
On generalized Kulish-Sklyanin models

A. Florian1
, V. S. Gerdjikov2,3,4, A. Streche-Pauna1

1Dept. of Physics, University of Craiova,
St. Alexandru Ioan Cuza 13, 200585 Craiova, Romania E-mail

address: maria.alina2009@yahoo.com, aureliaflorian@yahoo.com

2Sankt-Petersburg State University of Aerospace Instrumentation

St-Petersburg, B.Morskaya, 67A, St-Petersburg, 190000, Russia

3Institute for Advanced Physical Studies 
Sofia Techno Park, Sofia 1111, Bulgaria

4Institute of Mathematics and Informatics

Bulgarian Academy of Sciences,
8 Acad. G. Bonchev str., 1113 Sofia, Bulgaria

E-mail address: vgerdjikov@gmail.com

Abstract

We consider a class of Lax operators L related to BD.I type symmetric spaces.
They allow one to solve special classes of vector NLS and matrix equations known
as generalizations of the Kulish-Sklyanin type model. We construct two types of
soliton solutions applying the dressing Za‘kharov-Shabat method and using projec-
tors of rank 1 and two. We also construct the kernel of the resolvent for L and
prove that the fundamental analytic solutions of L satisfy completeness relation on
a subspace of the vector spaceM. Finally we show that the diagonal of the resol-
vent of L is a generating functional of the hierarchy of Lax representations for the
nonlinear evolution equations related to L.

MSC : 35Q51, 37K40
Keywords: Multicomponent nonlinear Schrödinger equations, Kulish-Sklyanin model,
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1 Introduction

The NLS equation [47] and the vector NLS equations [33] provide an important class of
integrable models with important physical applications [33, 42, 44, 32, 6, 3, 1, 41, 30, 11,
12, 13, 20, 21, 27]. This paper is devoted to the Kulish-Sklyanin (KS) model [32] and its
generalizations. KS model is an integrable 3-component vector NLS model. It belongs
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to a family of vector NLS models related to the symmetric spaces SO(2r + 1)/S(O(2)⊗
O(2r − 1)) of BD.I-type (see [29]) and can be written in the form:

i~qt + ~qxx + 2(~q †, ~q)~q(x, t)− (~q, s0~q)s0~q
∗(x, t) = 0, (1)

where ~q(x, t) is a 2r−1-component vector function vanishing fast enough for |x| → ∞ and
the constant matrix s0 is introduced in eq. (3) below. The Hamiltonian for this family of
Kulish-Sklyanin models (1) is given by

HKS =

∫ ∞
−∞

dx

(
(∂x ~q

†, ∂x~q)− (~q †, ~q)2 +
1

2
(~q †, s0~q

∗)(~qT , s0~q)

)
. (2)

and generalizes the Manakov models related to SU(n + 1)/S(U(n) ⊗ U(1)) [33]. We
have studied many aspects of the KS model, including its applications to spin-1 Bose
Einstein condensates [28, 2, 11, 13, 17, 20, 21], the construction of its soliton solutions
[12, 14, 41, 17, 15], their reductions [34, 31, 23] and interactions [41, 18, 16].

The paper is a natural extension of [38] and is structured as follows. Section 2 contains
preliminaries concerning the symmetric spaces of BD.I type, the structure of the Lax
operators and their reductions. In Section 3 we formulate the generalized KS models
and give a nontrivial example of its reduction. Section 4 contains the spectral properties
of the Lax operators. In the next Section 5 we derive the soliton solutions by applying
the dressing Zakharov-Shabat method. We outline that for the matrix KS models one
may use projectors of rank 2 and higher which allows one to obtain one-soliton solutions
with richer internal structure. In Section 6 we construct the kernel of the resolvent for L
and prove that the fundamental analytic solutions of L satisfy completeness relation on
a subspace of the vector space M. Finally we show that the diagonal of the resolvent
of L is a generating functional of the hierarchy of Lax representations for the nonlinear
evolution equations related to L. We end with some discussion and conclusions.

2 Preliminaries

2.1 On BD.I-type symmetric spaces

For our specific purposes we will choose the simple Lie group G ' SO(2r + 1), its Lie
algebra g ' so(2r + 1). The orthogonality condition that we will use below is

X ∈ so(2r + 1) iff X + S0X
TS−1

0 = 0, S0 =
2r+1∑
s=1

(−1)s+1Es,2r+2−s, (3)

where Ekn is a 2r+ 1× 2r+ 1-matrix with (Ekn)pj = δkpδnj. This choice ensures that the
Cartan subalgebra h consists of diagonal matrices. The element J ∈ h is chosen as:

Jk =
s∑
s=1

Hes =

 11k 0 0
0 0 0
0 0 −11k

 . (4)

We will assume that the reader is familiar with the theory of simple Lie groups and
algebras, see [29]. The system of positive roots of so(2r + 1) is well known [29]:

∆+ = {ei ± ej, 1 ≤ i < j ≤ r, ej, 1 ≤ j ≤ r}.
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Here we also mention that using Jk and the Cartan involution one can introduce a Z2-
grading in g:

C1 = exp(πiJ) =

−11k 0 0
0 112r−2k+1 0
0 0 −11k

 , g = g(0) ⊕ g(1),

g(0) ≡ {X ∈ g(0) : C1XC
−1
1 = X}, g(1) ≡ {Y ∈ g(1) : C1Y C

−1
1 = −Y }.

(5)

The Z2-grading means that

[X1, X2] ∈ g(0), [X1, Y1] ∈ g(1), [Y1, Y2] ∈ g(0), (6)

and provides the local structure of the symmetric space of BD.I-class SO(2r+1)/(SO(2r−
2k+ 1)⊗ SO(2k)). We will see that this construction is directly related to the KS model
for k = 1 and to its generalizations for k > 1. It is well known that the set of positive
roots and the system of simple roots of Br are:

∆+
Br
≡ {ei − ej, ei + ej, 1 ≤ i < j ≤ r; ej, 1 ≤ j ≤ r}

πBr ≡ {αk = ek − ek+1, αr = er, 1 ≤ k ≤ r − 1.}
(7)

Introducing Jk as in (4) we split the system of positive roots into two subsets:

∆+
1 = {β, β(Jk) = 1} ∆+

0 = {β, β(Jk) = 0 mod 2}.. (8)

Below we will consider two cases with k = 1 and k = 3, r = 4:

k = 1, r ≥ 3
∆+

0 = {ei ± ej 2 ≤ i < j ≤ r, ej 2 ≤ i ≤ r},
∆+

1 = {e1 ± ej, 2 ≤ j ≤ r, e1};

k = 3, r = 4
∆+

0 = {e1 ± e2, e1 ± e3, e2 ± e3, e1, e2, e3},
∆+

1 = {e1 ± e4, e2 ± e4, e3 ± e4, e4};

(9)

The potential of the Lax operator is given by:

Q(x, t) =
∑
α∈∆+

1

(qαEα + pαE−α) ∈ g(1). (10)

2.2 The Riemann-Hilbert problem and Lax representations

The solution of the inverse scattering problem (ISP) for generic n× n Lax operators (13)
was strongly influenced by the works of Shabat [36, 37] who introduced the notion of the
fundamental analytic solution (FAS). Then the ISP can be reduced to a Riemann-Hilbert
problem. The next step was done by Zakharov and Shabat [45, 46] who developed the
dressing method for constructing the soliton solutions of the relevant NLEE. Below we
briefly explain their ideas.

We will start by formulating the Riemann-Hilbert problem (RHP) for the KS model:

ξ+(x, t, λ) = ξ−(x, t, λ)G(x, t, λ),

i
∂G

∂x
− λ[J,G(x, t, λ)] = 0, i

∂G

∂t
− λ2[J,G(x, t, λ)] = 0.

(11)
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Given the sewing function G(x, t, λ) find the functions ξ±(x, t, λ) taking values in the
simple Lie group G and analytic for Imλ ≷ 0 such that eq. (11) holds. It is natural to
impose also the normalization condition:

lim
λ→∞

ξ±(x, t, λ) = 11, (12)

which ensures that the RHP has unique regular solution, on Figure 1 we .show the ana-
lyticity regions and the contours that will be used below.

Theorem 1 (Zakharov-Shabat theorem [45, 46]) Let ξ±(x, t, λ) be a solution of the
RHP whose sewing function satisfies the equations in (11). Then ξ±(x, t, λ) is a funda-
mental analytic solution (FAS) of the operators:

L̃ξ± ≡ i
∂ξ±

∂x
+ U(x, t, λ)ξ±(x, t, λ)− λ[J, ξ±(x, t, λ)] = 0,

M̃ξ± ≡ i
∂ξ±

∂x
+ V (x, t, λ)ξ±(x, t, λ)− λ2[J, ξ±(x, t, λ)] = 0,

(13)

where U(x, t) is λ-independent and V (x, t, λ) is linear in λ:

U(x, t) = λJ − (λξJξ̂(x, t, λ))+, V (x, t, λ) = λ2J − (λ2ξJξ̂(x, t, λ))+, (14)

Proof 1 (Idea of the proof.) Consider the functions

g±(x, t, λ) = i
∂ξ±

∂x
(ξ±)−1(x, t, λ) + λξ±(x, t, λ)J(ξ±)−1(x, t, λ),

f±(x, t, λ) = i
∂ξ±

∂t
(ξ±)−1(x, t, λ) + λ2ξ±(x, t, λ)J(ξ±)−1(x, t, λ),

(15)

and using the explicit x and t-dependence of G(x, t, λ) prove that g+(x, t, λ) = g−(x, t, λ)
and f+(x, t, λ) = f−(x, t, λ). Then, using eq. (12) we find that:

lim
λ→∞

g±(x, t, λ) = λJ, lim
λ→∞

f±(x, t, λ) = λ2J, (16)

It remains to apply the great Liouville theorem that ensures that the functions g+(x, t, λ) =
g−(x, t, λ) (resp. f+(x, t, λ) = f−(x, t, λ)) are analytic on the whole complex λ-plane and
therefore are linear (resp. quadratic) in λ. Of course the coefficients of these polynomials
may depend on x and t.

The explicit derivation of the Lax pairs is very effective if ξ±(x, t, λ) satisfy the canon-
ical normalization (12). Indeed, in this case we can use the asymptotic expansion:

ξ±(x, t, λ) = exp (Q(x, t, λ)) , Q(x, t, λ) =
∞∑
s=1

λ−sQs. (17)

Obviously such choice for ξ±(x, t, λ) involves a Z2 reduction, which can be formulated in
several equivalent ways, e.g.:

a) ξ+(x, t,−λ) = (ξ−)−1(x, t, λ), Q1 ∈ g(1), Q2s = 0,

b) ξ+(x, t, λ∗) = (ξ−)†(x, t, λ) iff Qs = −Q†s,
(18)
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In order to derive the relevant NLEE in terms of Q1 we will use the formulae:

ξ±Jξ̂±(x, t, λ) = J +
∞∑
p=1

1

p!
ad p
QJ.

∂ξ±

∂x
ξ̂±(x, t, λ) =

∂Q
∂x

+
∞∑
p=1

1

(p+ 1)!
ad p
Q
∂Q
∂x

.

(19)

which allow us to express the Lax pair coefficients Us(x, t) and Vs(x, t) in terms of Q1 and
its x-derivatives. In all our considerations we will need only the first few terms of these
expansions; for more details see [23].

2.3 The reduction group

Following Mikhailov [34] we will also impose additional reductions using the famous re-
duction group GR.

GR is a finite group which preserves the Lax representation (13), i.e. it ensures that
the reduction constraints are automatically compatible with the evolution. GR must have
two realizations: i) GR ⊂ Autg and ii) GR ⊂ Conf C, i.e. as conformal mappings of the
complex λ-plane. To each gk ∈ GR we relate a reduction condition for the Lax pair as
follows:

Ck(L(Γk(λ))) = ηkL(λ), Ck(M(Γk(λ))) = ηkM(λ), (20)

where Ck ∈ Aut g and Γk(λ) ∈ Conf C are the images of gk and ηk = 1 or −1 depending
on the choice of Ck. Since GR is a finite group then for each gk there exist an integer Nk

such that gNk
k = 11. More specifically, below we will consider Z2-reductions of the form:

a) B1U
†(κ1(λ))B−1

1 = U(λ), B1(V †(κ1(λ))B−1
1 = V (λ), (21)

b) B2U
T (κ2(λ))B−1

2 = −U(λ), B2(V T (κ2(λ))B−1
2 = −V (λ), (22)

c) B3U
∗(κ1(λ))B−1

3 = −U(λ), B3(V ∗(κ1(λ))B−1
3 = −V (λ), (23)

d) B4U(κ2(λ))B−1
4 = U(λ), B4(V (κ2(λ))B−1

4 = V (λ), (24)

where the automorphisms Bk must of finite order. In the cases (21), (22) and (23) Bk

must be of even order, which in general could be bigger than 2.
Beside the Z2-reductions we will impose additional Z-reductions with p > 2:

AU(x, t, κ(λ))A−1 = U(x, t, λ), AV ∗(x, t, κ(λ))A−1 = V (x, t, λ),

A(ξ+)(x, t, κ(λ))A−1 = (ξ+)−1(x, t, λ), κ(λ) = λω, ω = e2πi/p,
(25)

where A is an automorphism of g of order p. Typically we will use a realization of A as
an element of the Weyl group of g.

3 Generalized Kulish-Sklyanin models

The sewing function of our RHP problem depends on two additional parameters x and t in
a special way, which makes it convenient to analyze and solve special classes of nonlinear
evolution equations (NLEE) in two-dimensional space-time, known as soliton equations.
Here we also assume that the relevant symmetric space is SO(2r+ 1)/(SO(2r− 2k+ 1)×
SO(2k)) with k ≥ 1. We will omit the index k in Jk when it is clear from the context.
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λ
γ+

γ−

+
Ω+

Ω−
−

Figure 1: The continuous spectrum of a L(λ) in thick blue, the analyticity regions Ω±
and the contours γ±.

3.1 Lax representations

In the simplest case s = 1 ~q and ~p are vectors and the Lax pair is:

U (1)(x, t, λ) = U1(x, t)− λJ, V (1)(x, t, λ) = iQ1,x + V2(x, t) + λV1(x, t)− λ2J,
(26)

where

U1(x, t) = [J,Q1(x, t)] = Q(x, t), V1(x, t) = Q(x, t) V2(x, t) =
1

2
adQ1Q(x, t),

(27)

Q1(x, t) =

 0 ~qT 0
−~p 0 s0~q
0 −~pT s0 0

 , V2(x, t) =

 (~q, ~p) 0 0
0 s0~q~p

T s0 − ~p~qT 0
0 0 −(~q, ~p)

 . (28)

As a result we get that this Lax pair leads to the well known KS model whose integrability
has been known since 1981 [32]:

i
∂~q

∂t
+
∂2~q

∂x2
+ 2(~q †, ~q)~q − (~qT s0~q)s0~q

∗ = 0, s0 =
2r−1∑
k=1

(−1)kEk,2r−k. (29)

where now Ekn is a 2r − 1 × 2r − 1-matrix with (Ekn)pj = δkpδnj. For applications of
this model to Bose-Einstein condensates and detailed analysis for the inverse spectral
transform see [21, 12, 9, 10, 13].

For s > 1 the compatibility condition becomes:

U(x, t, λ) = Q(x, t)− λJ, V (1)(x, t, λ) = iQ1,x + V2(x, t) + λQ(x, t)− λ2J, (30)

where

Q(x, t) =

 0 q 0
p 0 q̃
0 p̃ 0

 , V2(x, t) =

−qp 0 0
0 pq − q̃p̃ 0
0 0 q̃p̃

 . (31)
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The matrix S0 from orthogonality condition (3) in this case equals

 0 0 s1

0 s2 0
s−1

1 0 0

. The

blocks sk, k = 1, 2 are easily determined from (3) and satisfy s2
2 = 11, s−1

2 = s2. Then
q̃ = −s2q

Ts1 and p̃ = −s2p
Ts−1

1 . As a result we get the generic Kulish-Sklyanin model
[32]:

i
∂q

∂t
+
∂2q

∂x2
+ 2qpq − qq̃p̃ = 0, i

∂p

∂t
− ∂2p

∂x2
− 2pqp + q̃p̃p = 0, (32)

After the additional reduction p = q† we get:

i
∂q

∂t
+
∂2q

∂x2
+ 2qq†q − qq̃q̃† = 0. (33)

3.2 Reduction of KS models – an example

Here we derive KS type models related to generic BD.I symmetric spaces SO(2r +
1)/(SO(2k) × SO(2r − 2k + 1)). These are rather complicated systems of equations for
k(2r−2k+1) functions of x and t. In this subsection we consider special case with r = 4,
k = 3 and apply to it a special Z6-reduction. The result is a new type of 2-component
NLS.

Consider SO(9)/(SO(6)× SO(3)). Then the subset of positive roots is split into

∆+
0 ≡ {e1 ± e2, e2 ± e3, e1 ± e3, e4}, ∆+

1 ≡ {e1 ± e4, e2 ± e4, e3 ± e4, e1, e2, e3}, (34)

The reduction is given by the Weyl-group element w4 = Se1−e2Se2−e3Se4 , i.e. w6
4 = Id .

Obviously this Weyl group element leaves invariant ∆0 and ∆1 and the roots ∆1 are split
into four orbits:

O±1 : ± e1 − e4 → ±e2 + e4 → ±e3 − e4 → ±e1 + e4 → ±e2 − e4 → ±e3 + e4,

O3 : e1 → e2 → e3, O4 : − e1 → −e2 → −e3.
(35)

After applying another Z2-reductions, i.e. Q = Q† one may expect a 2-component NLS.
Realization of the automorphism w4 is as follows w4(X) = A1XA

−1
1 :

A1 =

a1 0 0
0 a2 0
0 0 a3

 , a1 =

 0 1 0
0 0 1
−1 0 0

 , a2 =

 0 0 1
0 −1 0
1 0 0

 , a3 =

 0 0 −1
−1 0 0
0 −1 0

 .

(36)

The orthogonality condition is given by (3) with S0 =

 0 0 s1

0 −s1 0
s1 0 0

, s1 =

 0 0 1
0 −1 0
1 0 0


The corresponding potential of the Lax operator is as in (28) with

q(x, t) =

 q1 q2 −q1

−q1 −q2 q1

q1 q2 −q1

 , p(x, t) =

 p1 −p1 p1

p2 −p2 p2

−p1 p1 −p1

 . (37)

The condition Q = Q† reduces to p1 = q∗1 and p2 = q∗2. Then the NLEE becomes

i
∂q1

∂t
+
∂2q1

∂x2
+ 6(|q1|2 + |q2|2)q1(x, t)− 3q2

2q
∗
1(x, t) = 0,

i
∂q2

∂t
+
∂2q2

∂x2
+ 3(4|q1|2 + |q2|2)q2(x, t)− 6q2

1q
∗
2(x, t) = 0,

(38)
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The corresponding Hamiltonian is:

H = 2

∣∣∣∣∂q1

∂x

∣∣∣∣2 +

∣∣∣∣∂q2

∂x

∣∣∣∣2 − 3

2

(
2|q1|2 + |q2|2

)2
+ 3 (q1q

∗
2 − q∗1q2)2 . (39)

The change of variables: v1 =
√

6q1, v2 =
√

3q2 leads to:

i
∂v1

∂t
+
∂2v1

∂x2
+ (|v1|2 + 2|v2|2)v1(x, t)− v2

2v
∗
1(x, t) = 0,

i
∂v2

∂t
+
∂2v2

∂x2
+ (2|v1|2 + |v2|2)v2(x, t)− v2

1v
∗
2(x, t) = 0,

q(x, t) =
1√
6

 v1

√
2v2 −v1

−v1 −
√

2v2 v1

v1

√
2v2 −v1

 , p = q†.

(40)

It is easy to check that assuming canonical Poisson brackets {vk(x), v∗j (y)} = δkjδ(x− y)
for vj, the canonical Hamiltonian equations of motion:

i
∂vj
∂t

=
δH ′

δv∗j
, j = 1, 2, (41)

with

H ′ =

∣∣∣∣∂v1

∂x

∣∣∣∣2 +

∣∣∣∣∂v2

∂x

∣∣∣∣2 − 1

2

(
|v1|2 + |v2|2

)2
+

1

2
(v1v

∗
2 − v∗1v2)2 , (42)

coincides with (40).

4 Spectral properties of the Lax operators

4.1 The case SO(2r + 1)/(SO(2r − 1)× SO(2))

Here we will outline the methods of solving the direct and the inverse scattering problem
(ISP) for L. We will use the Jost solutions which are defined by, see [10, 11, 12, 13] and
the references therein

lim
x→−∞

φ(x, t, λ)eiλJx = 11, lim
x→∞

ψ(x, t, λ)eiλJx = 11 (43)

and the scattering matrix T (λ, t) ≡ ψ−1φ(x, t, λ). Due to the special choice of J and to the
fact that the Jost solutions and the scattering matrix take values in the group SO(2r+1)
we can use the following block-matrix structure of T (λ, t) and its inverse T̂ (λ, t):

T (λ, t) =

m+
1 − ~B−T c−1

~b+ T22 −s0
~b−

c+
1

~B+T s0 m−1

 , T̂ (λ, t) =

 m−1
~b−T c−1

− ~B+ T̂22 s0
~B−

c+
1 −~b+T s0 m+

1

 , (44)

where ~b±(λ, t) and ~B±(λ, t) are 2r−1-component vectors, T22(λ) and T̂22(λ) are 2r−1×
2r − 1 blocks and m±1 (λ), c±1 (λ) are scalar functions satisfying c±1 = 1/2(~b± · s0

~b±)/m∓1 .
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Important tools for reducing the ISP to a Riemann-Hilbert problem (RHP) are the
fundamental analytic solution (FAS) χ±(x, t, λ). Their construction is based on the gen-
eralized Gauss decomposition of T (λ, t)

χ±(x, t, λ) = φ(x, t, λ)S±J (t, λ) = ψ(x, t, λ)T∓J (t, λ)D±J (λ). (45)

Here S±J and T±J are upper- and lower-block-triangular matrices, while D±J (λ) are block-
diagonal matrices with the same block structure as T (λ, t) above. Skipping the details
we give the explicit expressions of the Gauss factors in terms of the matrix elements of
T (λ, t)

S±J (t, λ) = exp

± ∑
β∈∆+

1

τ±β (λ, t)E±β

 , T±J (t, λ) = exp

∓ ∑
β∈∆+

1

ρ±β (λ, t)E±β

 ,

D+
J =

m+
1 0 0

0 m+
2 0

0 0 1/m+
1

 , D−J =

 1/m−1 0 0
0 m−2 0
0 0 m−1

 ,

(46)

where ~b+ = (T1,2, . . . , T1,2r)
T

~τ+(λ, t) =
~b−

m+
1

, ~τ−(λ, t) =
~B+

m−1
, m+

2 = T 22 +
~b+~b−,T

2m+
1

= T̂ 22 +
s0
~b−~b+,T s0

2m+
1

,

~ρ+(λ, t) =
~b+

m+
1

, ~ρ−(λ, t) =
~b−

m−1
, m−

2 = T̂ 22 +
~B+ ~B−,T

2m−1
= T̂ 22 +

s0
~B− ~B+,T s0

2m−1
, .

(47)
If Q(x, t) evolves according to (29) then the scattering matrix and its elements satisfy

the following linear evolution equations

i
d ~B±

dt
± λ2 ~B±(t, λ) = 0, i

d~b±

dt
± λ2~b±(t, λ) = 0, i

dm±1
dt

= 0, i
dm±2
dt

= 0, (48)

so the block-diagonal matrices D±(λ) are generating functionals of the integrals of motion.
The fact that all (2r − 1)2 matrix elements of m±2 (λ) for λ ∈ C± generate integrals of
motion reflects the super-integrability of the model and is due to the degeneracy of the
dispersion law determined by λ2J . We remind that D±J (λ) allow analytic extension for
λ ∈ C± and that their zeroes and poles determine the discrete eigenvalues of L. We will
use also another set of FAS:

χ′,±(x, t, λ) = χ±(x, t, λ)D̂±J (λ). (49)

The FAS for real λ are linearly related

χ+(x, t, λ) = χ−(x, t, λ)GJ(λ, t), G0,J(λ, t) = S−J (λ, t)S+
J (λ, t),

χ′,+(x, t, λ) = χ′,−(x, t, λ)G′J(λ, t), G′0,J(λ, t) = T+
J (λ, t)T−J (λ, t).

(50)

One can rewrite eq. (50) in an equivalent form for the FAS ξ±(x, t, λ) = χ±(x, t, λ)eiλJx

and ξ′,±(x, t, λ) = χ′,±(x, t, λ)eiλJx which satisfy also the relation

lim
λ→∞

ξ±(x, t, λ) = 11, lim
λ→∞

ξ′,±(x, t, λ) = 11. (51)
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Then for Imλ = 0 these FAS satisfy:

ξ+(x, t, λ) = ξ−(x, t, λ)GJ(x, λ, t), GJ(x, λ, t) = e−iλJxG0,J(λ, t)eiλJx,

ξ′,+(x, t, λ) = ξ′,−(x, t, λ)G′J(x, λ, t), G′J(x, λ, t) = e−iλJxG′0,J(λ, t)eiλJx.
(52)

Obviously the sewing function Gj(x, λ, t) is uniquely determined by the Gauss factors of
T (λ, t). In view of eq. (46) we arrive to the following

Lemma 2 Let the potential Q(x, t) be such that the Lax operator L has no discrete eigen-
values. Then as minimal set of scattering data which determines uniquely the scattering
matrix T (λ, t) and the corresponding potential Q(x, t) one can consider either one of the
sets Ti, i = 1, 2

T1 ≡ {~ρ+(λ, t), ~ρ−(λ, t), λ ∈ R}, T2 ≡ {~τ+(λ, t), ~τ−(λ, t), λ ∈ R}. (53)

Proof 2 i) From the fact that T (λ, t) ∈ SO(2r + 1) one can derive that

1

m+
1 m

−
1

= 1 + ( ~ρ+, ~ρ−) +
1

4
( ~ρ+, s0

~ρ+)( ~ρ−, s0
~ρ−) (54)

for λ ∈ R. Using the analyticity properties of m±1 we can recover them from eq. (54)

using Cauchy-Plemelji formulae. Given Ti and m±1 one easily recovers ~b±(λ) and c±1 (λ).
In order to recover m±2 one again uses their analyticity properties, only now the problem
reduces to a RHP for functions on SO(2r + 1). The details will be presented elsewhere.

ii) Given Ti one uniquely recovers the sewing function GJ(x, t, λ). In order to recover
the corresponding potential Q(x, t) one can use the fact that the RHP (52) with canonical
normalization has unique regular solution χ±(x, t, λ). Given χ±(x, t, λ) we recovers Q(x, t)
via:

Q(x, t) = lim
λ→∞

λ
(
J − χ±Jχ̂±(x, t, λ)

)
= lim

λ→∞
λ
(
J − χ′,±Jχ̂′,±(x, t, λ)

)
.. (55)

which is well known.

We impose also the standard reduction, namely assume that Q(x, t) = Q†(x, t), or in
components pk = q∗k. As a consequence we have ~ρ−(λ, t) = ~ρ+,∗(λ, t) and ~τ−(λ, t) =
~τ+,∗(λ, t).

4.2 The case SO(9)/(SO(3)× SO(6))

Effects on the scattering data:

• T (λ) belongs to SO(9), therefore T−1 = S0T
T (λ)S0;

• T (λ) is unitary matrix T †(λ∗) = T−1(λ);

• T (λ) is invariant with respect to the automorphism A1

We parametrize T (t, λ) using the same block-matrix structure as for Q(x, t) and J (31):

T (λ) =

m+ −b− c−

b+ T 22 −B−
c+ B+ m−

 , T−1(λ) =

 s1m
−,Ts1 s1B

−,Ts1 s1c
−,Ts1

−s1B
+,Ts1 s1T

T
22s1 s1b

−,Ts1

s1c
+,Ts1 −s1b

+,Ts1 s1m
−,Ts1

 ,

(56)
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T−1 = S0T
T (λ)S0, T †(λ∗) = T−1(λ), T (λ) = A1T (λ)A−1

1 , (57)

i.e.
m+,†(λ∗) = s1m

−,T (λ)s1, c+,†(λ∗) = s1c
−,T (λ)s1,

b±,†(λ∗) = s1B
∓,T (λ)s1, B±,†(λ∗) = s1b

∓,T (λ)s1.
(58)

and
m+ = a1m

+a−1
1 , b− = a1b

−a−1
2 , c− = a1c

−a−1
3 ,

b+ = a2b
+a−1

1 , T 22 = a2T 22a
−1
2 , B− = a2B

−a−1
3 ,

c+ = a3c
+a−1

1 , B+ = a3B
+a−1

2 , m− = a3m
−a−1

3 .

(59)

The spectral properties of these operators are analyzed similarly as above. The sub-
stantial difference is that now the continuous spectrum of L fills up the real axis and
has multiplicity 6. It is not difficult to generalize the above lemma 2 also for this more
general Lax operator. The substantial difference here is that now m± are matrix-valued
analytic functions. Therefore, instead of eq. (54) we will have to use the relevant RHP
for recovering them from the minimal sets of scattering data. These details come out of
the scope of the present paper.

5 Construction of the soliton solutions

The involution:

U †(x, t, κ1λ
∗) = U(x, t, λ), Q(x, t) = Q†(x, t), κ1 = 1, (60)

means that the Jost solutions must satisfy:

φ†(x, t, λ∗) = φ−1(x, t, λ), ψ†(x, t, λ∗) = ψ−1(x, t, λ), (61)

so for the scattering matrix we have

T †(t, λ∗) = T−1(t, λ), (62)

and for the Gauss factors:

S−†(λ∗) = Ŝ+(λ), T−†(λ∗) = T̂−(λ), D−†(λ∗) = D̂+(λ), (63)

As a consequence, if λ+
1 ∈ C+ is a zero of D+(λ) and an eigenvalue of L then (λ+

1 )∗ ∈ C−
is a zero of D−(λ) and is also an eigenvalue of L.

There are several versions (realizations) of the Zakharov-Shabat dressing method [45,
46, 43, 15, 20, 21]. Here we will use the one of them that is most convenient to our
purposes.

Assume we know the solution ξ±0 (x, t, λ) of the RHP which have simple poles at the
points λ±j ∈ C±, j = 1, . . . , k−1. Let us denote the corresponding FAS of L0 by χ±0 (x, t, λ).

Next we apply the dressing method to construct the new FAS ξ±(x, t, λ) which are
related to ξ±0 (x, t, λ) by the dressing factor:

ξ±(x, t, λ) = u(x, t, λ)ξ±0 (x, t, λ), λ ∈ R, (64)

which has simple poles also for λ = λ±k 6= λ±j . Obviously u(x, t, λ) ∈ SO(2r + 1). This
can be ensured if we choose:

u(x, t, λ) = exp(ln(ck(λ)(Pk − P̄k), ck(λ) =
λ− λ+

k

λ− λ−k
, P̄k = S0P

T
k S0. (65)
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It is easy to check that Pk − P̄k ∈ so(2r + 1), which means that with the choice in (65)
u(x, t, λ) ∈ SO(2r+ 1) for any choices of Pk. We choose Pk to be a rank 1 projector such
that PkP̄k = 0. Such choice allows us to evaluate the right hand side of (65) with the
result:

u(x, t, λ) = 11 + (c1(λ)− 1)Pk +

(
1

c1(λ)
− 1

)
P̄k,

u−1(x, t, λ) = 11 +

(
1

c1(λ)
− 1

)
Pk + (c1(λ)− 1)P̄k.

(66)

Following Zakharov-Shabat ideas we request that if χ±0 (x, t, λ) is a FAS of L0 with poten-
tial Q0(x, t), i.e.

L0χ
±
0 (x, t, λ) ≡ i

∂χ0

∂x
+ (Q0(x, t)− λJ)χ±0 (x, t, λ) = 0, (67)

then ξ±(x, t, λ) will be a FAS of the operator L with potential Q(x, t):

Lχ±(x, t, λ) ≡ i
∂χ

∂x
+ (Q(x, t)− λJ)χ±(x, t, λ) = 0. (68)

Thus the dressing factor u(x, t, λ) and its inverse must satisfy the equations

i
∂u

∂x
+ (Q(x, t)− λJ)u(x, t, λ)− u(x, t, λ)(Q0(x, t)− λJ) = 0,

i
∂û

∂x
+ (Q0(x, t)− λJ)û(x, t, λ)− û(x, t, λ)(Q(x, t)− λJ) = 0

(69)

identically with respect to λ. Since u(x, t, λ) and û(x, t, λ) have poles at λ = λ±k , then the
residues of the left hand sides of the eqs. (69) must vanish. This leads to the following
equations for the projectors Pk and P̄k

i
∂Pk
∂x

+ (Q(x, t)− λ−k J)Pk(x, t)− Pk(x, t)(Q0(x, t)− λ−k J) = 0,

i
∂Pk
∂x

+ (Q0(x, t)− λ+
k J)Pk(x, t)− Pk(x, t)(Q(x, t)− λ+

k J) = 0,

(70)

and similar equations for P̄k = S0P
T
k S0. Taking the limit of eqs. (69) for λ→∞ we find

the new potential Q(x, t)

Q(x, t)−Q0(x, t) = −(λ+
k − λ

−
k )[J, Pk − P̄k]. (71)

Skipping the details (see [10, 15, 12]) we obtain:

Pk =
|nk〉〈mk|
〈mk|nk〉

, |nk〉 = χ+
0 (x, t, λ+

k )|nk0〉, 〈mk| = 〈mk0|χ̂−0 (x, t, λ−k ). (72)

For Q0 = 0 we have |nk〉 = e(zk−iφk)J |nk0〉 where

λ±k = µk ± iνk, zk = νk(x+ 2µkt), φk = µkx+ (µ2
k − ν2

k)t

, and |nk0〉 and 〈mk0| are constant polarization vector satisfying 〈mk0|S0|nk0〉 = 0.
The soliton solutions of the generalized KS model are parametrized by the eigenvalues

λ±k and by the polarization vectors |nk0〉 and 〈mk0|, which due to the typical reductions are
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related by 〈mk0| = |nk0〉†. The vectors are constrained by the condition 〈mk0|S0|nk0〉 = 0.
If we introduce

|nk0〉 = (nk0,1, ~νk0, n̄k0,1)T , 〈mk0|S0|nk0〉 = 2nk0,1n̄k0,1 − ~νTk0s0~νk0 = 0. (73)

For the special case when χ±0 (x, t, λ) is the regular solution of the RHP, i.e. χ±0 (x, t, λ) =
exp(−i(λx+λ2t)J) and for r = 3 we have the 3-component KS model and the one-soliton
solution ~q1s takes the form:

~q1s(x, t; z1, φ1) = −i
√

2ν1e
−i(φ1) (e−z1s0|~ν01〉+ ez1|~ν∗01〉)
cosh(2z1) + (~ν†01, ~ν01)

. (74)

We will need also the limits of the dressing factors for x→ ±∞. The results is:

Lemma 3 ([15]) The asymptotics of Ps(x, t) for zs → ±∞ are given by:

lim
zs→∞

Pk(x, t) =

 0 0 0
0 0 0
0 0 1

 , lim
zs→−∞

Pk(x, t) =

 1 0 0
0 0 0
0 0 0

 , (75)

Therefore the asymptotics of us(x, t, λ) for zs → ±∞ take the form:

lim
x→∞

u(x, t, λ) = eJ ln ck(λ) = diag (ck(λ), 11, c−1
k (λ)),

lim
x→−∞

u(x, t, λ) = e−J ln ck(λ) = diag (c−1
k (λ), 11, ck(λ)).

(76)

Proof 3 The proof of the lemma is given in [15].

Note that u±k (λ) are x and t independent, and are given by diagonal matrices.
We end this section noting that for the generalized KS models, i.e. for s > 1 we

may construct one-soliton solutions using projectors of rank higher than 1. For example
generic projector of rank 2 has the form:

Pk =
2∑

a,b=1

|na〉M̂ab〈mb|, Mbc = 〈mb|nc〉, M̂ ≡M−1, (77)

where
|na〉 = χ+

0 (x, t, λ+
k )|na0〉, 〈mb| = 〈mb0|χ̂−0 (x, t, λ−k ), a, b = 1, 2. (78)

A convenient parametrization of the vectors is:

|na0〉 =

 |n1
a0〉
|n2
a0〉
|n3
a0〉

 , 〈mb0| =
(
〈m1

b0|, 〈m2
b0|, 〈m3

b0|
)
, a, b = 1, 2;

〈mb0|S0|na0〉 = 0, i.e. 〈m1
b0|s0|n3

a0〉 − 〈m2
b0|s0|n2

a0〉+ 〈m3
b0|s0|n1

a0〉 = 0.

(79)

Then

M =

(
〈m1|n1〉 〈m1|n2〉
〈m2|n1〉 〈m2|n2〉

)
, M−1 =

1

detM

(
〈m2|n2〉 −〈m1|n2〉
−〈m2|n1〉 〈m1|n1〉

)
,

detM = 〈m1|n1〉〈m2|n2〉 − 〈m1|n2〉〈m2|n1〉,
(80)
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where

〈ma|nb〉 = η0;ab cosh(2zk + ξ0;ab) + κ0;ab,

η0;ab =
√
〈m1

0a|n1
0b〉〈m3

0a|n3
0b〉, ξ0;ab =

1

2
ln
〈m1

0a|n1
0b〉

〈m3
0a|n3

0b〉
, κ0;ab = 〈m2

0a|n2
0b〉.

(81)

The corresponding reflectionless potential will take the form:

Q(x, t)−Q0(x, t) = −(λ+
k − λ

−
k )

[
J,

(−1)a+bM3−b,3−a

detM
(|na〉〈mb| − S0|mb〉〈na|S0)

]
. (82)

Obviously the explicit expression in the form of rational functions of hyper-trigonometric
functions will be much more complicated now. And this is just the one-soliton solution,
whose internal structure is described by a rank 2 projector. If we need to calculate the
soliton solution of the reduced system we will have to impose on the polarization vectors
additional constraints which will make them compatible with imposed reduction.

6 The resolvent of the Lax operators

6.1 The completeness relation of FAS of L

Let us consider first the kernel of the resolvent of L in eq. (26) by:

R±(x, y, λ) =
1

i
χ±(x, λ)Θ±(x− y)χ̂±(y, λ),

Θ+(x− y) = diag (−θ(y − x), θ(x− y)11, θ(x− y)) = −π+ + θ(x− y)11,

Θ−(x− y) = diag (θ(x− y), θ(x− y)11,−θ(y − x)) = −π− + θ(x− y)11,

(83)

where π+ = E11 and π− = E2r+1,2r+1. Then

R+(x, y, λ) − R−(x, y, λ) = −1

i

(
χ+(x, λ)π+χ̂

+(y, λ)− χ−(x, λ)π−χ̂
−(y, λ)

)
. (84)

Lemma 4 The kernel of the resolvent satisfies:

R+(x, y, λ)−R−(x, y, λ) = −1

i

(
χ+(x, λ)π+χ̂

+(y, λ)− χ−(x, λ)π−χ̂
−(y, λ)

)
; (85)

In addition:

Res
λ=λ+k

χ+(x, λ)χ̂+(y, λ) = 0, Res
λ=λ−k

χ−(x, λ)χ̂−(y, λ) = 0. (86)

Proof 4 Eq. (85) is a consequence of the relations between FAS and the Jost solutions:

χ±(x, λ) = φ(x, t, λ)S±, λ ∈ R. (87)

Indeed, from (83) we get:

R+(x, y, λ) = −χ+(x, λ)π+χ̂
+(y, λ) + θ(x− y)χ+(x, λ)χ̂+(y, λ)

= −χ+(x, λ)π+χ̂
+(y, λ) + θ(x− y)φ(x, λ)φ̂(y, λ),

R−(x, y, λ) = χ−(x, λ)π−χ̂
−(y, λ)− θ(x− y)χ−(x, λ)χ̂−(y, λ)

= χ−(x, λ)π−χ̂
−(y, λ)− θ(x− y)φ(x, λ)φ̂(y, λ),

(88)
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which completes the proof of eq. (85). In order to prove eq. (86) we first assume that the
potential Q(x) is on finite support: Q(x) = 0 for |x| > L0 > 0. It is well known, that in
this case the Jost solutions are entire functions of λ. Therefore the scattering matrix T (λ)
and also the FAS will be meromorphic functions of λ. In particular the relations (87) hold
true for all complex λ. Of course the FAS χ±(x, λ) and their inverse χ̂−(y, λ) develop
first order pole singularities for λ → λ±k . As a result one may expect that kernel of the
resolvent R±(x, y, λ) may develop second order pole singularities at λ→ λ±k . However,

Res
λ=λ±k

χ±(x, λ)χ̂±(y, λ) = Res
λ=λ±k

φ(x, λ)φ̂(y, λ) = 0. (89)

Indeed, since the Jost solutions are entire functions of λ then they can have no singularities
for any λ. The proof for generic potentials is concluded by taking the limit L0 →∞.

Let us now consider the more resolvent of the more general 9× 9 Lax operator given
by eq. (30). It again has the form as in (83) but now

π+ =
3∑
s=1

Ess, π− =
9∑
s=7

Ess, (90)

Theorem 5 Let the potential Q(x, t) be such that the FAS χ±(x, t, λ) have finite number
of pole singularities at the points λ±k ∈ C±, k = 1, . . . , N respectively. Then χ±(x, t, λ)
satisfy the following completeness relation:

Π0δ(x− y) =
1

2πi

∫ ∞
−∞

dλ
(
χ+(x, λ)π+χ̂

+(y, λ)− χ−(x, λ)π−χ̂
−(y, λ)

)
−

N∑
k=1

(R+
k (x, y) +R−k (x, y)), (91)

where Π0 = π+ − π− and

R+
k (x, y) = χ+

k (x)π+
ˆ̇χ+(y) + χ̇+

k (x)π+χ̂
+(y),

R−k (x, y) = χ+
k (x)π− ˆ̇χ+(y) + χ̇+

k (x)π−χ̂
+(y),

(92)

Proof 5 Let us apply the contour integration method to the integral:

J (x, y) =
1

2πi

∮
C+

dλ R∗(x, y, λ)− 1

2πi

∮
C−

dλ R−(x, y, λ), (93)

where the contours C± are shown on Figure 1. The integral J (x, y) can be evaluated by
two methods: i) using the Cauchy residue theorem and ii) directly integrating along the
contours. Equating the two answers we get:

J (x, y) =
N∑
k=1

(
Res
λ=λ+k

R+(x, y, λ) + Res
λ=λ−k

R−(x, y, λ)

)

=
1

2πi

∫ ∞
−∞

(
R+(x, y, λ)−R−(x, y, λ)

)
− iΠ0δ(x− y).

(94)

The term Π0δ(x− y) comes from the integrals over the infinite semi-arcs C±,∞.
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Figure 2: The contours of integrations C± = R ∪ C±,∞.

6.2 Generating the M-operators of NLEE

Below we will show that the diagonal of the resolvent:

R(x, t, λ) = −iR(x, y, t, λ)|x=y , (95)

generates the hierarchy of M -operators for the hierarchy of NLEE related to L. This
result generalizes the one of Gel’fand and Dickey for the KdV hierarchy.

First we note that the limit y → x in the kernel of the resolvent is singular. Doing
it we have to regularize R(x, y, t, λ). Skipping the details we use a regularization which
comes to:

R(x, t, λ) = −χ+(x, t, λ)Jχ̂(x, t, λ). (96)

One of the important properties of the diagonals of the resolvent (95) is that they
generate the hierarchy of M operators in the Lax representations. Indeed, it is easy to
see that R(x, t, λ) satisfy the equation:

i
∂R(x, t, λ)

∂x
+ [Q(x, t)− λJ,R(x, t, λ)] = 0. (97)

Since χν(x, t, λ) are analytic in λ then also R(x, t, λ) will be analytic, and as a consequence
we can use their asymptotic expansions over the inverse powers of λ:

R(x, t, λ) = −J +
∞∑
s=1

λ−sRs(x, t) . (98)

From (98) we find for s from 1 to infinity

i
∂Rs

∂x
+ [Q,Rs] = [J,Rs+1] (99)

while for s = 0
[Q, J ] + [J,R1] = 0, (100)

which coincide with the recursion relations for the M operator. Solving them we get

R1 = Rf
1 = Q(x, t), (101)
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and

i
∂Rs

∂x
+ [Q,Rs] = [J,Rs+1]. (102)

Note that the operator ad J that appeared in the right hand side of (102) has a kernel.
Therefore we do the splitting into block-diagonal and block-off-diagonal parts:

Rs = Rf
s +Rd

s , (103)

For the block-diagonal part we obtain:

i
∂Rd

s

∂x
+ [Q,Rf

s] = 0, i.e. Rd
s = i∂−1

x [Q,Rf
s]. (104)

For the block-off-diagonal parts of the eq. (102) we get:

Rf
s+1 = ΛRf

s, ΛZ = ad −1
J

(
i
∂Z

∂x
+ i
[
Q, ∂−1

x [Q,Rf
s]
])

. (105)

where Λ is the recursion operator above.
Thus the M operators for NLEE with dispersion law f(λ) = λpJ will have a potential:

V (x, t, λ)− λpJ = (R(x, t, λ))+ = −λpJ +

p∑
s=1

λp−sRs. (106)

6.3 Generating the integrals of motion of NLEE

As for the conservation laws we make use of the third type of Wronskian relations, see
[43, 5, 8, 9]. Here we treat only the main series of integrals which have local densities.
The result is: 〈

J, D̂+∂D
+

∂λ

〉
= −i

∫ ∞
−∞

dx (〈J,R(x, λ)〉 − 〈J, J〉) . (107)

The left hand side of (107) is analytic function of λ and can be expanded over the inverse
powers of λ: 〈

J, D̂+∂D
+

∂λ

〉
=
∞∑
s=1

d+
s λ
−s−1. (108)

In order to express the integrals of motion in terms of the recursion operators it remains
to use expansion (98) for the right hand side of (107).

7 Discussion and conclusion

We outlined the derivation of the completeness relation for the FAS of the class of Lax
operators L related to the BD.I symmetric spaces. The difficulty, as compare to the
generic case [7, 9], is that the λ-dependent term is degenerate. As a result the FAS
provide complete set of functions only on a subspace Π0M of all vector-valued functions
M. On the complementary subspace (11 − Π0)M the term λJ vanishes and the Lax
operator acts as differential constraints.

191



We derived the completeness relation for the special subclass of BD.I symmetric spaces
SO(5)/SO(3)⊗SO(2). However, it is not difficult to extend these results for any symmet-
ric space SO(2n+ 1)/SO(2n− 2k+ 1)⊗SO(2k). In these cases J =

∑k
s=1 Hk = π+− π−

and the completeness relation (91) will hold provided we change Π0 by π+ − π−, or more
generally, by

∑k
s=1(Ess − E2n−2s+1,2n−2s+1).

Our results can be generalized also to the classes of Lax operators with non-local
reductions used, e.g. in [22, 25, 26, 27]. We also plan to apply the method to the
class of Lax operators depending polynomially in λ [13]. These results will be published
elsewhere. Our last remark here concerns another rather effective method for constructing
integrable NLEE. It was discovered and developed by Shabat, Mikhailov, Sokolov et. al.,
see [35, 39, 40, 4] and the numerous references therein. The idea is to classify the NLEE
that have higher or master symmetries. The presence of such symmetry ensures that
the relevant equations have infinite number of conservation laws and must be integrable.
For some of them Lax representations are known, but for many equations with master
symmetries Lax representations are still unknown. This may be due to different factors,
such as nontrivial dependence of the L and M operators on λ, combined with additional
reductions of Mikhailov type. The spectral analysis for such Lax pairs could be related
to RHP formulated on a complex contours, see e.g. [18]. This is one more argument in
favor of analysis like the one in the present paper.
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