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Abstract

The integrable cases of fermionic extensions of the KdV equation are reviewed,

using Hirota bilinear formalism extended to super space. The supersymmetric and

the non-supersymmetric continuous and discrete KdV equations are presented with

their super-bilinearisations and supersoliton solutions.

1 Introduction

It is well known that the study of KdV equation by Kruskal and his collaborates was the

starting point of the modern theory of integrable systems or soliton theory [1]. Yu. Manin

and A. Radul gave the first systematic construction of an integrable supersymmetric hi-

erarchy more then thirty years ago [2]. The simplest and the most important reduction

of the supersymmetric KP hierarchy, given by Manin and Radul, is the supersymmet-

ric KdV equation. Still, the complete integrability of supersymmetric equations has no

definitive answer so far both classically and quantum mechanically. Supersymmetry is

an extra symmetry imposed by construction, which means, roughly speaking, an invari-

ance with respect to a kind of interchanging between the bosonic and fermionic fields

[2, 3]. Some of the most interesting results obtained so far about integrability of super-

symmetric nonlinear equations are about Darboux transformations [4, 5], bi-Hamiltonian

structure [6], prolongation structures [7] and Painlevé property [8], the appearance of non-

local integrals of motion [9], lack of unique bilinear formulation of integrable hierarchies

[10, 11, 12, 13, 14], inelastic interactions of supersolitons[15], dressing of fermionic phases

[16, 17], peculiar properties of super-Painlevé equations [18] etc.

The study of supersoliton interaction was also extended to lattice equations, where

the supersymmetry is broken due to discretization. The equations can still be analyzed

using Bäcklund-Darboux transformations, Lax pair or super-bilinear formalism [19, 20,

21, 22, 23].

In this paper we are going to focus on the results obtained on the fermionic extensions

of the KdV equation. The first completely integrable super-extension of KdV was given

independently by Kuperschmidt and Kulish [24, 25] before the Manin-Radul [2] paper.

The Kuper-KdV (known as super fermionic KdV equation) is not supersymmetric and

served as the first example of integrability in the Grassmann algebra. Kuperschmidt

himself established the Lax pair and bi-Hamiltonian structure, Kulish and Zeitlin [26]

adapted he IST scheme to Kuper-KdV equation in the case of a Grassmann algebra with

only one generator, and only recently the supersolitons were constructed using super-

Hirota bilinear formalism [27].

The paper is organized as follows: in Section 2 the notion of supersymmetry is briefly

discussed, together with the supersymmetric KdV hierarchy and its bilinearisation with
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the aide of the super-Hirota operators, in Section 3 and 4 the continuous susy-KdV and the

Kuper-KdV are presented, with the bilinear form and supersoliton solutions. In Section

5, the asymptotology of interaction for susy-KdV and Kuper-KdV are presented. In

Section 6 other supersymmetric and non-supersymmetric KdV-type equations are briefly

presented and Section 7 focuses on discrete super-KdV and its solutions.

2 Supersymmetry and the supersymmetric KdV hi-

erarchy

The supersymmetric extension of a nonlinear evolution equation is a system of coupled

equations of bosonic ( ) and fermionic fields ( ), related through a transformation:

→ +   = 

 →  +   = 

which leaves the system invariant ( is a fermionic parameter).

In the limit where the fermionic field ( ) is zero, the supersymmetric extension

reduces to the initial equation. The fermionic and the bosonic fields are described, in the

classical context, by anticommuting (odd) and respectively commuting (even) functions

in an infinitely generated Grassmann algebra.

The mathematical formulation of these concepts imply the extension of the classical

space ( ) to a superspace (  ), and also the extension of the pair of fields ( ) to

a superfield Φ(  ), which can be bosonic, Φ(  ) = ( ) + ( ) or fermionic

Φ(  ) = ( ) + ( ).

We work in N = 1 SUSY, which means that we have only one Grassmann variable 

and that we consider only space supersymmetry invariance [28]: → − → +

The transformation above is generated by an operator  = −, which anticommutes
with the covariant derivative D =  +  (notice that D2 = , as 

2 = 0).

Equations written in terms of the superfield Φ(  ) and the covariante derivative

D =  +  are supersymmetric invariant. Different supersymmetric extensions of

nonlinear equations can be constructed using the superspace formalism.

One of the most tractable methods in solving such equations is the super Hirota bilinear

formalism. The extension of the Hirota operator has been introduced by A. Carstea in

[16] and is defined by its action on a pair of Grassmann-valued functions ( ) in the

following form:

S ·  = (D) − (−1)| |(D)
where D =  +  is the covariant derivative and | | is the Grassmann parity of the
function  , which is zero if the function is bosonic and 1 if the function is fermionic with

 ,  general odd and even functions.

Some of the most important properties of the super-Hirota operator are:

S2  ·  = D
  • 

S2+1  ·  = SD

  • 

3 Continuous supersymmetric KdV (susy-KdV)

The supersymmetric fermionic extension of continuous KdV equation was constructed

more then 30 years ago [2]. The equation, known in the literature as supersymmetric
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KdV equation (susy-KdV), has the following form:

Φ +D6Φ+ 3D2(ΦDΦ) = 0 (1)

where Φ(  ) is an odd superfield and D is the super-covariant derivative.
Considering the odd superfield Φ(  ) = ( ) + ( ), with ( ) odd (fermi-

onic) function and ( ) even (bosonic) function, the nonlinear form of susy-KdV (1),

on the components, is [28]:

 + 6 +  − 3 = 0 (2)

 + 3() +  = 0

In order to construct the super-bilinear form of (1) we consider the nonlinear substi-

tution for the superfield:

Φ(  ) = 2D3 log (  )
with  = + a bosonic tau function ( bosonic and fermionic) and the super-bilinear

operator S. We obtain [20]:

(SD + S
7
) •  = 0

In terms of  and , the super-bilinear form or susy-KdV is:

(D +D
3
) •  = 0 (3)

(DD +D
4
) ·  − 2(D +D

3
) • = 0

Remark: The same substitution can be used to write the full supersymmetric hier-

archy proposed by McArthur and Yung:

Φ1 = −Φ

Φ3 = −(Φ − 3ΦDΦ)
Φ5 = −(Φ − 5ΦDΦ+ 10Φ(D)2 − 5(DΦ)Φ − 5ΦDΦ)

where the second equation is the supersymmetric KdV equation.

Using the same ansatz,  = 2D3 log  , the full supersymmetric KdV hierarchy has

been bilinearized [14]:

(S7 − 4SD3) •  = 0

(S11 + 20S
5
D3 − 96SD5) •  = 0

(S15 + 560S
3
D

2
3
− 336S5D5 − 960SD7) •  = 0

(S15 + 140S
9
D3 − 13445D5 − 7680SD7) •  = 0

The first equation of above is the super bilinear form of supersymmetric KdV.

Now we can compute directly the supersoliton solutions of the bilinear system (3) as

combinations of exponentials exp( − ), where  are commuting (even) invertible

Grassmann numbers and  = () is the dispersion relation. For the fermionic (odd) tau

function( ), odd parameters  have to be considered. Accordingly, every supersoliton

is characterized by the following triplet (   (  )). Of course, nobody imposes the

number of odd parameters for a supersoliton, but we consider the simplest case here,

where any supersoliton is characterized by only one  and .
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On the components, the 2-supersoliton solution of (3) has the following form:

 = 1 + 1 + 2 +12(1 +
2

2 − 1
12)

1+2 (4)

 = 1
1 + 2

2 +12(121 + 212)
1+2

where   are odd Grassmann parameters and:

 = − 3 + 
(0)
   = 1 2

 =
( − )

2

( + )2
  =

 + 

 − 
   = 1 2

As  =  + , the 2-supersoliton is, as shown in [15], [20]:

 2 = 1 + 1+1 + 2+2 +12

µ
1 +

2

2 − 1
12

¶
1+2+(121+212)

The interaction of supersolitons differ of the interaction of ordinary solitons mainly by

the appearance of the fermionic correction 2
2−1 12 multiplying 12 and also by the

dressing factor  that appears in the exponential. In addition,  appears for any pair

of supersolitons in the interaction, which can be seen more clearly in the 3-supersoliton

solution form:

 3 = 1 +

3X
=1

+ +

3X




µ
1 +

2

 − 


¶
++(+)+

+121323

µ
1 +

2

2 − 1
132312

¶µ
1 +

2

3 − 2
213123

¶
×

×
µ
1 +

2

3 − 1
123213

¶
 1+2+3+(12131+21232+31323)

It is known that in the bosonic context the construction of the multisoliton solution

is quite difficult, but it has been observed that once a general 3-soliton solution is con-

structed, then it can be proved by induction that the general -soliton can be constructed

as well. The existence of the 3-soliton solution has been used in the classification of com-

pletely integrable bilinear equations [29] as an integrability criterion. This criterion of

integrability we consider to remain valid also for the fermionic extensions of the solitonic

equations. From the 3-supersoliton solution it is likely that the -supersoliton solution

has the form[20]:

 =
X

∈{01}
exp

Ã
X
=1

( +  

Y
6=

) +
X


(ln +
2

 − 

Y
 6=

)

!
 (5)

where the products on  and  are considered to be 1 for  = 1 and  = 2.
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4 Kuperschmidt KdV (Kuper-KdV)

The super or fermionic KdV equation of Kuperschmidt (Kuper-KdV), which, as mentioned

before, is not supersymmetric, has the expression:

 − 6 +  + 12 = 0 (6)

 + 4 − 6 − 3 = 0

with ( ) a bosonic function and ( ) a fermionic one.

Even though the complete integrability was established in 1984 by the existence of the

Lax pair by Kuperschmidt itself in [24], the superbilinear form and the multi supersolitons

were constructed only recently by Carstea and the author in [27].

Considering the following nonlinear substitutions  = −22 log ( ) and ( ) =

( ) ( ), where ( ) is a Grassmann odd (anticommuting) function and  ( )

is a Grassmann even (commuting) function, we obtain the bilinear form, as shown in [27]:

(DD +D
4
) •  + 6D • = 0

(D +D
3
) •  + 3D •  = 0

D2
 •  − = 0

where ( ) is an auxiliary odd function. It has no role in the solution but is crucial for

bilinearisation.

The 3-supersoliton solution of Kuper-KdV has the following form:

 =

3X
=1



2 +

3X
6= 6=

 

2
+(1 + 

) + 123123
1+2+3

2

 = 1 +

3X
=1

 +

3X



+ +121323

1+2+3+

+
X
 6=

16

( − )3

+
2 (1 +

)

 =

3X
=1


2
4


2 +

3X
 6= 6=


2
4



2
+(1 + 

)+

+123123123
1+2+3

2

where:

 =

µ
 − 

 + 

¶2
  =

 + 

 − 

123 = −8
3Y

6= 6=
( − )

µ


( − )2
+



( − )2

¶

123 =
1

3

3X
6= 6=

µ
2
4
+

( − )
4

4( − )2 + 4( − )2)

¶

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5 Asymptotology of interaction for susy-KdV and

Kuper-KdV

Even though the similarities between the forms of the two solutions (of susy-KdV and

Kuper-KdV) are obvious, the asymptotology of interaction is completely different [27].

For susy-KdV, in the reference system of the first supersoliton, (1 fixed and 1  2)

from (4) it has been shown that:

lim
→+∞

 = 1 + 1  lim
→+∞

 = 1
1

lim
→−∞

 = 1 +12(1 +
2

2 − 1
12)

1  lim
→−∞

 = 2 +12(112 + 221)
1

The interaction is elastic for the bosonic component with a fermionic correction of the

phase shift, which is given by 2
2−1 12. For the fermionic component the interaction is

not elastic, because not only that the amplitude is dressed by the , but the creation of

a fermionic background in the fermionic tau function appears given by 2.

In the case of Kuper-KdV, the 2-supersoliton solution is:

 = 1 + 1 + 2 +12
1+2 + 1212

16

(1 − 2)3

1+2

2 

 = 1
1
2 + 2

2
2 + 11212

1
2
+2 + 22112

2
2
+1

Considering the reference frame of the first supersoliton (1 fixed and 1  2) the

asymptotology of interaction shows that:

lim
→+∞

 = 1 + 1  lim
→+∞

 = 1
1

lim
→−∞

 = 1 +12
1  lim

→−∞
 = 21212

12

The interaction is simpler in the Kuper-KdV case. Asymptotically, the bosonic super-

soliton does not feel at all the presence of the fermionic one. The fermionic supersoliton

has not only a phase shift, but also a changing of amplitude from 1 to 2.

Another observation of the authors in [27] was the presence of the fermionic dressing

 = ( + )( − ) which appears both in supersymmetric KdV and Kuper-KdV.

This fermionic dressing seems to be universal, as it appears in all bilinear super-equations

analyzed so far in the literature. In the discrete setting the fermionic dressing appears as

well in the form  = (
+ − 1)( − ) [20].

6 Other supersymmetric and non-supersymmetric KdV-

type equations

In this section, four other supersymmetric (SUSY) and non-supersymmetric KdV-type

equations are briefly presented [16], [30], [31].

• N = 1 SUSY Sawada-Kotera-Ramani:

Φ +D10Φ+D2(10DΦD4Φ+ 5D5ΦΦ+ 15(DΦ)2Φ) = 0
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Using the nonlinear substitution Φ = 2D3 log (  ) the super-bilinear form is obtained
[16]:

(SD + S
11
 ) •  = 0

which has the same -supersoliton solution structure as for super-KdV, (5), except:

 = − 5 +   + 
(0)


 =

µ
 − 

 + 

¶22 −  + 2

2 +  + 2


• N = 1 SUSY Hirota-Satsuma (shallow water wave):

D4Φ + ΦD3Φ+ 2D2ΦDΦ −D2Φ− Φ = 0

Using the nonlinear substitution Φ = 2D log (  ), one obtains the super-bilinear
form [16]:

(S5D − S3 − SD) •  = 0
which has the -supersoliton solution (5), except:

 = − 

2 − 1
+  + 

(0)


 =

µ
 − 

 + 

¶2 ( − )
2 + [( − )

2 − (2 − 1)(2 − 1)]
( − )2 − [( − )2 − (2 − 1)(2 − 1)]



• N = 1 Holod-Pakuliak system (non-supersymmetric) [30]:

 = − + 6 + 6( − )

 = −4 + 6 + 3

 = −4 + 6 + 3
In [30] the existence of an infinite number of motion integrals in involution is proved and

the hierarchy of higher equations is constructed. The bilinear form can also be constructed

if  = 1 ,  = 2 ,  = −2(log ). Considering these transformations we get [27]:
( +4

) ·  + 61 ·2 = 0

( +3
)1 ·  + 31 ·  = 0

( +3
)2 ·  + 32 ·  = 0

2
1 ·  −1 = 0

2
2 ·  −2 = 0

where 1 2 are two auxiliary fermionic functions. The computation of soliton solutions

goes on the same way as in the Kuper-KdV case, except of some phases in the exponentials.

However the solutions turn out to be rather trivial, i.e. 1 = ±2 reducing the system

to the one component case. It is an open problem how to find more general solutions.

• N = 1 super-KdV equation of Geng-Wu (non-supersymmetric) [31]:

 = − + 6 + 12 + 6 − 3 − 6
 = −4 + 6 + 6

This super-extension of the KdV hierarchy, associated with a 3× 3 matrix spectral prob-
lem was analized using super-trace identity. Generalized bi-Hamiltonian structures were

established and also infinite conservation laws were derived in [31].
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7 Semidiscrete and discrete fermionic extensions of

KdV

The semidiscrete and discrete fermionic extensions of the KdV equation have also been

analyzed in the literature [19], [20].

Xue, Levi and Liu found in [19] integrable super extensions of potential discrete KdV,

known as the potential semidiscrete super-KdV:

 = 2
+1 − −1

+1 − −1 − 4 (7)

 = 2
+1 − −1

+1 − −1 − 4 +
+1 − −1 − 8
(+1 − −1 − 4)2 (+1 − −1)( − −1)

and the potential discrete super-KdV:

+1+1 −  =
2(1 + 2)(+1 − +1)

2(2 − 1) + +1 − +1
(8)

+1+1 −  =
2(1 + 2)(+1 − +1)

2(2 − 1) + +1 − +1
−

−(1 + 2)(4(2 − 1) + +1 − +1)

(2(2 − 1) + +1 − +1)2
(+1 − +1)(+1 − )

where ,  (depending on  and ) and ,  (depending on  and) are fermionic

and respectively bosonic fields with values in the odd and even sector of the Grassmann

algebra. The authors established integrability of (7), (8) by displaying the Bäcklund

transformations and Lax pair.

7.1 Two semidiscrete versions of super-KdV in bilinear formal-

ism

The nonlocality of the lattice makes the supersymmetry implementation to be quite dif-

ficult, so a direct approach is recommended. In [20] the Hirota super bilinear form for

(7) was constructed (where the constant 4 was rescaled to 1 by taking  → 4 and

 → 4):

D •  − (+1−1 − −1+1) = 0 (9)

D •  − (+1−1 − −1+1) +D •  − 2+1−1 = 0
(+1−1 − −1+1)− (+1−1 − 2)−

1

2
D •  + +1−1 = 0

Here () is a Grassmann fermionic (odd) tau function and (), () are Grassmann

bosonic (even) tau functions. The corespondence between (7) and the bilinear form can

be proven considering () = ()() and () = ()().
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The 3-supersoliton solution was found in [20] of the following form:

 =

3X
=1



 +

3X



+( + ) + (10)

+121323
1+2+3(12131 + 21232 + 31323) +

+121323
1+2+3(1213233132 − 1312322123 + 2321311213)123

 =

3X
=1



 +

3X


( + )
+(1 + ) + (1 + 2 + 3)121323

1+2+3 +

+(1 + 2 + 3)121323
1+2+3(12132312 + 23213123 + 13123213) (11)

 =

3X
=1



 +

3X



+(1 + 2 ) + 121323

1+2+3 +

+121323
1+2+3(212132312 + 223213123 + 213123213) (12)

where:

 =

µ
 − 

+ − 1
¶2

  = 2 sinh   = + 

 =

Ã
+ − 1
 − 

!2
  =

 − 1
 + 1

  =


 + 


The structure of the supersoliton solution is similar to the soliton solution of the continu-

ous case, the important difference is the displaying of the dressing factor in the fermionic

component of the supersoliton.

Considering a slightly different bilinear form:

D •  − (+1−1 − −1+1) = 0 (13)

D •  − (+1−1 − −1+1)− 1
2
D •  + +1−1 = 0

(+1−1 − −1+1)− (+1−1 − 2) + +1−1 = 0

in [20] was found a new integrable form of semidiscrete super-KdV equation:

 =
+1 − −1
1 + −1 − +1

 =
+1 − −1

1 + +1 − −1
+
(1 + −1 − +1)(+1 − −1) + +1−1

(1 + −1 − +1)2

The 3-supersoliton solution is similar but with a more complicated dressing in the super-

soliton interaction:

 =

3X
=1

 

 +

3X



+( + )+

+121323
1+2+3(12131 + 21232 + 31323)+

+121323
1+2+3(1213233132 − 1312322123 + 2321311213)123

 =

3X
=1



 +

3X


( + )
+(1 +  ) + (1 + 2 + 3)121323

1+2+3+
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+(1 + 2 + 3)121323
1+2+3(∆12132312 +∆23213123 +∆13123213)

 =

3X
=1



 +

3X



+(1 + 2 ) + 121323

1+2+3+

+121323
1+2+3(2∆12132312 + 2∆23213123 + 2∆13123213)

where:

∆ = 

µ
( + ) + ( + )

1 + 2 + 3

¶
| 6=

7.2 Potential discrete super-KdV and discrete super-KdV

After solving the potential semidiscrete super-KdV and semidiscrete super-KdV, starting

from the semidiscrete superbilinear form:

D •  − (+1−1 − −1+1) = 0 (14)

D •  − (+1−1 − −1+1)− 1

2
D •  +2+1−1 = 0

(+1−1 − −1+1)− (+1−1 − 2) +
3

2
D •  +4+1−1 = 0

which can be particularized to both (9) and (13), the integrable time discretizations

are found in [20], using the Hirota bilinear method, one of the most powerful methods

of finding integrable discretizations [32, 33]. The method implies that starting with a

correctly bilinearized integrable differential or differential-difference integrable system (in

the sense of allowing the construction of a general multisoliton solution), in the first step,

one has to replace differential Hirota operators with discrete ones preserving the gauge

invariance. The resulting bilinear fully discrete system is not necessarily integrable, so

in the second step, the multisoliton solution must be found [33]. If this exists, then the

discrete bilinear system is integrable and, in the final step, the nonlinear form has to be

recovered.

The integrable discretization of (14) is:

+1  −  
+1
 = (+1+1 


−1 − −1

+1
+1 )

+1  −  
+1
 − (+1+1 


−1 − −1

+1
+1 ) = 1

+1
  − 2

+1
+1 


−1

(+1+1 

−1 − −1

+1
+1 )− (+1+1 


 −  +1 ) = 3

+1
  − 4

+1
+1 


−1

For 1 = 2 = −2 and 3 = −14 = 1 the above system admits 3-supersoliton

solution with the same form as (10)-(12), but with different quantities for:

 = +   =
(1 + )( − 1)

( + 1)
  =

− 
 (


 − 1)



The nonlinear form of the above superbilinear system is found in [20] as:

+1
 − 

 = 
+1
+1 − 

−1
1− +1+1 + −1

+1 −  = 
+1+1 + −1

1− +1+1 + −1
+ 

2− +1+1 − −1
(1− +1+1 + −1)2

(+1
+1 − 

−1)×

×(
 − 

−1)
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which is exactly the form (8) proposed by Xue, Levi and Liu in [19] for potential discrete

super-KdV, up to the transformation of the independent variables mentioned in Section

7.

The case for 1 = 2 = −13 = 04 = 1 ia also integrable and the 3-supersoliton

solution has the same form as above, except , that turns into ∆. The nonlinear form

for discrete super-KdV in:

+1
 − 

 = 
+1
+1 − 

−1
1− +1+1 + −1

+1 −  = 
+1+1 − −1

1− +1+1 + −1
+

+
(1− +1+1 + −1)


 (

+1
+1 − 

−1) + +1
+1 


−1

(1− +1+1 + −1)2


8 Conclusions

This review paper presents the integrable cases of fermionic extensions of the KdV equa-

tion both in continuous and discrete context (semidiscrete and fully discrete), discused

in the literature. In Section 2, after a brief presentation of the notion of supersymmetry,

the extension of the Hirota operator and its most important properties are presented.

The next two sections focus on two fermionic extensions of the KdV equation in the

continuous context: susy-KdV and Kuper-KdV. Their bilinear form and supersoliton so-

lutions are presented. Also the supersymmetric KdV hierarchy is listed together with

its bilinearisation. Section 5 compares the two equations from the point of view of the

supersoliton interaction. Other supersymmetric and non-supersymmetric KdV-type equa-

tions are briefly presented in section 6. The semidiscrete fermionic extension of KdV and

potential KdV and their full discretisations are presented in Section 7.
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