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Abstract

The search for relations among parameters that are renormalization group invariant
to all orders in perturbation theory is the basis of the reduction of couplings idea. This
method has been applied to some N = 1 supersymmetric Grand Unified Theories, few
of which can become all-loop finite. We review the basic idea and the tools developed,
as well as two resulting theories in which reduction of couplings has been achieved: (i)
an all-loop finite N = 1 SU(5) model and (ii) a reduced version of the Minimal Super-
symmetric Standard Model. We present three benchmark scenarios for the finite SU(5)
model and investigate their observability at existing and future hadron colliders. The
model’s heavy supersymmetric spectrum lies beyond the reach of the 14 TeV HL-LHC.
Concerning the 100 TeV FCC-hh, it is found that large parts of the predicted spectrum
can be tested, but the higher mass regions are beyond the reach even of the FCC-hh. It
is also found that the reduced version of the MSSM is ruled out by the LHC searches for
heavy neutral MSSM Higgs bosons for the allowed parameter space.
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1 Introduction

The reduction of couplings idea [1–4] (see also [5–7]) is a promising technique which
relates seemingly independent parameters of a renormalizable theory to a single coupling.
The method requires resulting relation among the parameters to be valid at all energy
scales, i.e. Renormalization Group Invariant (RGI).

After the introduction of a novel symmetry through a Grand Unified Theory (GUT)
[8–13]), in order to achieve reduction of the number of free parameters of the Standard
Model (SM), the next step is the unification of the gauge and Yukawa sectors (Gauge
Yukawa Unification, GYU). This was the main characteristic of the reduction of couplings
early-stage application in N = 1 GUTs [14–27], where RGI relations are set between
the unification scale and the Planck scale. Moreover, RGI relations which guarantee all-
loop finiteness can be found. The method predicted the top quark mass in the finite
N = 1 supersymmetric SU(5) model [14, 15], as well as in the Reduced Minimal N = 1
supersymmetric SU(5) one [16] before its experimental discovery [28].

Since reduction of couplings can only be applied in models with Supersymmetry
(SUSY), a supersymmetry breaking sector (SSB) has to be included, which involves cou-
plings with non-zero mass dimension. The supergraph method and the spurion superfield
technique played an important role for the progress in that sector, leading to complete
all-loop finite models, i.e. including the SSB sector. The all-loop finite N = 1 super-
symmetric SU(5) model [29, 30] has given a prediction for the light Higgs boson mass in
agreement with the experimental results [31–33] and a heavy supersymmetric mass spec-
trum, consistent with the experimental non-observation of these particles. In the past two
decades the reduction of couplings technique has been applied to many cases, including a
reduced version of the minimal N = 1 supersymmetric SU(5) [16] and a reduced version
of the N = 1 supersymmetric SU(3) × SU(3) × SU(3) model [34–36]. The full analyses
of the most successful models, that includes predictions in agreement with the experi-
mental measurements of the top and bottom quark masses for each model, can be found
in [37].

In the present article we review the examination of two of these models, namely the
all-loop finite N = 1 SU(5) model and the Reduced Minimal Supersymmetric Standard
Model (Reduced MSSM). Specifically for the finite model we address the question to
what extent the reduction of couplings idea can be experimentally tested at HL-LHC
and future FCC hadron collider. To this end we propose three benchmark points. We
present the SUSY breaking parameters used as input in each benchmark to calculate the
corresponding Higgs boson and supersymmetric particles masses. Then we compute the
expected production cross sections at the 14 TeV (HL-)LHC and the 100 TeV FCC-hh
and investigate which production channels can be observed. The complete analyses for
both models (and two more) are included in our recent work [38].

The present work is structured as follows. In Sections 2 and 3 we review the basic
idea of the reduction of couplings and finiteness. In Section 4 we list the phenomenolog-
ical constraints used in our analyses, while in Section 5 we explain the computational
setup. In Sections 6 and 7 we review the two above-mentioned models. We briefly
review some earlier results of our phenomenological analysis. In this context the new
version of the FeynHiggs [39–42] code plays a crucial role, which was used to calculate
the Higgs-boson predictions, in particular the mass of the lightest CP-even Higgs boson.
The improved predictions of FeynHiggs are compared with the LHC measurements and
the Beyond Standard Model (BSM) Higgs boson searches. Furthermore, in the case of the

97



finite SU(5) model, we examine the discovery potential of the Higgs and SUSY spectrum
at approved future and hypothetical future hadron colliders. Finally, Section 8 containts
some brief conclusive remarks.

2 Reduction of Couplings Basics

2.1 Reduction of Dimensionless Parameters

We start by reviewing the basic reduction of couplings idea. The aim is to express the
parameters of a theory that are considered free in terms of one independent parameter,
which we call primary. The basic idea is to search for RGI relations among couplings and
use them to reduce the number of seemingly independent parameters. Any RGI relation
among parameters g1, · · · , gA of a given renormalizable theory can be expressed implicitly
as Φ(g1, · · · , gA) = const. This expression must satisfy the partial differential equa-
tion (PDE)

µ
dΦ

dµ
= ~∇Φ · ~β =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (1)

with βa the β-functions of ga. Solving this PDE is equivalent to solving a set of ordinary
differential equations (ODEs), the reduction equations (REs) [2–4],

βg
dga
dg

= βa , a = 1, · · · , A− 1 , (2)

Here, g and βg are the primary coupling and its β-function, respectively. The Φa’s can
impose up to (A−1) independent RGI constraints in the A-dimensional parameter space.
As a result, all couplings can be (in principle) expressed in terms of the primary coupling
g.

This is not enough, as the number of integration constants of the general solutions of
Eq. (2) matches the number of these equations, meaning that we just traded an integration
constant for each ordinary renormalized coupling, and therefore these cannot be considered
as reduced solutions.

The crucial requirement is the demand that the REs admit power series solutions,

ga =
∑
n

ρ(n)a g2n+1 , (3)

that preserve perturbative renormalizability. This way, the integration constant corre-
sponding to each RE is fixed and the RE is picked up as a special solution out of the
set of the general ones. It is worth noting that a one-loop level examination is enough
to decide for the uniqueness of these solutions [2–4]. As an illustration on the above, we
assume β-functions of the form

βa =
1

16π2

 ∑
b,c,d 6=g

β(1) bcda gbgcgd +
∑
b6=g

β(1) ba gbg
2

+ · · · ,

βg =
1

16π2
β(1)g g3 + · · · ,

(4)

Here · · · stands for higher order terms and β
(1) bcd
a ’s are symmetric in b, c and d. We as-

sumethat ρ
(n)
a with n ≤ r are already determined uniquely. In order to obtain ρ

(r+1)
a , the
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power series (3) are inserted into the REs (2) and we collect terms of O(g2r+3). Thus, we
find ∑

d6=g
M(r)da ρ

(r+1)
d = lower order quantities ,

where the right-hand side is known by assumption and

M(r)da = 3
∑
b,c 6=g

β(1) bcda ρ
(1)
b ρ(1)c + β(1) da − (2r + 1)β(1)g δda , (5)

0 =
∑

b,c,d 6=g
β(1) bcda ρ

(1)
b ρ(1)c ρ

(1)
d +

∑
d6=g

β(1) da ρ
(1)
d − β

(1)
g ρ(1)a . (6)

Therefore, the ρ
(n)
a for all n > 1 for a given set of ρ

(1)
a can be uniquely determined if

detM(n)da 6= 0 for all n ≥ 0. This is checked in all models that reductions of couplings is
applied.

The search for power series solutions to the REs like (3) is more than justified in SUSY
theories, where parameters often behave asymptotically in a similar way. This “completely
reduced” theory features only one independent parameter, rendering this unification very
attractive. It is often unrealistic, however, and, usually, fewer RGI constraints are im-
posed, leading to a partial reduction [43,44].

All the above give rise to hints towards an underlying connection among the require-
ment of reduction of couplings and SUSY.

As an example, we consider a SU(N) gauge theory with φi(N) and φ̂i(N) com-
plex scalars, ψi(N) and ψ̂i(N) left-handed Weyl spinors and λa(a = 1, . . . , N2 − 1) right-
handed Weyl spinors in the adjoint representation of SU(N).

The Lagrangian (kinetic terms are omitted) includes

L ⊃ i
√

2{ gY ψλaT aφ− ĝY ψ̂λaT aφ̂+ h.c. } − V (φ, φ), (7)

where

V (φ, φ) =
1

4
λ1(φ

iφ∗i )
2 +

1

4
λ2(φ̂iφ̂

∗ i)2 + λ3(φ
iφ∗i )(φ̂jφ̂

∗ j) + λ4(φ
iφ∗j )(φ̂iφ̂

∗ j), (8)

This is the most general renormalizable form in four dimensions. In search of a solution
of the form of Eq. (3) for the REs, among other solutions, one finds in lowest order:

gY = ĝY = g ,

λ1 = λ2 =
N − 1

N
g2 ,

λ3 =
1

2N
g2 , λ4 = −1

2
g2 ,

(9)

which corresponds to a N = 1 SUSY gauge theory. While these remarks do not provide
an answer about the relation of reduction of couplings and SUSY, they certainly point to
further study in that direction.

2.2 Reduction in N = 1 Supersymmetric Gauge Theories -
Partial Reduction

Consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory that is
based on a group G and has gauge coupling g. The superpotential of the theory is:

W =
1

2
mij φi φj +

1

6
Cijk φi φj φk , (10)
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mij and Cijk are gauge invariant tensors and the chiral superfield φi belongs to the irre-
ducible representation Ri of the gauge group. The renormalization constants associated
with the superpotential, for preserved SUSY, are:

φ0i =
(
Zji

)(1/2)
φj , (11)

m0
ij = Zi

′j′

ij mi′j′ , (12)

C0
ijk = Zi

′j′k′

ijk Ci′j′k′ . (13)

By virtue of the N = 1 non-renormalization theorem [45–48] there are no mass and
cubic-interaction-term infinities. Therefore:

Zi
′j′

ij

(
Zi
′′
i′

)(1/2) (
Zj
′′

j′

)(1/2)
= δi

′′

(i δ
j′′

j) ,

Zi
′j′k′

ijk

(
Zi
′′
i′

)(1/2) (
Zj
′′

j′

)(1/2) (
Zk
′′
k′

)(1/2)
= δi

′′

(i δ
j′′

j δ
k′′

k) .

(14)

The only surviving infinities are the wave function renormalization constants Zji , so just
one infinity per field. The β-function of the gauge coupling g at the one-loop level is
given by [49–53]

β(1)g =
dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (15)

where C2(G) is the quadratic Casimir operator of the adjoint representation of the
gauge group G and Tr[T aT b] = T (R)δab, where T a are the group generators in the ap-
propriate representation. The β-functions of Cijk are related to the anomalous dimension
matrices γij of the matter fields as:

βijk =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i . (16)

The one-loop γij is given by [49]:

γ(1)ij =
1

32π2
[Cikl Cjkl − 2 g2C2(Ri)δ

i
j ], (17)

where Cijk = C∗ijk. We take Cijk to be real so that C2
ijk are always positive. The squares

of the couplings are convenient to work with, and the Cijk can be covered by a single
index i (i = 1, · · · , n):

α =
g2

4π
, αi =

g2i
4π

. (18)

Then the evolution of α’s in perturbation theory will take the form

dα

dt
= β = − β(1)α2 + · · · ,

dαi
dt

= βi = − β(1)i αi α+
∑
j,k

β
(1)
i,jk αj αk + · · · ,

(19)

Here, · · · denotes higher-order contributions and β
(1)
i,jk = β

(1)
i,kj . For the evolution equations

(19) we investigate the asymptotic properties. First, we define [2, 4, 6, 54,55]

α̃i ≡
αi
α
, i = 1, · · · , n , (20)
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and derive from Eq. (19)

α
dα̃i
dα

= −α̃i +
βi
β

=

(
−1 +

β
(1)
i

β(1)

)
α̃i

−
∑
j,k

β
(1)
i,jk

β(1)
α̃j α̃k +

∑
r=2

(α
π

)r−1
β̃
(r)
i (α̃) ,

(21)

where β̃
(r)
i (α̃) (r = 2, · · · ) are power series of α̃’s and can be computed from the rth-loop

β-functions. We then search for fixed points ρi of Eq. (20) at α = 0. We have to solve the
equation (

−1 +
β
(1)
i

β(1)

)
ρi −

∑
j,k

β
(1)
i,jk

β(1)
ρj ρk = 0 , (22)

assuming fixed points of the form

ρi = 0 for i = 1, · · · , n′ ; ρi > 0 for i = n′ + 1, · · · , n . (23)

Next, we treat α̃i with i ≤ n′ as small perturbations to the undisturbed system (defined
by setting α̃i with i ≤ n′ equal to zero). It is possible to verify the existence of the unique
power series solution of the reduction equations (21) to all orders already at one-loop level
[2–4,54]:

α̃i = ρi +
∑
r=2

ρ
(r)
i αr−1 , i = n′ + 1, · · · , n . (24)

These are RGI relations among parameters, and preserve formally perturbative renor-
malizability. So, in the undisturbed system there is only one independent parameter,
the primary coupling α.

The nonvanishing α̃i with i ≤ n′ cause small perturbations that enter in a way that
the reduced couplings (α̃i with i > n′) become functions both of α and α̃i with i ≤ n′.
Investigating such systems with partial reduction is very convenient to work with the
following PDEs: {

β̃
∂

∂α
+

n′∑
a=1

β̃a
∂

∂α̃a

}
α̃i(α, α̃) = β̃i(α, α̃) ,

β̃i(a) =
βi(a)

α2
− β

α2
α̃i(a), β̃ ≡ β

α
.

(25)

These equations are equivalent to the REs (21), where, in order to avoid any confusion,
we let a, b run from 1 to n′ and i, j from n′ + 1 to n. Then, we search for solutions of
the form

α̃i = ρi +
∑
r=2

(α
π

)r−1
f
(r)
i (α̃a) , i = n′ + 1, · · · , n , (26)

where f
(r)
i (α̃a) are power series of α̃a. The requirement that in the limit of vanishing

perturbations we obtain the undisturbed solutions (24) [44, 56] suggests this type of so-

lutions. Once more, one can obtain the conditions for uniqueness of f
(r)
i in terms of the

lowest order coefficients.
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2.3 Reduction of Parameters of Dimension-1 and -2

The extension of reduction of couplings to massive parameters is not straightforward,
since the technique was originally aimed at massless theories on the basis of the Callan-
Symanzik equation [2, 3]. Many requirements have to be met, such as the normaliza-
tion conditions imposed on irreducible Green’s functions [57], etc. Significant progress
has been made towards this goal, starting from [58], where, as an assumption, a mass-
independent renormalization scheme renders all RG functions only trivially dependent on
dimensional parameters. Mass parameters can then be introduced similarly to couplings.

This was justified later [59,60], where it was demonstrated that, apart from dimension-
less parameters, pole masses and gauge couplings, the model can also include couplings
carrying a dimension and masses. To simplify the analysis, we follow Ref. [58] and use
a mass-independent renormalization scheme as well.

Consider a renormalizable theory that contains (N + 1) dimension-0 couplings,

(ĝ0, ĝ1, ..., ĝN ), L parameters with mass dimension-1,
(
ĥ1, ..., ĥL

)
, and M parameters with

mass dimension-2,
(
m̂2

1, ..., m̂
2
M

)
. The renormalized irreducible vertex function Γ satisfies

the RG equation

DΓ
[
Φ′s; ĝ0, ĝ1, ..., ĝN ; ĥ1, ..., ĥL; m̂2

1, ..., m̂
2
M ;µ

]
= 0 , (27)

with

D = µ
∂

∂µ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γha
∂

∂ĥa
+

M∑
α=1

γm
2

α

∂

∂m̂2
α

+
∑
J

ΦIγ
φI
J

δ

δΦJ
, (28)

where βi are the β-functions of the dimensionless couplings gi and ΦI are the matter
fields. The mass, trilinear coupling and wave function anomalous dimensions, respectively,
are denoted by γm

2

α , γha and γφIJ and µ denotes the energy scale. For a mass-independent
renormalization scheme, the γ’s are given by

γha =
L∑
b=1

γh,ba (g0, g1, ..., gN )ĥb,

γm
2

α =

M∑
β=1

γm
2,β

α (g0, g1, ..., gN )m̂2
β +

L∑
a,b=1

γm
2,ab

α (g0, g1, ..., gN )ĥaĥb .

(29)

The γh,ba , γm
2,β

α and γm
2,ab

α are power series of the (dimensionless) g’s.

We search for a reduced theory where

g ≡ g0, ha ≡ ĥa for 1 ≤ a ≤ P , m2
α ≡ m̂2

α for 1 ≤ α ≤ Q

are independent parameters. The reduction of the rest of the parameters, namely

ĝi = ĝi(g), (i = 1, ..., N),

ĥa =
P∑
b=1

f ba(g)hb, (a = P + 1, ..., L),

m̂2
α =

Q∑
β=1

eβα(g)m2
β +

P∑
a,b=1

kabα (g)hahb, (α = Q+ 1, ...,M)

(30)
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is consistent with the RGEs (27,28). The following relations should be satisfied

βg
∂ĝi
∂g

= βi, (i = 1, ..., N),

βg
∂ĥa
∂g

+

P∑
b=1

γhb
∂ĥa
∂hb

= γha , (a = P + 1, ..., L),

βg
∂m̂2

α

∂g
+

P∑
a=1

γha
∂m̂2

α

∂ha
+

Q∑
β=1

γm
2

β

∂m̂2
α

∂m2
β

= γm
2

α , (α = Q+ 1, ...,M).

(31)

Using Eqs. (29) and (30), they reduce to

βg
df ba
dg

+
P∑
c=1

f ca

[
γh,bc +

L∑
d=P+1

γh,dc f bd

]
− γh,ba −

L∑
d=P+1

γh,da f bd = 0,

(a = P + 1, ..., L; b = 1, ..., P ),

βg
deβα
dg

+

Q∑
γ=1

eγα

γm2,β
γ +

M∑
δ=Q+1

γm
2,δ

γ eβδ

− γm2,β
α −

M∑
δ=Q+1

γm
2,d

α eβδ = 0,

(α = Q+ 1, ...,M ; β = 1, ..., Q),

βg
dkabα
dg

+ 2

P∑
c=1

(
γh,ac +

L∑
d=P+1

γh,dc fad

)
kcbα +

Q∑
β=1

eβα

γm2,ab
β +

L∑
c,d=P+1

γm
2,cd

β fac f
b
d

+2

L∑
c=P+1

γm
2,cb

β fac +

M∑
δ=Q+1

γm
2,d

β kabδ

−
γm2,ab

α +
L∑

c,d=P+1

γm
2,cd

α fac f
b
d

+2
L∑

c=P+1

γm
2,cb

α fac +
M∑

δ=Q+1

γm
2,δ

α kabδ

 = 0,

(α = Q+ 1, ...,M ; a, b = 1, ..., P ) .

(32)

The above relations ensure that the irreducible vertex function of the reduced theory

ΓR
[
Φ’s; g;h1, ..., hP ;m2

1, ...,m
2
Q;µ

]
≡

Γ
[
Φ’s; g, ĝ1(g)..., ĝN (g);h1, ..., hP , ĥP+1(g, h), ..., ĥL(g, h);

m2
1, ...,m

2
Q, m̂

2
Q+1(g, h,m

2), ..., m̂2
M (g, h,m2);µ

] (33)

has the same renormalization group flow as the original one.
Assuming a perturbatively renormalizable reduced theory, the functions ĝi, f

b
a, eβα and

kabα are expressed as power series in the primary coupling:

ĝi = g
∞∑
n=0

ρ
(n)
i gn, f ba = g

∞∑
n=0

ηb(n)a gn,

eβα =
∞∑
n=0

ξβ(n)α gn, kabα =
∞∑
n=0

χab(n)α gn.

(34)

These expansion coefficients are found by inserting the above power series into Eqs. (31),
(32) and requiring the equations to be satisfied at each order of g. It is not trivial to have a
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unique power series solution; it depends both on the theory and the choice of independent
couplings.

If there are no independent dimension-1 parameters (ĥ), their reduction becomes

ĥa =

L∑
b=1

f ba(g)M,

where M is a dimension-1 parameter (i.e. a gaugino mass, corresponding to the inde-
pendent gauge coupling). If there are no independent dimension-2 parameters (m̂2), their
reduction takes the form

m̂2
a =

M∑
b=1

eba(g)M2.

2.4 Reduction of Soft Breaking Terms in N = 1 Supersym-
metric Theories

The reduction of dimensionless couplings was extended [58, 61] to the SSB dimension-
ful parameters of N = 1 supersymmetric theories. It was also found [25, 62] that soft
scalar masses satisfy a universal sum rule.
We consider the superpotential (10)

W =
1

2
µij Φi Φj +

1

6
Cijk Φi Φj Φk , (35)

and the SSB Lagrangian

− LSSB =
1

6
hijk φiφjφk +

1

2
bij φiφj +

1

2
(m2)ji φ

∗ iφj +
1

2
M λiλi + h.c. (36)

The φi’s are the scalar parts of chiral superfields Φi, λ are gauginos and M the unified
gaugino mass.

The one-loop gauge β-function (15) is given by [49–53]

β(1)g =
dg

dt
=

g3

16π2

[∑
i

T (Ri)− 3C2(G)

]
, (37)

whereas the one-loop Cijk’s β-function (16) is given by

βijkC =
dCijk
dt

= Cijl γ
l
k + Cikl γ

l
j + Cjkl γ

l
i , (38)

and the (one-loop) anomalous dimension γ(1) ij of a chiral superfield (17) is

γ(1) ij =
1

32π2

[
Cikl Cjkl − 2 g2C2(Ri)δ

i
j

]
. (39)

Then the N = 1 non-renormalization theorem [45,46,48] guarantees that the β-functions
of Cijk are expressed in terms of the anomalous dimensions.
We make the assumption that the REs admit power series solutions:

Cijk = g
∑
n=0

ρijk(n)g
2n . (40)
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Since we want to obtain higher-loop results instead of knowledge of explicit β-functions,
we require relations among β-functions. The spurion technique [48, 63–66] gives all-loop
relations among SSB β-functions [67–74]:

βM = 2O
(
βg
g

)
, (41)

βijkh = γilh
ljk + γjl h

ilk + γkl h
ijl

− 2 (γ1)
i
l C

ljk − 2 (γ1)
j
l C

ilk − 2 (γ1)
k
l C

ijl , (42)

(βm2)ij =

[
∆ +X

∂

∂g

]
γij , (43)

where

O =

(
Mg2

∂

∂g2
− hlmn ∂

∂C lmn

)
, (44)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn
+ C̃ lmn

∂

∂C lmn
, (45)

(γ1)
i
j = Oγij , (46)

C̃ijk = (m2)ilC
ljk + (m2)jlC

ilk + (m2)kl C
ijl . (47)

Assuming (following [71]) that the relation among couplings

hijk = −M(Cijk)′ ≡ −MdCijk(g)

d ln g
, (48)

is RGI and the use of the all-loop gauge β-function of [75–77]

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C2(G)

1− g2C2(G)/8π2

]
, (49)

we are led to an all-loop RGI sum rule [78] (assuming (m2)ij = m2
jδ
i
j),

m2
i +m2

j +m2
k = |M |2

{
1

1− g2C2(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2

}
+
∑
l

m2
l T (Rl)

C2(G)− 8π2/g2
d lnCijk

d ln g
.

(50)

It is worth noting that the all-loop result of Eq. (50) coincides with the superstring result

for the finite case in a certain class of orbifold models [25,79,80] if d lnCijk

d ln g = 1 [15].
As mentioned above, the all-loop results on the SSB β-functions, Eqs.(41)-(47), lead to

all-loop RGI relations. We assume:
(a) the existence of an RGI surface on which C = C(g), or equivalently that the expression

dCijk

dg
=
βijkC
βg

(51)

holds (i.e. reduction of couplings is possible)
(b) the existence of a RGI surface on which

hijk = −MdC(g)ijk

d ln g
(52)
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holds to all orders.
Then it can be proven [81,82] that the relations that follow are all-loop RGI (note that in
both assumptions we do not rely on specific solutions of these equations)

M = M0
βg
g
, (53)

hijk = −M0 β
ijk
C , (54)

bij = −M0 β
ij
µ , (55)

(m2)ij =
1

2
|M0|2 µ

dγij
dµ

, (56)

where M0 is an arbitrary reference mass scale to be specified shortly. Assuming

Ca
∂

∂Ca
= C∗a

∂

∂C∗a
(57)

for an RGI surface F (g, Cijk, C∗ijk) we are led to

d

dg
=

(
∂

∂g
+ 2

∂

∂C

dC

dg

)
=

(
∂

∂g
+ 2

βC
βg

∂

∂C

)
, (58)

where Eq. (51) was used. Let us now consider the partial differential operator O in
Eq. (44) which (assuming Eq. (48)), becomes

O =
1

2
M

d

d ln g
(59)

and βM , given in Eq. (41), becomes

βM = M
d

d ln g

(βg
g

)
, (60)

which by integration provides us [74, 81] with the generalized, i.e. including Yukawa
couplings, all-loop RGI Hisano - Shifman relation [70]

M =
βg
g
M0 .

M0 is the integration constant and can be associated to the unified gaugino mass M (of
an assumed covering GUT), or to the gravitino mass m3/2 in a supergravity framework.
Therefore, Eq. (53) becomes the all-loop RGI Eq. (53). βM , using Eqs.(60) and (53) can
be written as follows:

βM = M0
d

dt
(βg/g) . (61)

Similarly

(γ1)
i
j = Oγij =

1

2
M0

dγij
dt

. (62)

Next, from Eq.(48) and Eq.(53) we get

hijk = −M0 β
ijk
C , (63)
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while βijkh , using Eq.(62), becomes [81]

βijkh = −M0
d

dt
βijkC , (64)

which shows that Eq. (63) is RGI to all loops. Eq. (55) can similarly be shown to be
all-loop RGI as well.

Finally, it is important to note that, under the assumptions (a) and (b), the sum rule
of Eq. (50) has been proven [78] to be RGI to all loops, which (using Eq. (53)) general-
izes Eq. (56) for application in cases with non-universal soft scalar masses, a necessary
ingredient in the models that will be examined in the next Sections. Another important
point to note is the use of Eq. (53), which, in the case of product gauge groups (as in the
MSSM), takes the form

Mi =
βgi
gi
M0 , (65)

where i = 1, 2, 3 denotes each gauge group, and will be used in the Reduced MSSM case.

3 Finiteness in N=1 Supersymmetric Gauge The-

ories

We start by considering a chiral, anomaly free, N = 1 globally supersymmetric gauge the-
ory with gauge group G and g the theory’s coupling constant. Again, the theory’s su-
perpotential is given by Eq. (10). Because of the N = 1 non-renormalization theorem,
the one-loop β-function is given by Eq. (15), the β-function of Cijk by Eq. (16) and the
one-loop anomalous dimensions of the chiral superfields by Eq. (17).
It is obvious from Eqs. (15) and (17) that all one-loop β-functions of the theory vanish if

β
(1)
g and γ(1)ij vanish: ∑

i

T (Ri) = 3C2(G) , (66)

CiklCjkl = 2δijg
2C2(Ri) . (67)

In [83] one can find the finiteness conditions for N = 1 theories with SU(N) gauge
symmetry, while [84] discusses the requirements of anomaly-free and no-charge renormal-
ization. Remarkably, the conditions (66,67) are necessary and sufficient for finiteness at
the two-loop level as well [49–53].

In the case of soft SUSY breaking, requiring finiteness in the one-loop SSB sector
imposes additional constraints among soft terms [85]. Again, the one-loop SSB finiteness
conditions are enough to render the soft sector two-loop finite [86].

The above finiteness conditions impose considerable restrictions on the choice of irre-
ducible representations (irreps) Ri for a given group G as well as the Yukawa couplings.
These conditions cannot be applied to the MSSM, because the U(1) gauge group is not
compatible with condition (66), since C2[U(1)] = 0. This points to the grand unified level,
with the MSSM just being the low-energy theory.

Additionally, one(two)-loop finiteness causes SUSY to break only softly. Since gauge
singlets are not acceptable, due to the condition given in Eq. (67) (C2(1) = 0, i.e. singlets
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do not couple to the theory), F-type spontaneous symmetry breaking [87] terms are in-
compatible with finiteness, as well as D-type [88] spontaneous breaking which requires
the existence of a U(1) gauge group.

One can see that conditions (66,67) impose relations between the gauge and Yukawa
sector. Imposing such relations, that make the parameters mutually dependent at a given
renormalization point, is trivial. What is not trivial is to guarantee that relations lead-
ing to a reduction of the couplings hold at any renormalization point. As explained
(see Eq. (51)), the necessary and sufficient condition is to require that such relations are
solutions to the REs

βg
dCijk
dg

= βijk (68)

and hold at all orders. It is reminded that the existence of all-order power series solu-
tions to (68) can be decided at one-loop level.

Concerning higher loop orders, a theorem [89,90] exists that states the necessary and
sufficient conditions to achieve all-loop finiteness for an N = 1 SUSY theory. It relies
on the structure of the supercurrent in an N = 1 SUSY theory [91–93], and on the non-
renormalization properties of N = 1 chiral anomalies [89, 90, 94–96]. Details and further
discussion can be found in [89,90,94–98] Following [98] we briefly discuss the proof.

Consider an N = 1 SUSY gauge theory, with simple Lie group G. The content of this
theory is given at the classical level by the matter supermultiplets Si, which contain a
scalar field φi and a Weyl spinor ψia, and the vector supermultiplet Va, which contains a
gauge vector field Aaµ and a gaugino Weyl spinor λaα.

Let us first recall certain facts about the theory:

(1) A massless N = 1 SUSY theory is invariant under a U(1) chiral transformation R
under which the various fields transform as follows

A′µ = Aµ, λ′α = exp(−iθ)λα

φ′ = exp(−i2
3
θ)φ, ′

α = exp(−i1
3
θ)ψα, · · ·

(69)

The corresponding axial Noether current JµR(x) is

JµR(x) = λ̄γµγ5λ+ · · · (70)

is conserved classically, while in the quantum case is violated by the axial anomaly

∂µJ
µ
R = r (εµνσρFµνFσρ + · · · ) . (71)

From its known topological origin in ordinary gauge theories [99–101], one would ex-
pect the axial vector current JµR to satisfy the Adler-Bardeen theorem and receive cor-
rections only at the one-loop level. Indeed it has been shown that the same non-
renormalization theorem holds also in SUSY theories [94–96]. Therefore

r = ~β(1)g . (72)

(2) The massless theory we consider is scale invariant at the classical level and, in gen-
eral, there is a scale anomaly due to radiative corrections. The scale anomaly appears in
the trace of the energy momentum tensor Tµν , which is traceless classically. It has the form

Tµµ = βgF
µνFµν + · · · (73)
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(3) Massless, N = 1 SUSY gauge theories are classically invariant under the supersymmet-
ric extension of the conformal group – the superconformal group. Examining the supercon-
formal algebra, it can be seen that the subset of superconformal transformations consisting
of translations, SUSY transformations, and axial R transformations is closed under SUSY,
i.e. these transformations form a representation of SUSY. It follows that the conserved cur-
rents corresponding to these transformations make up a supermultiplet represented by an
axial vector superfield called the supercurrent J ,

J ≡
{
J ′µR , Q

µ
α, T

µ
ν , ...

}
, (74)

where J ′µR is the current associated to R-invariance, Qµα is the one associated to SUSY in-
variance, and Tµν the one associated to translational invariance (energy-momentum ten-
sor).

The anomalies of the R-current J ′µR , the trace anomalies of the SUSY current,
and the energy-momentum tensor, form also a second supermultiplet, called the super-
trace anomaly

S = {Re S, Im S, Sα} =
{
Tµµ , ∂µJ

′µ
R , σ

µ

αβ̇
Q̄β̇µ + · · ·

}
where Tµµ is given in Eq. (73) and

∂µJ
′µ
R = βgε

µνσρFµνFσρ + · · · (75)

σµ
αβ̇
Q̄β̇µ = βgλ

βσµναβFµν + · · · (76)

(4) It is important to note that the Noether current defined in (70) is not the same as
the current associated to R-invariance that appears in the supercurrent J in (74), but
they coincide in the tree approximation. So starting from a unique classical Noether cur-
rent JµR(class), the Noether current JµR is defined as the quantum extension of JµR(class)
which allows for the validity of the non-renormalization theorem. On the other hand,
J ′µR , is defined to belong to the supercurrent J , together with the energy-momentum ten-
sor. The two requirements cannot be fulfilled by a singl current operator at the same time.

Although the Noether current JµR which obeys (71) and the current J ′µR belonging to the
supercurrent multiplet J are not the same, there is a relation [89, 90] between quantities
associated with them

r = βg(1 + xg) + βijkx
ijk − γArA , (77)

where r is given in Eq. (72). The rA are the non-renormalized coefficients of the anoma-
lies of the Noether currents associated to the chiral invariances of the superpotential, and
–like r– are strictly one-loop quantities. The γA’s are linear combinations of the anoma-
lous dimensions of the matter fields, and xg, and xijk are radiative correction quantities.
The structure of Eq. (77) is independent of the renormalization scheme.

One-loop finiteness, i.e. vanishing of the β-functions at one loop, implies that
the Yukawa couplings λijk must be functions of the gauge coupling g. To find a simi-
lar condition to all orders it is necessary and sufficient for the Yukawa couplings to be
a formal power series in g, which is solution of the REs (68).
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We can now state the theorem for all-order vanishing β-functions [90].
Theorem:
Consider an N = 1 SUSY Yang-Mills theory, with simple gauge group. If the following
conditions are satisfied

1. There is no gauge anomaly.

2. The gauge β-function vanishes at one loop

β(1)g = 0 =
∑
i

T (Ri)− 3C2(G). (78)

3. There exist solutions of the form

Cijk = ρijkg, ρijk ∈ IC (79)

to the conditions of vanishing one-loop matter fields anomalous dimensions

γ(1)ij = 0 =
1

32π2
[ Cikl Cjkl − 2 g2 C2(R)δij ]. (80)

4. These solutions are isolated and non-degenerate when considered as solutions of
vanishing one-loop Yukawa β-functions:

βijk = 0. (81)

Then, each of the solutions (79) can be uniquely extended to a formal power series in
g, and the associated super Yang-Mills models depend on the single coupling constant g
with a β-function which vanishes at all orders.

Important note: The requirement of isolated and non-degenerate solutions guar-
antees the existence of a unique formal power series solution to the reduction equa-

tions. The vanishing of the gauge β-function at one loop, β
(1)
g , is equivalent to the van-

ishing of the R-current anomaly (71). The vanishing of the anomalous dimensions at one
loop implies the vanishing of the Yukawa couplings β-functions at that order. It also
implies the vanishing of the chiral anomaly coefficients rA. This last property is a neces-
sary condition for having β-functions vanishing at all orders.a

Proof:
Insert βijk as given by the REs into the relationship (77). Since these chiral anoma-
lies vanish, we get for βg an homogeneous equation of the form

0 = βg(1 +O(~)). (82)

The solution of this equation in the sense of a formal power series in ~ is βg = 0, order by
order. Therefore, due to the REs (68), βijk = 0 too.

Thus we see that finiteness and reduction of couplings are intimately related. Since an
equation like Eq. (77) is absent in non-SUSY theories, one cannot extend the validity of
a similar theorem in such theories.

A very interesting development was done in [68]. Based on the all-loop relations among
the β-functions of the soft SUSY breaking terms and those of the rigid supersymmetric

aThere is an alternative way to find finite theories [102–104,106].
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theory with the help of the differential operators, discussed in Sect. 2.4, it was shown that
certain RGI surfaces can be chosen, so as to reach all-loop finiteness of the full theory.
More specifically, it was shown that on certain RGI surfaces the partial differential opera-
tors appearing in Eq. (41),(42) acting on the β- and γ-functions of the rigid theory can be
transformed to total derivatives. Then the all-loop finiteness of the β and γ-functions
of the rigid theory can be transferred to the β-functions of the SSB terms. Therefore,
a totally all-loop finite N = 1 SUSY gauge theory can be constructed, including the soft
SUSY breaking terms.

4 Experimental Constraints

In this section we review the phenomenological constraints that were applied in the phe-
nomenological analysis. The fact that the used values do not correspond to the latest
experimental results has a negligible impact on our analysis.

In each of our models we evaluate the pole mass of the top quark, while the bottom
quark mass is evaluated at the MZ scale, in order to avoid uncertainties to its pole mass.
The experimental values [107] are:

mexp
t = 173.1± 0.9 GeV , mb(MZ) = 2.83± 0.10 GeV . (83)

The Higgs-like particle discovered in July 2012 by ATLAS and CMS [31,32] is interpreted
as the light CP-even Higgs boson of the MSSM [108–110]. The Higgs boson experimental
average mass is [107] b

M exp
h = 125.10± 0.14 GeV . (84)

The theoretical uncertainty [39, 40], however, for the prediction of Mh in the MSSM is
much larger than the experimental one and thus dominates the total uncertainty. In the
following sections we shall use the updated FeynHiggs code [39–41] (Version 2.16.0) to
predict the light Higgs mass.c FeynHiggs evaluates all Higgs masses based on a com-
bination of fixed order diagrammatic calculations and resummation of the (sub)leading
logarithmic contributions at all orders. This gives a reliable Mh even for large SUSY
scales. This version gives a downward shift on the Higgs mass Mh of O(2 GeV) for large
supersymmetric masses. In particular, it gives a reliable point-by-point calculation of
the Higgs boson mass uncertainty [42]. The theoretical uncertainty calculated is added
linearly to the experimental error in Eq. (84).

Furthermore, recent ATLAS results [112] set limits to the pseudoscalar Higgs mass,
MA, compared to tanβ. For tanβ ∼ 45− 55 the lowest limit for the physical MA is

MA & 1900 GeV. (85)

Finally, we consider four flavor observables where SUSY has non-negligible impact. For
the branching ratio BR(b→ sγ) we use a value from [113,114], while for BR(Bs → µ+µ−)
we take a combination of [115–119]:

BR(b→ sγ)exp

BR(b→ sγ)SM
= 1.089± 0.27 , BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 . (86)

bThis is the latest available LHC combination. More recent measurements confirm this value.
cFor a discussion of the impact of the improved Mh calculation in several SUSY models see [111].
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Figure 1: Flow of information between computer codes.

For the Bu decay to τν [114,120,121] is used and for ∆MBs we take [122,123]:

BR(Bu → τν)exp

BR(Bu → τν)SM
= 1.39± 0.69 ,

∆M exp
Bs

∆MSM
Bs

= 0.97± 0.2 . (87)

5 Computational setup for phenomenological

analysis

Here we briefly explain the setup that was used for our analysis. We start from a set
of MSSM boundary conditions at the unification scale, then parameters are run down
to the SUSY scale using a private code. Two-loop RGEs are used throughout, with
the exception of the one-loop soft sector. The running parameters are then used as
inputs for FeynHiggs [39–42] and a SARAH [124] generated, custom MSSM module for
SPheno [125,126]. Since FeynHiggs requires the mb(mb) scale, the physical top quark mass
mt as well as the physical pseudoscalar boson mass MA as input, the first two values are
calculated by the private code, while MA is calculated only in DR scheme. This single
value is obtained from the SPheno output where it is calculated at two loops in the
gaugeless limit [127,128]. Fig. 1 summarizes the flow of information between codes.

Although at this point both codes contain a consistent set of all required parame-
ters, the SM-like Higgs boson mass and the B-physics observables are evaluated using
FeynHiggs, while to obtain collider predictions we use SARAH to generate UFO [129, 130]
model for MadGraph event generator. Based on SLHA spectrum files generated by SPheno,
we use MadGraph5 aMC@NLO [131] to calculate cross sections for Higgs boson and SUSY
particle production at the HL-LHC and a 100 TeV FCC-hh. All processes are generated at
the leading order, using NNPDF31 lo as 0130 [132] structure functions interfaced through
LHAPDF6 [133]. The respective cross sections are computed using dynamic scale choice,
where the scale is considered equal to the transverse mass of an event, in 4 or 5-flavor
scheme depending on the presence or not of b-quarks in the final state.

6 The Finite N = 1 Supersymmetric SU(5) Model

We start with the finite to all-orders SU(5) theory, where we restrict the application
of the reduction of couplings method to the third generation. An older analysis of this
Finite Unified Theory (FUT) was in agreement with the experimental constraints at the
time [29] and predicted the light Higgs mass in the correct range almost five years before its
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discovery. As reviewed below, improved Higgs calculations predict a somewhat different
interval that is still within current experimental limits.

The particle content of the model consists of three (5 + 10) supermultiplets for the
three generations of leptons and quarks, while the Higgs sector is accommodated in four
supermultiplets (5 + 5) and one 24. The finite SU(5) group is broken to the MSSM,
which is no longer a finite theory, as expected [14–17,21,24].

The following characteristics are essential in order for this all-loop finite SU(5) model
to achieve Gauge Yukawa Unification (GYU):

(i) The one-loop anomalous dimensions must be diagonal i.e., γ
(1) j
i ∝ δji .

(ii) The fermions of 5i and 10i (i = 1, 2, 3) do not couple to 24.
(iii) The MSSM Higgs doublets are mostly composed from the 5 and 5̄ that couple to the
third generation.
The superpotential (with an enhanced symmetry due to the reduction of couplings) is
given by [25,27]:

W =
3∑
i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4 (88)

+ gd23 10253H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 .

The model is discussed in more detail in [14–16]. The non-degenerate and isolated solu-

tions to the vanishing of γ
(1)
i are:

(gu1 )2 =
8

5
g2 , (gd1)2 =

6

5
g2 , (gu2 )2 = (gu3 )2 =

4

5
g2 ,

(gd2)2 = (gd3)2 =
3

5
g2 , (gu23)

2 =
4

5
g2 , (gd23)

2 = (gd32)
2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf2 )2 = (gf3 )2 =

1

2
g2 , (gf1 )2 = 0 , (gf4 )2 = 0 .

(89)

Regarding the parameters of non-zero dimension, we have the relation h = −MC, while
the sum rules lead to:

m2
Hu + 2m2

10 = M2 , m2
Hd
− 2m2

10 = −M
2

3
, m2

5
+ 3m2

10 =
4M2

3
. (90)

We therefore result in just two free dimensionful parameters, m10 and M .
When the GUT breaks to the MSSM, a suitable rotation in the Higgs sec-

tor [14, 15, 134–137], allows only one two Higgs doublets (coupled mostly to the third
family) to remain light and acquire vevs. Fast proton decay is avoided with the usual
doublet-triplet splitting.

Below the GUT scale we get the MSSM, where the third generation is given by the
finiteness conditions (the first two remain unrestricted). However, these conditions do
not restrict the low-energy renormalization properties, so the above relations between
gauge, Yukawa and the various dimensionful parameters serve as blundary conditions
at MGUT . The third generation quark masses mb(MZ) and mt are predicted within 2σ
and 3σ uncertainties, respectively, of their experimental values (see the complete analysis
in [37]). µ < 0 is the only phenomenologically viable option, as shown in [37,138–145].
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Figure 2: Plot for the Finite SU(5) model. Left: Mh as a function ofM . The green points satisfy
all four B-physics constraints. Right: The lightest Higgs boson mass theoretical uncertainty
(calculated with FeynHiggs 2.16.0 [42]).

The plot of the light Higgs mass is given in Fig. 2 (left) and its theoretical uncer-
tainty [42] is given in Fig. 2 (right). It should be noted that this point-by-point uncertainty
drops significantly (w.r.t. the previous analysis) to 0.65− 0.70 GeV.

The improved evaluation of Mh and its uncertainty prefer a heavier (Higgs) spec-
trum (compared to previous analyses [37, 138–144, 146–150]), and thus allows only a
heavy supersymmetric spectrum, which is in agreement with all existing experimental
data. Very heavy colored supersymmetric particles are favored, in agreement with the
non-observation of such particles at the LHC [151].

M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

FUTSU5-1 2124 3815 8804 4825 8542 7282 7710 2961 49.9 81122

FUTSU5-2 2501 4473 10198 5508 10482 8493 9023 3536 50.1 93872

FUTSU5-3 3000 5340 11996 6673 23612 10086 10562 4243 49.9 110302

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2

m2
e3

FUTSU5-1 66342 38692 31202 76842 50532 76352 41772 30842 22412

FUTSU5-2 76692 45212 37472 88872 68652 88262 68932 36022 25512

FUTSU5-3 91162 53552 37452 104192 81702 103622 77082 43292 34032

Table 1: Finite N = 1 SU(5) predictions that are used as input to SPheno (see [38]).

As explained in more detail in [38], the three benchmarks chosen feature the LSP
above 2100 GeV, 2400 GeV and 2900 GeV, respectively. The input of SPheno

4.0.4 [125, 126] can be found in Table 1, where Mi are gaugino masses and the
rest are squared sfermion masses which are diagonal (m2 = diag(m2

1,m
2
2,m

2
3)) and

soft trilinear couplings, which are also diagonal Ai = 13×3Ai).
The resulting masses that are relevant to our analysis are listed in Table 2.

The three first values are the heavy Higgs masses. The gluino mass is Mg̃, the
neutralinos and the charginos are denoted as Mχ̃0

i
and Mχ̃±i

, while the slepton and
sneutrino masses for all three generations are given as Mẽ1,2,3 , Mν̃1,2,3 . Similarly,
the squarks are denoted as Md̃1,2

and Mũ1,2 for the first two generations. The
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third generation masses are given by Mt̃1,2 for stops and Mb̃1,2
for sbottoms.

MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

Mχ̃±1
Mχ̃±2

FUTSU5-1 5.688 5.688 5.688 8.966 2.103 3.917 4.829 4.832 3.917 4.833

FUTSU5-2 7.039 7.039 7.086 10.380 2.476 4.592 5.515 5.518 4.592 5.519

FUTSU5-3 16.382 16.382 16.401 12.210 2.972 5.484 6.688 6.691 5.484 6.691

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

FUTSU5-1 3.102 3.907 2.205 3.137 7.839 7.888 6.102 6.817 6.099 6.821

FUTSU5-2 3.623 4.566 2.517 3.768 9.059 9.119 7.113 7.877 7.032 7.881

FUTSU5-3 4.334 5.418 3.426 3.834 10.635 10.699 8.000 9.387 8.401 9.390

Table 2: Masses for each of the three benchmarks of the Finite N = 1 SU(5) (in TeV) [38].

Table 3 lists all the expected production cross sections for the various final states
at the 100 TeV future FCC-hh collider (for the full analysis see [38]). At 14 TeV
HL-LHC none of the Finite SU(5) scenarios listed above has a SUSY production
cross section above 0.01 fb, and thus will most probably remain unobservable, since
all superpartners are too heavy for pair production and the heavy Higgs bosons
are far outside the reach of the collider [152]. For this reason we do not show any√
s = 14 TeV cross sections.
The discovery prospects for the heavy Higgs-boson spectrum is significantly bet-

ter at the FCC-hh [153]. Theoretical analyses [154, 155] have shown that for large
tan β heavy Higgs mass scales up to ∼ 8 TeV could be accessible. The relevant
decay channels are H/A → τ+τ− and H± → τντ , tb. Since in this model we have
tan β ∼ 50, the first two benchmark points are well within the reach of the FCC-hh.
The third point, however, where MA ∼ 16 TeV, will be far outside the reach of the
collider.

The energy of 100 TeV is big enough to produce SUSY particles in pairs. How-
ever, prospects for detecting production of squark pairs and squark-gluino pairs are
very dim since their production cross section is also at the level of a few fb. This is
as a result of a heavy spectrum in this class of models.

The SUSY discovery reach at the FCC-hh with 3 ab−1 was evaluated in [156] for
a certain set of simplified models. In the following we will compare these sim-
plified model limits with our benchmark points to get an idea, which part of the
spectrum can be covered at the FCC-hh. A more detailed evaluation with the fu-
ture limits implemented into proper recasting tools would be necessary to obtain a
firmer statement. However, such a detailed analysis goes beyond the scope of our
work and we restrict ourselves to the simpler direct comparison of the simplified
model limits with our benchmark predictions.

The lighter stop might be accessible in FUTSU5-1. For the squarks of the first
two generations have somewhat better prospects of testing the model. All bench-
marks could possibly be excluded at the 2σ level, but no discovery at the 5σ can be
expected and the same holds for the gluino. The heavy LSP will keep charginos and
neutralinos unobservable. We have to conclude that again large parts of the possible
mass spectra will not be observable at the FCC-hh.
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scenarios FUTSU5-1 FUTSU5-2 FUTSU5-3 scenarios FUTSU5-1 FUTSU5-2 FUTSU5-3√
s 100 TeV 100 TeV 100 TeV

√
s 100 TeV 100 TeV 100 TeV

χ̃0
2χ̃

0
3 0.01 0.01 ν̃iν̃

∗
j 0.02 0.01 0.01

χ̃0
3χ̃

0
4 0.03 0.01 ũiχ̃

−
1 , d̃iχ̃

+
1 + h.c. 0.15 0.06 0.02

χ̃0
2χ̃

+
1 0.17 0.08 0.03 q̃iχ̃

0
1, q̃
∗
i χ̃

0
1 0.08 0.03 0.01

χ̃0
3χ̃

+
2 0.05 0.03 0.01 q̃iχ̃

0
2, q̃
∗
i χ̃

0
2 0.08 0.03 0.01

χ̃0
4χ̃

+
2 0.05 0.03 0.01 ν̃iẽ

∗
j , ν̃
∗
i ẽj 0.09 0.04 0.01

g̃g̃ 0.20 0.05 0.01 Hbb̄ 2.76 0.85
g̃χ̃0

1 0.03 0.01 Abb̄ 2.73 0.84
g̃χ̃0

2 0.03 0.01 H+bt̄+ h.c. 1.32 0.42
g̃χ̃+

1 0.07 0.03 0.01 H+W− 0.38 0.12
q̃iq̃j , q̃iq̃

∗
j 3.70 1.51 0.53 HZ 0.09 0.03

χ̃+
1 χ̃
−
1 0.10 0.05 0.02 AZ 0.09 0.03

χ̃+
2 χ̃
−
2 0.03 0.02 0.01

ẽiẽ
∗
j 0.23 0.13 0.05

q̃ig̃, q̃
∗
i g̃ 2.26 0.75 0.20

Table 3: Expected production cross sections (in fb) for supersymmetric particles (for the original
analysis see [38]).

7 The Reduced MSSM

Our second phenomenological analysis concerns the application of the reduction of
couplings method to a version of the MSSM, where we assume a covering GUT.
The original work can be found in refs. [157, 158]. Considering the reduction only
on the third fermionic generation, the superpotential reads:

W = YtH2Qt
c + YbH1Qb

c + YτH1Lτ
c + µH1H2 , (91)

where Yt,b,τ are third family parameters. The SSB Lagrangian is given by (again
only for the third family sector)

−LSSB =
∑
φ

m2
φφ̂
∗φ̂+

[
m2

3Ĥ1Ĥ2 +
3∑
i=1

1

2
Miλiλi + h.c

]
+
[
htĤ2Q̂t̂c + hbĤ1Q̂b̂c + hτĤ1L̂τ̂ c + h.c.

]
.

(92)

Starting with the dimensionless sector, we consider initially the top and bottom
Yuakwa couplings and the strong gauge coupling, whereas the rest of the couplings
are treated as corrections. For Y 2

(t,b)/(4π) ≡ α(t,b), the REs and the Yukawa RGEs
give

αi = G2
iα3, where G2

i =
1

3
, i = t, b.

If we include the tau Yukawa in the reduction, the corresponding G2 coefficient for
tau turns negative [159]. This is the reason that this coupling cannot be reduced
and is also treated as a correction.
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We assume that the ratios of the quark Yukawa couplings to the strong coupling
are constant at the unification scale (they have negligible scale dependence),

d

dg3

(
Y 2
t,b

g23

)
= 0.

Then, if we include the corrections from the SU(2), U(1) and tau couplings at the
GUT scale, we get the full coefficients G2

t,b:

G2
t =

1

3
+

71

525
ρ1 +

3

7
ρ2 +

1

35
ρτ , G2

b =
1

3
+

29

525
ρ1 +

3

7
ρ2 −

6

35
ρτ , (93)

where

ρ1,2 =
g21,2
g23

=
α1,2

α3

, ρτ =
g2τ
g23

=

Y 2
τ

4π
α3

. (94)

We shall treat Eqs.(93) as boundary conditions at the unification scale.
Going to two loops, we assume the form of the corrections to be:

αi = G2
iα3 + J2

i α
2
3, i = t, b .

Then, the two-loop coefficients, Ji, with the inclusion of the above-mentioned cor-
rections, are:

J2
t =

1

4π

Nt

D
, J2

b =
1

4π

Nb

5D
,

where D, Nt and Nb are known quantities which can be found in ref. [160].
We may now proceed to the the SSB Lagrangian, Eq. (92), and the dimension-

one parameters, i.e the trilinear couplings ht,b,τ . We first reduce ht,b:

hi = ciYiM3 = ciGiM3g3, where ci = −1 i = t, b,

where M3 is the gluino mass. Adding the gauge and the tau corrections we have

ct = −AAAbb + AtbBB

AbtAtb − AbbAtt
, cb = −AAAbt + AttBB

AbtAtb − AbbAtt
.

where Att, Abb and Atb can be found in ref. [160].
Finally, we treat the soft scalar masses m2

φ of the SSB Lagrangian. Assuming
the relations m2

i = ciM
2
3 (i = Q, u, d,Hu, Hd), and adding the gauge, the tau

couplings and hτ corrections, we get

cQ = −cQNum

Dm

, cu = −1

3

cuNum

Dm

, cd = −cdNum

Dm

, cHu = −2

3

cHuNum

Dm

, cHd = −cHdNum

Dm

,

(95)

where Dm, cQNum, cuNum, cdNum, cHuNum, cHdNum and the complete analysis are
given in ref. [160]. The values of Eq. (95) do not obey any soft scalar mass sum
rule.
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If only the reduced system was used (with no corrections), i.e. the strong, top and
bottom Yukawa couplings as well as the ht and hb, the coefficients would be

cQ = cu = cd =
2

3
, cHu = cHd = −1/3,

which obey the sum rules

m2
Q +m2

u +m2
Hu

M2
3

= cQ + cu + cHu = 1,
m2
Q +m2

d +m2
Hd

M2
3

= cQ + cd + cHd = 1.

(96)
We should also mention an essential point for the gaugino masses here. The ap-

plication of the Hisano-Shifman relation (Eq. (53)) is made for each gaugino mass as
a boundary condition at MGUT. Then, at one-loop level, the gaugino mass depends
on the one-loop coefficient of the corresponding β-function and an arbitrary mass
M0, Mi = biM0. This fact permits, with a suitable choice of M0, to have the
gluino mass equal to the unified gaugino mass, while the gauginos masses of the
other two gauge groups are given by the gluino mass multiplied by the ratio of the
appropriate one-loop β coefficient.

Figure 3: Left: The lightest Higgs mass, Mh in the Reduced MSSM. Right: the Higgs mass the-
oretical uncertainty [42].

We choose the GUT scale to apply the corrections to all these RGI relations in
our analysis. A detailed discussion on the free parameters selection of the model can
be found in [37]. In total, we vary ρτ , ρhτ , M and µ. The predictions for the bottom
and the top quark masses are within 2σ of Eq. (83). The light Higgs mass Mh is
shown in Fig. 3 (left) and is predicted within experimental measured range, while
its theoretical uncertainty shown in Fig. 3 (right) now drops below 1 GeV.

As demonstrated in [38], Mh sets a limit on the low-energy supersymmet-
ric masses, which we briefly discuss. The three benchmarks selected correspond
to DR pseudoscalar Higgs masses above 1900 GeV, 1950 GeV and 2000 GeV re-
spectively. The values used as input to SPheno 4.0.4 [125,126] are listed in Table 4
(notation as in Sect. 6).

The resulting masses of Higgs bosons and some of the lightest supersymmetric
particles are given in Table 5. In particular, we find MA

<∼ 1.5 TeV This means that
in this model, because of the large tan β ∼ 45, the physical mass of the pseudoscalar
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M1 M2 M3 |µ| b Au Ad Ae tanβ m2
Q1,2

RMSSM-1 3711 1014 7109 4897 2842 5274 5750 20 44.9 59852

RMSSM-2 3792 1035 7249 4983 2942 5381 5871 557 44.6 61032

RMSSM-3 3829 1045 7313 5012 2982 5427 5942 420 45.3 61612

m2
Q3

m2
L1,2

m2
L3

m2
u1,2

m2
u3

m2
d1,2

m2
d3

m2
e1,2

m2
e3

RMSSM-1 55452 21062 20692 62772 53862 59892 51142 30512 44912

RMSSM-2 56562 21222 22902 63852 54762 61102 52192 31532 41812

RMSSM-3 57082 21062 22792 64272 55062 61722 52692 32292 35042

Table 4: Reduced MSSM predictions used as input to SPheno (see [38]).

Higgs boson, MA, is excluded by the searches H/A → ττ at ATLAS with 139/fb
[112] for all three benchmarks, and, as it was shown in [38], this holds for the entire
allowed parameter space. If we considered a heavier sectrum instead (in which
we would have MA & 1900 GeV) the light Higgs boson mass would be above its
acceptable region. Thus, this version of the model is ruled out experimentally.
Consequently, we do not present any cross sections.

MH MA MH± Mg̃ Mχ̃0
1

Mχ̃0
2

Mχ̃0
3

Mχ̃0
4

Mχ̃±1
Mχ̃±2

RMSSM-1 1.393 1.393 1.387 7.253 1.075 3.662 4.889 4.891 1.075 4.890

RMSSM-2 1.417 1.417 1.414 7.394 1.098 3.741 4.975 4.976 1.098 4.976

RMSSM-3 1.491 1.491 1.492 7.459 1.109 3.776 5.003 5.004 1.108 5.004

Mẽ1,2 Mν̃1,2 Mτ̃ Mν̃τ Md̃1,2
Mũ1,2 Mb̃1

Mb̃2
Mt̃1

Mt̃2

RMSSM-1 2.124 2.123 2.078 2.079 6.189 6.202 5.307 5.715 5.509 5.731

RMSSM-2 2.297 2.139 2.140 2.139 6.314 6.324 5.414 5.828 5.602 5.842

RMSSM-3 2.280 2.123 2.125 2.123 6.376 6.382 5.465 5.881 5.635 5.894

Table 5: Masses for each of the three benchmarks of the Reduced MSSM (in TeV). Original
analysis in [38].

8 Conclusions

The basis of the reduction of couplings scheme is the search for RGE relations
among parameters that hold to all orders in perturbation theory. It is realized
in certain N = 1 theories, rendering them more predictive. In the present work,
after a review of the ideas concerning the reduction of couplings of renormaliz-
able theories and the theoretical methods which have been developed to confront
the problem, we turn to the question of testing experimentally the idea of reduction
of couplings. Two specific models, namely the all-loop Finite N = 1 SU(5) and the
Reduced MSSM, have been considered and new results have been obtained for both,
using the updated Higgs-boson mass calculation of FeynHiggs. In each case low-
mass region benchmark points have been chosen, for which the SPheno code was
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used to calculate the spectrum of supersymmetric particles and their respective de-
cay modes. Finally, the MadGraph event generator has been used (in the case of the
Finite SU(5)) for the computation of the production cross sections of relevant final
states at the 14 TeV (HL-)LHC and 100 TeV FCC-hh colliders.

The finite model was found to be in agreement with LHC measurements. Both
models predict relatively heavy spectra, which evade largely the detection in the
HL-LHC. However, the Reduced MSSM features a relatively light heavy Higgs
spectrum. Combined with its relatively high tan β, this spectrum is excluded
by current searches at ATLAS for in the pp → H/A → τ+τ− mode. Concern-
ing the finite model, we examined the accessibility of the SUSY and heavy Higgs
spectrum at the FCC-hh with

√
s = 100 TeV. The lower parts of the parameter

space will be testable at the 2 σ level, with only an even smaller part discoverable at
the 5σ level. However, the heavier parts of the possible SUSY spectra will remain
elusive even at the FCC-hh.
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