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Abstract

We investigate compact Sasaki manifolds in view of transverse Kähler geometry.
We study the deformations of the Sasaki-Einstein structure under the transverse
Kähler-Ricci �ow. In the frame of contact geometry, we describe the construction
of Hamiltonian holomorphic vector �elds and Hamiltonian functions. The general
results are applied to the �ve-dimensional Sasaki-Einstein spaces T 1;1 and Y p;q.
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1 Introduction

In the last time Sasakian geometry, as an odd-dimensional analogue of Kähler geometry,
has become of high interest in connection with some modern developments in mathematics
(see e.g. [1] and the references therein). A Sasakian structure sits between two Kähler
structures, namely, the one of its metric cone and the one on the 1-dimensional foliation
generated by the Reeb vector �eld.
In theoretical physics, the interest in Sasaki-Einstein geometries [2] has arisen in the

context of AdS/CFT correspondence in maximally supersymmetric theories. We also note
the relevance of contact geometries in irreversible thermodynamics, statistical physics,
systems with dissipation, etc., see e.g. [3].
The concept of Ricci �ow was introduced by Hamilton [4] representing a method to

continuously deform a Riemannian manifold. Recently, the method was applied to Sasaki
manifolds to generate new Sasaki structures [5].
The completely integrable Hamiltonian systems in the symplectic setting are best de-

scribed by the famous Arnold-Liouville theorem and its generalization. The construction
of an analogous theory of complete integrability in contact geometry has been done more
recently [6, 7].
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In this paper, we investigate the Sasaki-Ricci �ow equation on �ve-dimensional Sasaki-
Einstein spaces T 1;1 and Y p;q. For this purpose we introduce a set of local complex coor-
dinates to parametrize the transverse holomorphic structure and the Sasakian analogue
of the Kähler potential from the Kähler geometry. Finally, we introduce the Hamiltonian
holomorphic vector �elds and describe their deformations under the Sasaki-Ricci �ow.
The paper is organized as follows. In the next section, we recall some de�nitions

and well-known results concerning the Sasaki-Einstein spaces and Sasaki-Ricci �ow. In
Sections 3 and 4, the general results are applied to the �ve-dimensional Sasaki-Einstein
spaces T 1;1 and Y p;q. In spite of the complexity of the Sasaki-Ricci �ow equation, we
are able to �nd some particular explicit analytical solutions. Section 5 is devoted to the
Hamiltonian holomorphic vector �elds and Hamiltonian functions on spaces T 1;1 and Y p;q.
In Section 6, we provide some closing remarks.

2 Preliminaries

Here we recall the de�nitions and main facts about Sasakian structures and their defor-
mations under the Sasaki-Ricci �ow.

2.1 Sasaki manifolds

De�nition 1 A (n+1)-dimensional Riemannian manifold (M; g) is Sasakian if its metric
cone C(M) = M � R+ with metric �g = d r2 + r2g is Kähler, with r the coordinate on
R+ = (0;+1).

Moreover, if the Sasaki space is Einstein (Ricg = 2ng), then the Kähler metric cone
is Ricci �at (Ric�g = 0), i.e. a Calabi-Yau manifold.
Let J denote the complex structure on C(M). On C(M) we have a vector �eld �� and

a 1-form �� de�ned by
�� = Jr

@

@r
and ��(�) = 1

r2
�g(��; �) ; (1)

respectively. The vector �eld �� restricted to M is called the characteristic vector �eld or
the Reeb vector �eld (let us note it by �).
Let now D = ker �, where � is the restriction of �� to M . We have the g-splitting of

the tangent bundle TM of M :
TM = D � L� ; (2)

where L� is the trivial line bundle generated by �.
Restrict J to D and extend it to an endomorphism � 2 End(TM) by setting �� = 0.

� satis�es
�2 = �1l + � 
 � ; (3)

and
g(�(X);�(Y )) = g(X; Y )� �(X)�(Y ) ; (4)

for any smooth vector �elds X; Y on M .
We have a global 2-form 
T on M coming from the contact 1-form �


T =
1

2
d� : (5)
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We get that (D;�jD; d�) gives M a transverse Kähler structure with Kähler form 
T and
transverse metric gT given by

gT (X; Y ) = d�(X;�Y ) ; (6)

for any smooth vector �elds X;Y on M and related to the Sasakian metric g on M by

g = gT + � 
 � : (7)

From the transverse metric gT one can de�ne a connection rT on D which is torsion
free such that rTgT = 0. Moreover, tha Sasaki-Einstein manifold is transverse Kähler-
Einstein [1, 2].
Every (2n+1)-dimensional Sasaki manifold is locally generated by a real-valued func-

tion h of 2n variables, called the Sasaki potential, which is the analogue of the Kähler
potential. One can introduce local coordinates (x; z1; : : : ; zn) on a small neighborhood of
U = I � V of M with I 2 R and V 2 Cn. In the chart U we may write [8]

� =
@

@x
;

� = dx+ i
nX
j=1

(h;jdz
j)� i

nX
�j=1

(h;�jd�z
j) ;

d� = �2i
nX

j;�k=1

h;j�kdz
j ^ d�zk ;

g = � 
 � + gT = � 
 � + 2
nX

j;�k=1

h;j�kdz
jd�zk ;

� = �i
nX
j=1

[(@j � ih;j@x)
 dzj] + i
nX
�j=1

(@�j + ih;�j@x)
 d�zj] ;

(8)

where h;j = @
@zj
h and h;j�k =

@2

@zj@�zk
h. The Sasaki potential h : U ! R does not depend on

x, i.e. @xh = 0.

2.2 Deformations of Sasaki structures and Sasaki-Ricci �ow

In what follows we consider deformations of the Sasaki structures which preserve the Reeb
vector �eld �. For this purpose it is necessary to introduce the basic forms.

De�nition 2 A r-form � on M is called basic if

��� = 0 ; L� � = 0 ; (9)

where L� is the Lie derivative with respect to the vector �eld �.

A basic r-form of type (p; q) ; r = p+ q, has the form

� = �i1���ip�j1����jqdz
i1 ^ � � � ^ dzip ^ d�zj1 ^ � � � ^ d�zjq ; (10)

where �i1���ip�j1����jq does not depend on x. In particular a function ' is basic if and only if
�(') = 0. That is the case of the Sasaki potential h.
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Let ' be a basic function and consider the deformation of the contact form �:

~� = � + dcB' ; (11)

where dcB =
i
2
(�@B � @B) with

@B =
nX
j=1

dzj
@

@zj
; �@B =

nX
j=1

d�zj
@

@�zj
: (12)

This deformation implies that other fundamental tensors are also modi�ed:

~� = �� (� 
 (dcB')) � � ;
~g = d~� � (1l
 ~�) + ~� 
 ~� ;
d~� = d� + dBd

c
B' :

(13)

To introduce the transverse Kähler-Ricci �ow, also called Sasaki-Ricci �ow, we consider
the �ow (�; �(t);�(t); g(t)) with initial data (�; �(0);�(0); g(0)) = (�; �;�; g) generated by
a basic function '(t). The Sasaki-Ricci �ow equation is [5, 9]

@gT

@t
= �RicTg(t) + (2n+ 2)gT (t) ; (14)

where RicT is the transverse Ricci curvature. In the case of the deformation (11) with a
basic function ', in local coordinates, the Sasaki-Ricci �ow can be expressed as a parabolic
Monge-Ampère equation

@'

@t
= ln det(gTj�k + 'j�k)� ln(detgTj�k) + (2n+ 2)' : (15)

3 Sasaki-Ricci �ow on T 1;1 and Y p;q spaces

In what follows we study the Sasaki-Ricci �ow on �ve-dimensional Sasaki-Einstein spaces
T 1;1 and Y p;q. We present some explicit, analytical solutions of the Sasaki-Ricci �ow
equation on these spaces.

3.1 Sasaki-Einstein space T 1;1

The Sasaki-Einstein space T 1;1 is one the most renowned example of homogeneous Sasaki-
Einstein space in �ve dimensions.
The standard metric on this manifold is [10, 11]

ds2 =
1

6
(d�21 + sin

2 �1d�
2
1 + d�22 + sin

2 �2d�
2
2) +

1

9
(d + cos �1d�1 + cos �2d�2)

2 ; (16)

where �i 2 [0; �), �i 2 [0; 2�), i = 1; 2 and  2 [0; 4�). The contact 1-form � is

� =
1

3
(d + cos �1 d�1 + cos �2 d�2) ; (17)

and the Reeb vector �eld has the form

� = 3
@

@ 
: (18)
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Writing metric (16) with contact form (17), we get for the transverse metric

gT =
1

6
(d�21 + sin

2 �1d�
2
1 + d�22 + sin

2 �2d�
2
2) : (19)

As on T 1;1 the transverse structure is locally isomorphic to a product S2�S2, for each
S2 sphere the complex coordinates zj are related to the spherical coordinates as

zj = tan
�j
2
ei�j ; j = 1; 2 : (20)

The Sasaki potential of the transverse metric gT is

h =
1

3

2X
j=1

log(1 + zj�zj)� 1
6

2X
j=1

log(zj�zj) : (21)

In the case of the of the Sasaki-Einstein space T 1;1, a distinguished class of solutions of
the Sasaki-Ricci �ow equation is represented by the following families of basic functions
[12, 13]

'(t) = (e6t � 1)
X
j=1;2

�
cj(ln z

j + ln �zj) + dj(ln
2 zj + ln2 �zj)

�
; (22)

with cj; dj arbitrary constants and the complex coordinates zj are given in (20).
In terms of angular coordinates we have

Proposition 1 The families of contact forms

~� = � +
e6t � 1
2

X
j

�
�cjd�j + dj

�j
sin �j

d�j + dj log tan
�j
2
d�j

�
; (23)

with arbitrary real constants cj; dj ; j = 1; 2, represents deformations of the canonical
contact stacture of T 1;1.

Regarding the deformed metrics and other tensors, they can be evaluated using (13).

3.2 Sasaki-Einstein space Y p;q

The metric of the Sasaki-Einstein space Y p;q is given by the line element [11]

ds2 =
1� y

6
(d�2 + sin2 � d�2) +

1

w(y)q(y)
dy2 +

w(y)q(y)

36
(d� � cos � d�)2

+
1

9
[d + cos � d�+ y(d� � cos � d�)]2 ;

(24)

where

w(y) =
2(a� y2)

1� y
;

q(y) =
a� 3y2 + 2y3

a� y2
;

f(y) =
a� 2y + y2

6(a� y2)
:

(25)
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In the case of the space Y p;q the contact 1-form � is

� =
1

3
d +

1

3
y d� +

1� y

3
cos � d� ; (26)

and the Reeb vector �eld is

K� = 3
@

@ 
: (27)

A detailed analysis of the metric Y p;q showed that it is globally well-de�ned and
there are a countable in�nite number of Sasaki-Einstein manifolds characterized by two
relatively prime positive integers p; q with p < q. If 0 < a < 1 the cubic equation

Q(y) = a� 3y2 + 2y3 = 1� y

2
w(y) q(y) = 0 ; (28)

has three real roots, one negative (y1) and two positive, the smallest being y2. The
coordinate y ranges between the two smaller roots of the cubic equation (28), i.e. y1 �
y � y2.
The angular coordinates span the ranges 0 � � � �, 0 � � � 2�, 0 �  � 2�. In

order to specify the range of the variable �, we note that it is connected with another
variable �

� = �(6�+  ) : (29)

The range of � is
0 � � � 2�` ; (30)

where
` =

q

3q2 � 2p2 + p(4p2 � 3q2)1=2 : (31)

The Reeb Killing vector �eld (27) has compact orbits when ` is a rational number and
the corresponding Y p;q manifold is called quasi-regular. If ` is irrational the orbits of the
Reeb vector �eld do not close densely �lling the orbits of a torus and the Sasaki-Einstein
manifold is said to be irregular.
For what follows it is useful to evaluate the following integrals

f1(y) = exp

�Z
1

H2(y)
dy

�
=

q
(y � y1)

� 1
y1 (y2 � y)

� 1
y2 (y3 � y)

� 1
y3 ; (32)

f2(y) = exp

�Z
y

H2(y)
dy

�
=

1p
Q(y)

; (33)

where

H2(y) =
1

6
w(y) q(y) =

1

3

Q(y)

1� y
: (34)

We introduce a local set of transverse complex coordinates addressing the transverse
Kähler structure of Y p;q:

z1 = tan
�

2
ei� ;

z2 =
sin �

f1(y)
ei� :

(35)

In terms of the complex coordinates (35) the Sasaki-Kähler potential is [13, 14]

h =
1

3

��
1 +

1

z1�z1

�
f2(y)

�
+
1

6
ln(z1�z1) : (36)
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Note that the additional term restores the correct form of the contact form � of the space
Y p;q without altering the transverse part of the metric.
It is interesting to note that also in the case of the Y q;q space, the corresponding class

of solutions of the Sasaki-Ricci �ow equation can be put in the same form as in (22), but,
of course, with the complex coordinates zj given by (35).
In terms of angular coordinates we have the following families of deformations of the

contact structure of Y p;q:

Proposition 2 The families of basic functions

'(t) = (e6t � 1)
"
c1
2
�2 + d1 ln tan

�

2
� c1
2

�
ln tan

�

2

�2
+
c2
2
�2 + d2 ln ��

c2
2
(ln �)2

i
;

(37)

with cj; dj arbitrary constants, stand as solutions of the transverse Kähler-Ricci �ow equa-
tion on the manifold Y p;q.
The corresponding deformed contact structures remain Sasaki-Einstein with the contact

forms

~� = � +
e6t � 1
2

�
c1�

sin �
d� +

�
�d1 + c1 ln tan

�

2

�
d�

+
c2�

�
d�+ (�d2 + c2 ln �)d�

�
:

(38)

4 Hamiltonian holomorphic vector �elds

De�nition 3 [9, 15]
A complex vector �eld X on a Sasaki manifold M , commuting with the Reeb vector

�eld � is called Hamiltonian holomorphic vector �eld if

1. its projection onto the normal bundle �X is transversally holomorphic;

2. the basic function, called Hamiltonian function,

uX = i�(X) ; (39)

satis�es
�@BuX = �

i

2
�(X)d� : (40)

In the foliation chart of (x; z1; : : : zn), the Hamiltonian holomorphic �eld X is written
as

X =

 
�iux + i

X
jl

hj
�l@ux
@�zl

hj

!
� �

X
jl

hj
�l@ux
@�zl

@

@zj
: (41)

Indeed, let us assume that the Hamiltonian vector �eld has the the form

X = A
@

@x
+
X
j

Xj @

@zj
: (42)
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From (39) we get
uX = i A�Xjhj : (43)

which means that
A = �iuX � i

X
j

Xjhj : (44)

On the other hand, from (40) we have

�@BuX = �
X
jl

Xjhj�ld�z
l : (45)

Therefore

Xj = �
X
jl

hj
�l@uX
@�zl

; (46)

where hj�l is the inverse of hj�l.
We note that on any compact manifold, the set of all global holomorphic vector �elds

is a �nite Lie algebra and spans the tangent space at every point. Let us assume that two
holomorphic Hamiltonian vector �elds are written in a local base as in equation (42):

X = A
@

@x
+
X
j

Xj @

@zj
;

Y = B
@

@x
+
X
j

Y j @

@zj
:

(47)

Their commutator is

[X;Y ] =
X
jl

�
Xj @Y

l

@zj
� Y j @X

l

@zj

�
@

@zl
: (48)

The corresponding Hamiltonian function is

u[X;Y ] =
X
jl

�
Xj @Y

l

@zj
� Y j @X

l

@zj

�
hl : (49)

In what follows we shall present two distinguished examples of Hamiltonian vector
�elds.

1. Let us consider a Hamiltonian vector �eld proportional with the Reeb vector �eld:

X = C� = C
@

@x
; (50)

where C is an arbitrary constant. From (43) we get that the corresponding Hamil-
tonian function is:

uX = i�(X) = iC : (51)

We remark that under a deformation of the contact form � with a basic function, as
in equation (11), the hamiltonian function remains unaltered since the basic function
� does not depend on x.
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2. Let us consider that the holomorphic Hamiltonian vector �elds are proportional
with @

@zj
; j = 1; 2:

X = Cj
@

@zj
: (52)

Usinq (43) we get that the Hamiltonian function is

uX = �CJhj ; (53)

with the corresponding derivative hj of the potential h evaluated for the spaces T 1;1

or Y p;q using equations (21), (36) respectively.

Finally we evaluate the deformation of the holomorphic Hamiltonian function under
a deformation (11).

Proposition 3 By the deformation (11), the Hamiltonian function uX is deformed to
uX +X'.

Indeed, taking into account the de�nition (39) of the Hamiltonian function, the per-
turbed Hamiltonian is

~uX = i~�(X) : (54)

Using the class of deformations (22) we get the that following modi�cation of the
Hamiltonian function:

ux �!
X
j=1;2

Cj

(
�hj + (e6t � 1)

� cj
zj
+ 2dj

ln zj

zj

i)
: (55)

Remark 1 By the Cartan formula, the Lie derivative of a symplectic (close) form !

LX! = �Xd! + d(�X!) = d(�X!) : (56)

The Lie derivative of the transverse Kähler form

!T = igTj�ldz
j ^ d�zl = 2ihj�ldzj ^ d�zl ; (57)

is

L!T = d(�X!
T ) = (@ + �@)(�X!

T ) = �2i @uX
@zi@�zl

dzi ^ d�zl : (58)

Therefore the Hamiltonian vector �eld X (41) does not preserve the symplectic form
on local orbit spaces unless the Hamiltonian function uX is a real valued function.

5 Concluding remarks

In this paper, we examine the transverse Kähler structure of the Sasaki manifolds. Using
the Sasaki-Ricci �ow, we perturb the Sasakian structure, keeping the Reeb vector �eld
�xed , but modifying the contact form with basic functions.
Starting with the �ve-dimensional Sasaki-Einstein manifolds T 1;1 and Y p;q, as a seed,

we generate new families of Sasakian structures. We are able to �nd some particular
explicit analytical solutions of the Sasaki-Ricci �ow equation depending on some arbitrary
constants.
It is interesting to analyze the integrable Hamiltonian systems in the setting of contact

geometry and to evaluate the perturbations of the Hamiltonian functions under the Sasaki-
Ricci �ow.
It is worth extending the study of Sasaki-Ricci �ow on higher-dimensional Sakaki-

Einstein spaces [2] as well as other contact spaces with 3-Sasaki structures [16] or mixed
3-structures [17].
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