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Abstract

We study a class of 4d heterotic string compactifications with Pati–Salam gauge
symmetry exhibiting spontaneous supersymmetry breaking via the Scherk–Schwarz
mechanism. Through the combined use of the free-fermionic and orbifold construc-
tions, we identify vacua with interesting phenomenological properties, such as the
presence of chiral matter and the existence of Pati–Salam and Standard Model
breaking Higgs bosons, while avoiding the appearance of physical tachyons and
suppressing the one-loop contribution to the cosmological constant.
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1 Introduction

String theory provides a consistent framework for the unified description of all interactions
including gravity. In particular, heterotic string compactifications with N = 1 supersym-
metry are known to incorporate the salient features of minimal supersymmetric extensions
of the Standard Model. However, despite considerable progress in the reconstruction of
the tree-level string effective action, making further contact with low energy data ulti-
mately necessitates the incorporation of quantum corrections. Indeed, the contribution
of the infinite tower of massive string excitations to loop corrections is non-negligible and
indicates that supersymmetry breaking must be realized within a fully-fledged worldsheet
CFT approach.

A way of breaking supersymmetry while retaining the perturbative worldsheet de-
scription is the stringy version [1–4] of the Scherk–Schwarz mechanism [5,6]. This can be
thought of as a generalisation of Kaluza-Klein compactifications, in which one exploits a
symmetry operator Q of the theory to introduce non-trivial monodromies to fields and
vertex operators of the theory around non-trivial cycles of the compactification mani-
fold. This essentially results in shifting the Kaluza–Klein masses of charged fields, and
introducing a mass gap inversely proportional to the compactification radius R. Identi-
fying Q with the spacetime fermion number assigns different masses to fields within the
same supermultiplet and results in the spontaneous breaking of supersymmetry at scales
m3/2 ∼ 1/R.

In the absence of supersymmetry, questions of perturbative instabilities become espe-
cially relevant. On the one hand, the cosmological constant no longer vanishes automat-
ically, indicating the presence of a dilaton tadpole at one loop. On the other hand, the
massless spectrum is typically plagued by tachyonic instabilities in regions of the pertur-
bative moduli space of the order of the string scale. In addition, a set of phenomenological
constraints is required to ensure that the massless string spectrum be compatible with low
energy observation. Recently, there has been a revived interest in non-supersymmetric
string constructions aspiring to address these questions and make contact with low energy
phenomenology [7–22].

In this report, we construct a class of Z2 × Z2 orbifolds with Pati–Salam gauge sym-
metry, exhibiting a spontaneous N = 1→ 0 breaking of supersymmetry and satisfying a
number of semi-realistic phenomenological features, including the presence of chiral mat-
ter. Section 2 provides the basis of our construction at a special point of moduli space,
where all internal coordinates are consistently fermionised. In section 3, we proceed to
reinterpret them as orbifold compactifications at generic points of the perturbative moduli
space and investigate the shape of the one-loop effective potential as a function of the
compactification moduli. Section 4 contains our conclusions.
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2 Models and phenomenological criteria

The starting point of our construction is based on the SO(10) models studied in [16].
These are defined in the free fermionic formulation of heterotic strings [23–25] using a set
of nine basis vectors B9 = {β1, β2, . . . , β9},

β1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|y1,...,6, ω̄1,...,6, η1,2,3, ψ
1,...,5

, φ
1,...,8}

β2 = S = {ψµ, χ1,...,6}
β3 = T1 = {y12, ω12|y12, ω12}
β4 = T2 = {y34, ω34|y34, ω34}
β5 = T3 = {y56, ω56|y56, ω56}

β6 = b1 = {χ34, χ56, y34, y56|y34, y56, ψ
1,...,5

, η1}

β7 = b2 = {χ12, χ56, y12, y56|y12, y56, ψ
1,...,5

, η2}

β8 = z1 = {φ1,...,4}

β9 = z2 = {φ5,...,8} ,

(1)

accompanied by a set of phases c
[
βi
βj

]
= ±1, i ≤ j ∈ {1, . . . , 9} associated with GGSO

projections. The simplest way to break the SO(10) gauge symmetry is to introduce an
additional basis vector

β10 = α = {ψ4,5
, φ

1,2}, (2)

and the associated GGSO phases c
[
βi
β10

]
, i = 1, . . . , 9. In this description a string model

is defined in terms of 10(10 − 1)/2 + 1 = 46 independent phases. Consequently, the
augmented set of basis vectors B10 = {β1, . . . , β10} gives rise to 246 ∼ 1014 a priori
distinct models. It turns out that apart from special choices of the GGSO phases the
gauge symmetry of the models under consideration is

G = {SU(4)× SU(2)L × SU(2)R}observable × U(1)3 × SU(2)4 × SO(8) . (3)

As expected, G comprises the Pati–Salam (PS) gauge group SU(4) × SU(2)L × SU(2)R
which we consider as the “observable” gauge symmetry of our models [26,27].

In this framework, we can easily break space-time supersymmetry by projecting out
the gravitino state from the massless spectrum utilising the GGSO projection choice

c

[
S

T1

]
= +1 . (4)

Additional constraints on the remaining GGSO phases need to be imposed in order to
ensure compatibility with the string Scherk-Schwarz mechanism. It turns out that this
requirement reduces significantly the number of acceptable models [16].

As mentioned in Section 1, an important issue concerns the possible presence of
tachyon instabilities. Clearly, space-time supersymmetry automatically guarantees the
absence of tachyons in the string spectrum. Different is the case of non-supersymmetric
models, such as the ones considered here, where tachyons must be projected out by a
proper choice of GGSO phases. A preliminary search shows that this constraint alone
eliminates about 50% of the available configurations in the class of models under consid-
eration.
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We next employ a number of criteria associated with low energy phenomenology. In
the Pati–Salam construction, Standard Model fermion generations are accommodated in
SU(4)× SU(2)L × SU(2)R representations as follows:

FL(4,2,1) = Q(3,2,−1/6) + L(1,2, 1/2) ,

FR(4̄,1,2) = uc(3̄,1, 2/3) + dc(3̄,1,−1/3) + ec(1,1,−1) + νc(1,1, 0) .

In the string realisation these arise from the sectors§ S ipq = S + bi + pTj + qTk, where

p, q = 0, 1, (i, j, k) = {(1, 2, 3), (2, 1, 3), (3, 1, 2)} along with anti-generations FL(4̄,2,1),
FR(4,1,2). The net number of generations reads

ng = nL − nL = nR − nR , (5)

where nL, nL, nR, nR denote the numbers of FL, FL, FR, FR respectively. These can be
expressed in terms of GGSO phases utilising the methods developed in [28–31]

nL =
∑
i,p,q

P i
pq

(
1 +X

(i)SU(4)
pq

)(
1− c

[
Sipq
α

]∗)
,

nR =
∑
i,p,q

P i
pq

(
1−X(i)SU(4)

pq

)(
1 + c

[
Sipq
α

]∗)
,

nL =
∑
i,p,q

P i
pq

(
1−X(i)SU(4)

pq

)(
1− c

[
Sipq
α

]∗)
,

nR =
∑
i,p,q

P i
pq

(
1 +X

(i)SU(4)
pq

)(
1 + c

[
Sipq
α

]∗)
,

(6)

where P i
pq is a projection operator determining whether states in the S ipq sector survive

the GGSO projection

P i
pq =

1

23

(
1− c

[
Sipq
Ti

]∗)(
1− c

[
Sipq
z1

]∗)(
1− c

[
Sipq
z2

]∗)
, (7)

and X
(i)SU(4)
pq = −c

[
Sipq
Ri

q

]∗
, with Ri

q = S + bj + (1 − q)T3 + α , j 6= i = 1, 2 and R3
q =

S + b1 + (1 − q)T2 + α. The existence of chiral generations can then be imposed as an
additional constraint on the free phases defining a PS string model.

The breaking of the Pati–Salam symmetry to that of the Standard Model requires the
presence of massless scalars in the H (4,1,2) + h.c. representations. These come from
the sectors Bipq = bi + pTj + qTk with p, q = 0, 1, (i, j, k) = {(1, 2, 3), (2, 1, 3), (3, 1, 2)}.
Similarly, the required Standard Model breaking scalars accommodated in h (1,2,2) rep-
resentation arise from V ipq = bi+x+pTj+qTk. Again, the number of massless states of the
type H, h are expressible in terms of GGSO phases and additional constraints associated
with the presence of these bosonic states in the massless spectrum are imposed.

Altogether, the aforementioned criteria define a set of consistent non-supersymmetric
PS models that satisfy some basic phenomenological requirements, such as chirality as well
as the presence of PS breaking scalars and the existence of Higgs doublets responsible for
recovering the Standard Model at low energies. Moreover, these models are compatible
with the spontaneous breaking of supersymmetry via the Scherk–Schwarz mechanism.
The existence of string models satisfying all the above criteria is a non-trivial question.
To this end, we have performed a randomised computer search over the parameter space
of models and find that approximately one in 1500 models meets all the above criteria.

§Here we define b3 = b1 + b2 + x with x = 1+ S + T1 + T2 + T3 + z1 + z2.
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3 Moduli dependence and the Cosmological Constant

The models defined in the free-fermionic construction of the previous section are re-
stricted to live on a special locus of the moduli space in which all internal coordinates
are consistently fermionised. Albeit very useful for the study of the mass spectra and the
characterisation of a range of phenomenological properties of the models, the fermionic
description misses the dependence on the compactification moduli. What is more, whether
the supersymmetry is broken spontaneously or explicitly cannot be decided by an analysis
restricted to the fermionic point alone.

These questions may be addressed by deforming the theory away from the fermionic
point, by means of marginal deformations of the current-current type. At the generic
point, the theories we construct admit a reinterpretation by means of the orbifold for-
mulation. The moduli dependence is then restored and it becomes possible to study the
structure of one-loop effective potential and the dynamic fate of the no-scale moduli.

Following the orbifold description and notation of [16], the partition function of the
vacua introduced in Section 2 is given by:

Z =
1

η12η̄24

1

24

∑
h1,h2,H,H′

g1,g2,G,G′

1

23

∑
a,k,ρ
b,`,σ

1

23

∑
H1,H2,H3
G1,G2,G3

(−1)a+b+HG+H′G′+Φ

× ϑ[ab ]ϑ[a+h1
b+g1

]ϑ[a+h2
b+g2

]ϑ[a−h1−h2b−g1−g2 ] ϑ̄[k` ]
3 ϑ̄[k+H′

`+G′ ] ϑ̄[k−H
′

`−G′ ]

× ϑ̄[k+h1
`+g1

] ϑ̄[k+h2
`+g2

] ϑ̄[k−h1−h2`−g1−g2 ] ϑ̄[ρ+H′

σ+G′ ] ϑ̄[ρ−H
′

σ−G′ ] ϑ̄[ρσ]2 ϑ̄[ρ+H
σ+G]4

× Γ
(1)
2,2[H1

G1
|h1g1 ](T (1), U (1)) Γ

(2)
2,2[H2

G2
|h2g2 ](T (2), U (2)) Γ

(3)
2,2[H3

G3
|h1+h2
g1+g2

](T (3), U (3)).

(8)

The spin structure a = 0, 1 distinguishes between spacetime bosonic and fermionic states
respectively, whereas summation over b = 0, 1 imposes the standard GSO projection.
The boundary conditions of the right-moving fermions realizing the Kac–Moody algebra
at level k = 1 and generating the gauge symmetry, are labeled by k, ρ,H,H ′ = 0, 1,
along with the corresponding projections `, σ,G,G′ = 0, 1. Similarly, twisted sectors
of the Z2 × Z2 orbifold generating N = 1 supersymmetry are labeled by hi, gi = 0, 1.
The three additional freely-acting Z2 orbifold twists, associated with the Scherk–Schwarz
breaking of N = 1 → 0, are parametrized by Hi, Gi = 0, 1. The partition function of
the three compactified 2-tori arises as the product of three twisted/shifted (2,2) lattices

Γ
(i)
2,2[Hi

Gi
|higi ](T

(i), U (i)), defined as in [16]. With these conventions, it is straightforward to
identify the fermionic point as T = i and U = (1 + i)/2. Finally, the modular invariant
phase (−1)Φ can be matched to the GGSO projections of the fermionic construction,
defined through c[βiβj ], while additionally implementing the Scherk-Schwarz mechanism by
coupling the R-symmetry charges to the Scherk-Schwarz lattice shifts.

The one-loop effective potential is obtained by integrating the string partition function
over the moduli space F of the worldsheet torus Σ1:

Vone-loop(tI) = − 1

2(2π)4

∫
F

dτ 2

Im τ 3
Z(τ, τ̄ ; tI), (9)

where τ is the complex structure on Σ1, F = SL(2;Z)\H+ is a fundamental domain under
the modular group, and tI are the compactification moduli.

In the simplest case where supersymmetry is broken à-la Scherk-Schwarz coupled to a
circle of radius R� 1, the potential reduces to the generic asymptotic form [32]:

Vone-loop(tI) ∼ −
nB − nF
R4

+ . . . (10)
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where nF and nB correspond, respectively, to the degeneracies of massless fermions
and bosons, and the ellipses represent exponentially suppressed terms. Assuming that
non-perturbative effects eventually stabilize the Scherk-Schwarz radius at sufficiently low
Kaluza-Klein scales (c.f. [21] for a recent discussion), the polynomial suppression in (10)
by far overshoots the observed value of the cosmological constant. This discrepancy may
be resolved by imposing the additional condition nB = nF at the massless level, leading
to the exponential suppression of the effective potential at large volume, and hence of the
one-loop backreaction against the classical background. Models satisfying this constraint
have been recently termed “super no-scale” models [32–37].

Calculating the one-loop partition function of these models becomes a tedious, but
tractable task. For simplicity, we identify the Scherk-Schwarz breaking with the first
2-torus, while fixing all moduli to their fermionic point values, except the volume T2

controlling the supersymmetry breaking. A preliminary investigation reveals that large
numbers of models share the same partition function, allowing us to reduce the search to
a few cases displaying the salient features. As expected, most models exhibit a negative
potential with a minimum at the fermionic point, leading to a negative cosmological
constant and supersymmetry breaking close to the string scale. Remarkably, it is possible
to identify also cases in which the potential is semi-positive definite, including models
exhibiting a local minimum at the fermionic point.

We now focus on a particular model obtained using computer assisted search over a
random sample of 108 GGSO configurations, utilising the criteria mentioned in Section 2.
This is defined by the GGSO matrix:

c
[
βi
βj

]
=



+1 +1 −1 −1 −1 +1 +1 +1 +1 −1
+1 +1 +1 +1 −1 +1 +1 +1 −1 −1
−1 +1 +1 −1 +1 +1 +1 −1 +1 +1
−1 +1 −1 +1 +1 +1 +1 +1 −1 +1
−1 −1 +1 +1 +1 +1 −1 −1 +1 −1
+1 −1 +1 +1 +1 +1 +1 +1 −1 −1
+1 −1 +1 +1 −1 +1 +1 +1 −1 +1
+1 +1 −1 +1 −1 +1 +1 +1 +1 −1
+1 −1 +1 −1 +1 −1 −1 +1 +1 +1
−1 −1 +1 +1 −1 +1 −1 +1 +1 −1


(11)

The massless spectrum includes four chiral generations arising from the sectors S + b1 +
T2 + T3, S + b3 + T1, PS breaking scalars coming from the sector b3 and Standard Model
scalar doublets in the sector b1 + T2 + x. The partition function at the fermionic point is
given by:

Z =
2qi
qr
− 16qi√

qr
+

(
40 +

48

qi
+ 144qi + 56q2

i

)
+

(
1248 +

6528

qi
− 1152qi − 416q2

i

)
√
qr

+

(
8192 +

18816

q2
i

+
105600

qi
+ 4960qi + 2688q2

i + 792q3
i

)
qr + . . . ,

(12)
where qr = e−2πτ2 , qi = e2πiτ1 .
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The partition function at the generic point can be deduced from Eq. (8) using

Φ =ab+ aG1 + bH1 +H1G1 + k(G1 +G3) + `(H1 +H3)

+ ρ(g2 +G′ +G1 +G2) + σ(h2 +H ′ +H1 +H2)

+H(g1 + g2 +G1 +G2) +G(h1 + h2 +H1 +H2)

+H ′G3 +G′H3 +H ′G′ + h1G1 + g1H1

+ h2(G1 +G3) + g2(H1 +H3) + h2g2 +H1G2 +H2G1 .

(13)

We first notice that the constant term in the partition function expansion, that corre-
sponds to the difference between the bosonic nB and fermionic nF degrees of freedom,
vanishes at the generic point. This is remarkable because it leads to the conclusion that
the model exhibits super no-scale behaviour at generic points and especially for large val-
ues of the T2 modulus, although nB − nF = 40 at the fermionic point. Next, we calculate
the one loop potential utilising (9). The results are presented in Figure 1 where we plot
the one-loop effective potential as a function of T2.

1 2 3 4 5 6 7
T20.0000

0.0005

0.0010

0.0015

0.0020

0.0025

V(T )2

Figure 1: The one-loop effective potential as a function of T2 for the model defined in Eq.
(11) which satisfies all phenomenological constraints.

It is interesting to note that the massless level-matched term of the partition function, nB−
nF = 40, would naively lead to the conclusion that the potential is negative, exhibiting
a global minimum at the fermionic point. Careful calculation can, however, show that
this is not true [16]. While a minimum does exist at the fermionic point, it turns out
to be only a local minimum. The potential is, in fact, positive semi-definite, vanishing
asymptotically as T2 → ∞ (and in the T-dual limit T2 → 0), where supersymmetry is
effectively restored.
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4 Conclusions

We have presented a class of chiral heterotic vacua with Pati–Salam gauge symmetry, ex-
hibiting supersymmetry breaking realized via the Scherk–Schwarz mechanism. Utilising
the free-fermionic in conjunction with the orbifold formulation, we are able to identify
tachyon-free models with certain appealing phenomenological characteristics. These in-
clude the presence of chiral matter, the existence of PS symmetry breaking Higgs scalars,
as well as the Standard Model Higgs doublets. We further secure an exponential sup-
pression of the cosmological constant at large volume, by imposing the super no-scale
condition at the massless level.

Among the vacua satisfying all the imposed phenomenological criteria, we are able
to identify a class of models with a positive semi-definite one-loop effective potential,
dynamically driving the theory to the large volume regime. These preliminary results
necessitate further analysis of the Pati-Salam vacua and the classification of their massless
spectra and effective potentials, which is already underway [38].
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