coupling the generalized Rosenau-RLW equation (4) with the generalized Rosenau-

Kawahara equation (9), the generalized Rosenau-Kawahara-RLW equation is obtained  [21]: 

05234  xxtxxt

n

xxt uuuuuuuu  

where n  0 is an integer showing the power of non-linearity. 

We will study this equation in the form of: 

05342  xxx

n

xxtxtt uuuuuuuu  (11) 

(10) 
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We can reduce the number of degrees of fredom in the previous equation, by transforming the 

nonlinear differential equation with partial derivatives (NPDE) into a ordinary nonlinear 

differential equation (NODE), by using as unique variable vtx  : 

  0)(
1

)()( 1
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By integrating (5) in relation to   and vanishing the integration constant, we get: 
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2 Description of the method 

In this section we will describe an efficient direct method namely sin-cos method which 

allows to obtain few types of solutions for NPDEs. 

This method involves looking for a solution of the ordinary equation in the form of a 

sinus or cosinus function at a power. The general form of this solution is: 

)(cos)(   BAu   (14) 

Unknown parameters nA  B, ,  will be determined so that the general solution (14) verifies the 

equation. 

3 Application of the RK-RLW equation 

We can apply the sin-cos method for the equation (13). Thus, we can express a general 

solution to this equation in the form (14). 

We calculate the derivatives of this solution until order IV and then insert them into the 

equation (13). 

From the balance of the maximum powers of the cos  function we find: 

n
n

4
)1(4   (15) 

We group the terms according to his powers )cos( B  and equaling zero coefficients. We 

get an algebraic system of 3 equations with unknowns vBA ,, : 

  0)()(:)(cos 4422   ABvABvAvB  (16) 
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The solutions of the equation system are: 
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with notations: 

acb  2

222222 )22(4)2(  a

)()22(2)2( 22222  b  

222222 )22(4)2(  c

Case 1: 

We choose parameters: 
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The master equation will be: 
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And she will have the solutions: 
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Graphic representation of the solution for ),(1 txu  is given in Figure 1 and represents a 

bright soliton, and in Figure 2 the complex solution is plotted ),(2 txu . 

Figure 1: Graphic representation of the 

solution ),(1 txu  for 4,..,4x  and 

3,...,3t  

Figure 2: Graphic representation of the 

solution ),(2 txu  for 6,..,6x  and 

3,...,3t  
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Case 2 We choose the parameters: 

41  n  (22) 
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The equation becomes: 
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 (23) 

With particular solutions: 
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They are shown in Figure 3 and Figure 4 respectively. 

Figure 3: Graphic representation of the 

solution ),(3 txu  

Figure 4: Graphic representation of the 

solution ),(4 txu  

Case 3: We choose the parameters: 
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are shown in Figure 5 and Figure 6 respectively. 
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Figure 5: Graphic representation of the 

solution ),(5 txu   

Figure 6: Graphic representation of the 

solution ),(6 txu  

Case 4: We choose the parameters: 
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The solutions: 
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are shown in Figure 7 and Figure 8 respectively. 

Figure 7: Graphic representation of the 

solution ),(7 txu  

Figure 8: Graphic representation of the 

solution ),(8 txu  

4.Concluding remarks

This paper addressed the dynamics of shallow water waves by the RK-RLW equation 

with power law nonlinearity.  
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We used the direct sin-cos method to get solutions for the RK-RLW equation. From the 

graphs shown in the Figures 1 – 8 it is noted that the solutions ),(1 txu  , ),(4 txu , ),(6 txu , and 

),(7 txu  are solitonic solutions  representing a bright soliton, the solution ),(5 txu  is multi-

peakons solution, and the solution ),(8 txu  is a periodic solution. 

By the symbolic computation technique, the sin-cos method has proven itself to be simple 

and efficient. Therefore, it very simple applys to a large variety of NPDEs. 
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