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Abstract

Starting from the observation that gauge fields could acquire mass when they
mediate interactions between matter fields, lately, new mass generation schemes
[1, 2] have been proposed. Recently, one of them [1] has been applied [3, 4, 5]
to generate mass for a vector field in the context of its interaction with various
collections of real scalar fields. This paper aims to collect the predictions made in
our previous analyses [3, 4, 5].

1 Introduction

The famous unification theory that puts together weak and electromagnetic interactions
involves two massive vector bosons W±. Originally, this was explained by a mass-
generation mechanism for gauge fields [6, 7, 8, 9]. This procedure assumes a potential
term, which depends only on the matter fields and displays at least one local minimum
configuration. With this setting, within the initial mass-generation mechanism [6, 7, 8, 9],
the gauge fields acquire mass via some appropriate affine matter field redefinitions (Higgs
mechanism) such that, in this scheme, the local minimum configuration of the potential
corresponds to the trivial configuration for the new matter fields. At the quantum level,
these redefinitions imply trivial vacuum expectation values for the new field operators.
Lately, two mass-generation mechanisms for gauge vector fields have been proposed. None
of these accounts in any way for the Higgs mechanism. The former [1] regards the mass
as an effect of interaction such that the mass for an Abelian 1-form appear in the context
of its interactions with an arbitrary finite set of real scalar fields. The latter [2] consid-
ers a SU (2)-Yang-Mills gauge theory coupled with a set of three scalar fields and the
mass-production for gauge fields is gauge-invariant (without breaking the original gauge
symmetry) achieved by means of some suitable constraints imposed on the scalar fields.

This paper aims to synthetically review our previous results [3, 4, 5] concerning the
mass predictions for a vector field that is consistently coupled with various collections
of real scalar fields. These have been obtained via implementing the multi-step program
from [1] adapted to various sets of real scalar fields: (1) one starts with the Lagrangian
description of the free theory; (2) one infers a general class of gauge theories that does not
contain free parameters with negative mass dimensions and whose free limit is that from
step (1); (3) one performs some conveniently chosen redefinitions of the free parameters
that label interacting theories from (2) such that the mass terms become manifest in the
new free limit. The employed mechanism reveals the next outputs: (A) the vector field ac-
quires mass; (B) the scalar fields display non-trivial gauge transformations; (C) the gauge
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algebra of each interacting theory is Abelian; (D) the propagator of the massive vector
field emerging from each gauge-fixed action possesses the same asymptotic behaviour [in
the UV regime] like that from the massless case.

The paper is organized into five sections. In Section 2 we collect the main results from
[1] concerning the consistent interactions that can be added to a free theory consisting
of an Abelian 1-form and a finite collection of real scalar fields. Section 3 exhibits some
predictions for the mass spectrum corresponding to an interacting theory that involves a
vector field and four real scalar fields. In Section 4 we analyze the mass spectrum in the
case where the matter field spectrum consists of five real scalar fields. Section 5 ends the
paper with the main conclusions.

2 Real scalar fields interactions mediated by a gauge

field: Main results

In this section we collect the main aspects concerning the consistent couplings between
a gauge field and a collection of real scalar fields [1]. These results have been obtained
by means of the deformation of the solution to the classical master equation [11, 12] with
the help of local BRST cohomology [13, 14, 15].

Concretely, one starts from a free theory that consists of one Abelian vector field Aµ
and a collection of massless real scalar fields {ϕA}A=1,N0

, whose Lagrangian dynamics is
generated by

SL
0 [A,ϕ] =

∫
d4x
[
− 1

4
FµνF

µν + 1
2
kAB

(
∂µϕ

A
)
∂µϕB

]
. (1)

The fields evolve on a 4-dimensional Minkowski spacetime of mostly minus signature, R1|3.
Also, we consider that the space parameterized by the scalar fields (known as the target
space in Poisson Sigma Models) is Euclidian, with the metric tensor components kAB. The
previous functional is found to be manifestly invariant under the gauge transformations

δεA
µ = ∂µε, δεϕ

A = 0, A = 1, N0, (2)

that are Abelian and irreducible (independent). At this stage, it is clear that the number
of physical degrees of freedom of the starting theory is equal to N0 + 2.

Using the technique of constructing consistent interactions [11, 12], it has been found
[1] that the interacting theory, which complies with the standard hypotheses from field
theory (analyticity in the coupling constant–g, Lorentz covariance, spacetime locality,
Poincaré invariance, and at most two spacetime derivatives in the interaction vertices) is
described by the Lagrangian action

S̄L
0 [A,ϕ] =

∫
d4x
[
− 1

4
FµνF

µν + 1
2
g2kABn

AnBAµA
µ − gV

(
ϕA
)

+ 1
2
kAB(1 + gω

(
ϕA
) (
Dµϕ

A − 2gnAAµ
)
DµϕB

+ 1
2
gFµν

(
ϑ
(
ϕA
)
F µν + εµνρλκ

(
ϕA
)
Fρλ
)

+ 1
2
g3kABω

(
ϕA
)
nAnBAµA

µ
]
, (3)

which is invariant under the Abelian generating set of gauge transformations

δ̄εA
µ = ∂µε, δ̄εϕ

A = g
(
TABϕ

B + nA
)
ε, A = 1, N0. (4)
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Previously, V , ω, ϑ and κ are some smooth functions that depend only on the undifferen-
tiated scalar fields and are subject to some consistency equations [1], TAB are some real
numbers that enjoy the property

kAMT
M
B + kBMT

M
A = 0, A,B = 1, N0, (5)

and {nA : A = 1, N0} is a collection of arbitrary real numbers. We also used the notation

Dµϕ
A = ∂µϕ

A − gTABϕBAµ (6)

for the covariant derivatives of the scalar fields.
Functional (3) contains the term 1

2
g2kABn

AnBAµA
µ, which, up to some redefinitions

of the constants that parameterize (3), is a mass term for the vector field as long as

kABn
AnB > 0. (7)

Finally, the term V is responsible for the masses of the involved scalar fields.

3 Mass predictions in the context of a 4-dimensional

target space

In this section we consider the case N0 = 4. Motivated by our aim—to endow the involved
gauge field with mass, we perform some simplifications of the general results (3)–(4). First,
by making an appropriate linear reparametrization of the target space, we can consider
that

kAB = δAB. (8)

Second, since the terms proportional to ω, ϑ, and κ do not contribute to the mass spec-
trum, we can take

ω = ϑ = κ = 0. (9)

Third, using the canonical expression available for any skew-symmetric matrix, it results
that there exists an orthogonal matrix Ô ∈ O(4) such that

ÔT̂ Ô> =


0 β1 0 0
−β1 0 0 0

0 0 0 β2
0 0 −β2 0

 , (10)

so, modulo an orthogonal reparametrization of the target space, we are free to take

(
TAB

)
≡ T̂ ≡


0 β1 0 0
−β1 0 0 0

0 0 0 β2
0 0 −β2 0

 , β1, β2 ∈ R∗. (11)

Fourth, motivated by the fact that for every non-vanishing vector n ∈ R4 there is a
rotation matrix R̂ ∈ O(4) such that

n = R̂v, v ≡
√

n · n (0 1 0 0)> , (12)
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we can choose from the beginning the shifts nA as(
nA
)
≡ n ≡ v (0 − 1 0 0)> v 6= 0. (13)

In the light of choices (8), (9), (13), and (11), the generating set of gauge transforma-
tions (4) reduces to

δ̄εAµ = ∂µε, δ̄εϕ1 = gβ1ϕ2ε, δ̄εϕ2 = −g (β1ϕ1 + v) ε, δ̄εϕ3 = gβ2ϕ4ε, δ̄εϕ4 = −gβ2ϕ3ε. (14)

With these results at hand, the consistency condition verified by the scalar fiel potential
V
(
ϕA
)

reads

δ̄εV ≡ g

[
β1

(
∂V
∂ϕ1

ϕ2 −
∂V
∂ϕ2

ϕ1

)
+ β2

(
∂V
∂ϕ3

ϕ4 −
∂V
∂ϕ4

ϕ3

)]
− gv ∂V

∂ϕ2

= 0. (15)

To display a renormalizable (at least power-counting [16]) interacting gauge theory, we
restrict ourselves to those solutions of (15) that are polynomials of at most order four in
the real scalar fields, i.e.

V =
c1
2

[
(β1ϕ1 + v)2 + β1

2ϕ2
2

]
+
c̃1
4

[
(β1ϕ1 + v)2 + β1

2ϕ2
2

]2
+
c2
2

(
ϕ2
3 + ϕ2

4

)
+
c̃2
4

(
ϕ2
3 + ϕ2

4

)2
.

(16)
Finally, inserting expression (16) into the local functional from (4), we obtain the inter-
acting Lagrangian action

S̄L
0

[
A,ϕ

]
=

∫
d4x

{
−1

4
FµνF

µν +
1

2
g2v2AµA

µ +
1

2

4∑
A=1

∂µϕA∂
µϕA − gvAµ∂µϕ1

+ gAµ [β1 (ϕ1∂µϕ2 − ϕ2∂µϕ1) + β2 (ϕ3∂µϕ4 − ϕ4∂µϕ3)]

+
1

2
g2AµA

µ
[
β2
1

(
ϕ2
1 + ϕ2

2

)
+ β2

2

(
ϕ2
3 + ϕ2

4

)
+ 2vβ1ϕ1

]
− 1

2
gβ2

1

(
c1 + 3v2c̃1

)
ϕ2
1 −

1

2
gβ2

1

(
c1 + v2c̃1

)
ϕ2
2 −

1

2
gc2
(
ϕ2
3 + ϕ2

4

)
− gvβ1

(
c1 + v2c̃1

)
ϕ1 −

1

2
gc̃2
(
ϕ2
3 + ϕ2

4

)2
−1

4
gc̃1β

2
1

(
ϕ2
1 + ϕ2

2

) (
ϕ2
1 + ϕ2

2 + 4vβ1ϕ1

)}
. (17)

Functional (17) exhibits the following desirable features: i) the appearance of mass-
like terms for the vector field as well as for some of the scalar fields (i.e terms pro-
portional to AµA

µ and ϕAϕB respectively), but these appear in the second order in
the coupling constant g and ii) a strong discrepancy between the polynomial degree
and the order of perturbation theory. Motivated by these aspects, we have to per-
form some redefinitions of the free parameters that label the Lagrangian structure of
the interacting theories such that 1. the mass-like terms become true mass terms and 2.
the polynomial degree of each term from (17) agrees with the perturbation order. The
free parameters in (17) consist of Λ ≡ (g, v, β1, β2, c1, c2, c̃1, c̃2), while their redefinitions
Λ↔ Λ′ ≡ (g′,mA, β

′
1, β

′
2, c
′
1, c
′
2, c̃
′
1, c̃
′
2) read

g′ = g, mA = gv, β′1 = β1, β′2 = β2 (18)

c′1 = gc1, c′2 = gc2, c̃′1 = c̃1/g, c̃′2 = c̃2/g. (19)
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Inserting the previous redefinitions into (17), we exhibit the mass mA = gv for the
vector field as well as the scalar field ‘masses’

µ2
ϕ1

= β′21
(
c′1 + 3m2

Ac̃
′
1

)
, µ2

ϕ2
= β′21

(
c′1 +m2

Ac̃
′
1

)
, µ2

ϕ3
= c′2 = µ2

ϕ4
. (20)

Regarding the nature of the field spectrum components, we conclude that all the
physical fields Aµ, ϕ2, ϕ3 and ϕ4 are massive as well as the nonphysical degree of freedom
ϕ1.

4 Mass predictions in the context of a 5-dimensional

target space

In this section we review the results [4, 5] envisaging the mass-predictions for a vector field
consistently coupled with five real scalar fields. First, we simplify the general results (3)
and (4) by making choices (8) and (9). Second, the skew-symmetric matrix

(
TAB

)
≡ T̂

(in the light of (9), conditions (5) reduce to the skew-symmetry of T̂ ) is considered to be
in the canonical form

T̂ ≡ (TAB) =


0 β1 0 0 0
−β1 0 0 0 0

0 0 0 β2 0
0 0 −β2 0 0
0 0 0 0 0

 , (21)

with some arbitrary non-vanishing real parameters β1 and β2

(β1β2)
2 > 0. (22)

This can always be done via an orthogonal transformation in the space of scalar fields. In
fact, expression (21) is nothing but the decomposition of the five-dimensional representa-
tion

u(1) ' so(2)→ End
(
R5
)
, τ → T̂ (23)

into its irreducible components
2⊕ 2⊕ 1. (24)

Third, using the same argument like in the 4-dimensional target space, we are free to
fix the shift vector as (

nA
)
≡ n ≡ (n, 0, 0, 0, 0) ∈ R5, n2 > 0. (25)

Taking into account all these simplifications, the generating set of gauge transforma-
tions (4) reduces to

δ̄εA
µ = ∂µε, δ̄εϕ1 = g (β1ϕ2 + n) ε, δ̄εϕ2 = −gβ1ϕ1ε, (26)

δ̄εϕ3 = gβ2ϕ4ε, δ̄εϕ4 = −gβ2ϕ3ε, δ̄εϕ5 = 0, (27)

which displays the consistency equation for the scalar field potential

δ̄εV ≡ β1

(
∂V
∂ϕ1

ϕ2 −
∂V
∂ϕ2

ϕ1

)
+ β2

(
∂V
ϕ3

ϕ4 −
∂V
ϕ4

ϕ3

)
= 0. (28)
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The most general polynomial function of at most order four that verifies (28) reads

V (ϕ) = ρ2I2 +
1

2

3∑
α,β=1

ραβIαIβ + (I3)
2

3∑
α=1

ρ̄αIα + ρ̄5 (I3)
4 , (29)

where

I1 ≡
1

2
β2
1

(
ϕ2
1 + ϕ2

2

)
+ nβ1ϕ2, I2 ≡

1

2
β2
2

(
ϕ2
3 + ϕ2

4

)
, I3 ≡ ϕ5, (30)

with ρ some arbitrary real constants. However, for reasons that will become transparent
later, we take

ρ2 > 0, ραβ = ρ̃αδαβ, ρ̃α > 0, α = 1, 3. (31)

With all these preparations at hand, according to (3), the Lagrangian action of the
interacting theory reads

S̄
(L
0 [A,ϕ] =

∫
d4x

[
−1

4
FµνF

µν +
1

2

5∑
A=1

∂µϕA∂
µϕA + g (β1 (ϕ1∂µϕ2 − ϕ2∂µϕ1)

+β2 (ϕ3∂µϕ4 − ϕ4∂µϕ3))A
µ − gnAµ∂µϕ1 − gV (ϕ) +

1

2
g2n2AµA

µ

+ng2β1ϕ2AµA
µ +

1

2
g2
(
β2
1

(
ϕ2
1 + ϕ2

2

)
+ β2

2

(
ϕ2
3 + ϕ2

4

))
AµA

µ

]
, (32)

where the potential of the scalar fields is given in (29). By construction, (32) is invariant
under the Abelian generating set of gauge transformations (26)–(27).

In the remaining part of this section we focus on the mass predictions that can be
extracted from (32). It is transparent that the Lagrangian action of the interacting
theory (32) contains mass-like terms for the vector field as well as for some of the scalar
fields (i.e terms proportional to AµA

µ and ϕAϕB respectively), but these appear in the
second-order in the coupling constant g. Moreover, there is an obvious, strong discrepancy
between the polynomial degree and the perturbation order of the terms that appear in
the same functional. In order to solve these unsuitable aspects, we proceed like in the
previous situation, i.e., we perform some appropriate redefinitions of the free parameters
that label the Lagrangian structure of the interacting theory such that 1. the mass-like
terms become true mass terms and 2. the polynomial degree of each term from (32)
agrees with the perturbation order. If we collectively denote by Λ the free parameters
that label (32), Λ = (g, β1, β2, n, ρ2, ρ̃α, ρ̄α, ρ̄5), then we implement the new free parameters
Λ′, Λ′ = (g′, β′1, β

′
2, n

′, ρ′2, ρ̃
′
α, ρ̄

′
α, ρ̄

′
5), via

g′ = g, β′1 = β1, β′2 = β2, n′ ≡MA = gn, (33)

ρ′2 ≡M2
34 = gρ2, ρ̃′1 =

1

g
ρ̃1, ρ̃′2 =

1

g
ρ̃2, ρ̃′3 ≡M2

5 = gρ̃3, (34)

ρ̄′1 =
1

g
ρ̄1, ρ̄′2 =

1

g
ρ̄2, ρ̄′3 = ρ̄3, ρ̄′5 =

1

g
ρ̄5. (35)
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Inserting (33)–(35) into (32) we get

S̄ ′L0 [A,ϕ] =

∫
d4x

[
−1

4
FµνF

µν +
1

2

5∑
A=1

∂µϕA∂
µϕA −MAA

µ∂µϕ1 +
1

2
M2

AAµA
µ

− 1

2

(
M2

34β
′2
2

(
ϕ2
3 + ϕ2

4

)
+ ρ̃′1β

′2
1M

2
Aϕ

2
2 +M2

5ϕ
2
5

)
− g′ρ̄′1β′1MAϕ2ϕ

2
5

− g′ρ̃′1β′
2
1MAϕ2

(
ϕ2
1 + ϕ2

2

)
− g′ρ̄′3ϕ3

5

+ g′ (β′1 (ϕ1∂µϕ2 − ϕ2∂µϕ1) + β′2 (ϕ3∂µϕ4 − ϕ4∂µϕ3))A
µ

+ g′β′1MAϕ2AµA
µ − g′2ρ̄′5ϕ4

5 −
1

2
g′

2
ρ̄′1β

′2
1 ϕ

2
5

(
ϕ2
1 + ϕ2

2

)
− 1

2
g′

2
ρ̄′2β

′2
2ϕ

2
5

(
ϕ2
3 + ϕ2

4

)
− 1

4
g′

2
ρ̃′1β

′4
1

(
ϕ2
1 + ϕ2

2

)2 − 1

8
g′

2
ρ̃′2β

′2
2

(
ϕ2
3 + ϕ2

4

)2
+

1

2
g′

2
(
β′

2
1

(
ϕ2
1 + ϕ2

2

)
+ β′

2
2

(
ϕ2
3 + ϕ2

4

))
AµA

µ

]
. (36)

Developing a similar procedure with respect to gauge transformations (26)– (27), it results
that the Lagrangian action (36) is invariant under the generating set of gauge transfor-
mations

δ̄′εA
µ = ∂µε, δ̄′εϕ1 = (g′β′1ϕ2 +MA) ε, δ̄′εϕ2 = −g′β′1ϕ1ε, (37)

δ̄′εϕ3 = g′β′2ϕ4ε, δ̄′εϕ4 = −g′β′2ϕ3ε, δ̄′εϕ5 = 0. (38)

Finally, from (36) we identify the mass spectrum

µ2
A = M2

A, µ2
ϕ1

= 0, µ2
ϕ2

= ρ̃′1β
′2
1M

2
A, µ2

ϕ3
= µ2

ϕ4
= M2

34β
′2
1, µ2

ϕ5
= M2

5 . (39)

Regarding the nature of the field spectrum components, we conclude that all the
physical fields Aµ, ϕ2, ϕ3, ϕ4 and ϕ5 are massive, while the nonphysical degree of freedom
ϕ1 is massless.

5 Conclusions

In this paper we reviewed our results [3, 4, 5] concerning the mass predictions for a vector
field that is consistently coupled to various collections of real scalar fields. Firstly, starting
from the general prescriptions [1], we constructed an interacting theory comprising a
vector field and four real scalar fields. Then, by means of some appropriate redefinitions
of the free parameters of the interacting theory, we were able to conclude that all the
physical and nonphysical fields are massive. Secondly, by performing the same analysis,
but for a vector field in interaction with a collection of five scalar fields, we proved that
all the physical modes are massive, while the nonphysical one is massless.
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