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Abstract

The model developed in our paper considers a stochastic magnetic field that

contains two linear deterministic terms representing the gradient of the magnetic

field and the shear term and also one fluctuating term that are described by the

dimensionless function () taken to be Gaussian processes and that are

perpendicular to the main magnetic field 0. We have calculated the radial diffu-

sion coefficient  () of magnetic field lines for various parameters: the magnetic

Kubo number  the inhomogeneous parameter  and the magnetic shear Kubo

number  .

PACS numbers: 52.35 Ra, 52.25 Fi, 05.40.-a, 02.50.-r.

1 Introduction

An important feature in plasma physics is the study of the diffusion of magnetic field lines

in tokamak. A simplified model used in our paper is a Taylor expansion of the stochastic

magnetic field that contains two linear deterministic terms representing the gradient of the

magnetic field and the magnetic shear term and also a fluctuating term that is described

by the dimensionless function (), taken to be a Gaussian process and that is

perpendicular to the main magnetic field 0. The framework has been set in a previous

paper [1]. The magnetic fluctuation, even when small, can destroy the nested magnetic

and thus enhancing the radial transport. Also, the presence of an inhomogeneity of the

magnetic field and of the magnetic shear, can be important keys in order to explain the

observed increase of the poloidal flow which is equivalent to the appearance of a transport

barrier. In our paper we employed the main tools of the Deccorelation Trajectory Method

whose idea concerns in the study of the Langevin system not in the whole space of the

realizations of the potential fluctuations; the whole space is subdivided into subensembles

, characterized by given values of the fluctuating field components at the starting point of

the trajectories. The exact expression of the radial Lagrangian correlation can be written

in the form of a superposition of Lagrangian correlations in various subensembles.

The main contribution of the paper is the evaluation of radial diffusion of inhomoge-

neous sheared stochastic magnetic field lines, in the framework of tokamak plasma, using

appropriate values of Kubo numebers (see below).
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2 The model and the Langevin equations

The local expansion of the stochastic magnetic field that considers the perpendicular

variations is:

B() = 0
©£
1 +−1

¤
e +  ( ) e +−1 e

ª
(1)

where  is a dimensionless parameter measuring the amplitude of the magnetic field

fluctuation relative to the main magnetic field 0. There are two linear terms depending

on  in the right hand side of eq.(1): the shear term −1 where  is the shear length

and the nonhomogeneous term −1 where  is the gradient scale length, which are

the radial distance on  axis over the magnitude of the magnetic field would double

in this linear model. We will define the term 0
£
1 +−1

¤
e as the gradient B term.

Because the model expression given in (1) represents a Taylor series expansion of the

magnetic field it is only valid for small distances from the origin, i.e. are valid the

following approximations:

−1  1  −1  1 (2)

The magnetic field lines corresponding to the definition given in (1) are:



0
=



0−1
=



0
¡
1 +−1

¢ (3)

Using (2), i.e. considering that

1

1 +−1
' 1−−1

and neglecting the terms quadratic in  we obtain from (3) the dimensional Langevin

system of equations for the magnetic field lines




=  − −1 (4)




= −1 (5)

where the coordinate  plays the role of time.

We introduce the dimensionless coordinates x =(  ) which are related to the

dimensional ones by the relations:

 =


⊥
  =



⊥
  =



k
(6)

The magnetic field given in Eq.(1) satisfies the zero-divergence constraint ∇ ·B =0 that
is imposed by Maxwell’s equations. This condition is automatically fulfilled if we consider

that the fluctuating magnetic field derives from the following vector potential which has

only the  - component:

A(X;) = 0⊥ (x; ) e (7)

We have the following relation between the fluctuating part of the magnetic field and the

magnetic potential (x; ):

[x(); ] =
(x(); )



¯̄̄̄
x=x()
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and the dimensionless system equivalent to the one given in (4, 5) is:




= (1− )  ≡  ()  ≡  (8)




=  (9)

where we have defined the linear function in the radial coordinate 

 () = 1−  (10)

and the directly fluctuating velocity

 =  ()




The function  () depends on the radial coordinate  and we will suppose to be not

directly fluctuating quantity as the component of the magnetic field are. In the system

(8-9) the following Kubo numbers are introduced:

1. The magnetic Kubo number  = 
k
⊥

(11)

2. The shear Kubo number  =
⊥


(12)

3. The inhomogeneous Kubo number  =
k


(13)

The Langevin Eqs.(8 - 9) will be used in order to calculate the running and asymptotic

diffusion coefficient of the magnetic field lines for different values of the Kubo numbers.

The Lagrangian correlation (which is the main tool for determining the running and

asymptotic diffusion coefficient) of the directly fluctuating "velocity" [x(); ] is defined

as:

() = h(x(0); 0) [x(); ]i (14)

or

() = 2
 [()] h(x(0); 0) [x(); ]i

where hi denotes the ensemble average over the realizations of the fluctuating magnetic
field component and the function 2

 [()] was factorized from the average because is

not a directly fluctuating quantity. The running diffusion coefficient matrix is calculated

using (14) as:

 () =

Z
0

() (15)

provided that the stochastic field is "stationary"; the corresponding asymptotic diffusion

coefficient is then:


 = lim

→∞
 () (16)

An important simplification of the calculus can be done if a relation between the La-

grangian correlation and the corresponding Eulerian one can be established. Unfortu-

nately, until now, does not exist a general exact relation between these two types of
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correlations, valid for both weak and strong turbulence regime. For a weak magnetic

turbulence regime (  1) an approximate formula which relates the two types of cor-

relations already exists: this is the celebrated Corrsin approximation [8] which includes

the quasilinear and the Bohm approximations. The Corrsin approximation which amounts

to decouple the stochastic magnetic field line position to the stochastic magnetic field is

reproduced here for convenience:

() =

Z
x h(x(0); 0) [x(); ]  [x− x()]i '

'
Z

x h(x(0); 0) [x(); ]i h [x− x()]i (17)

where at least in some asymptotic sense, the exact propagator  [x− x()] is approximated
by its ensemble average.

3 The DCT tools

In our paper we closely follow the results obtained in [5]. The DCT method main idea

concerns in the study of the Langevin system (8-9) not in the whole space of the re-

alizations of the potential fluctuation; the whole space is subdivided into subensembles

, characterized by given values of the potential and of the fluctuating field component

at the starting point of the trajectories. The exact expression of the radial Lagrangian

correlation can be written in the form of a superposition of Lagrangian correlations in

various subensembles. The validity of the approximation involved in DCT method can

be assessed by a posteriori comparison with experiment and simulations, as is done in all

theories of strong turbulence.

The DCT method is now systematically developed for the present problem. We first

define a set of subensembles  of the realizations of the stochastic sheared magnetic field

that are defined by given values of the potential  and magnetic field fluctuation b in the

point x = 0 at the "moment"  = 0:

(0; 0) = 0 (0; 0) = 0 (18)

The correlation of the Lagrangian fluctuating components of the magnetic field can be

represented as a sum over the subensembles  of the correlations 
() calculated in

each subensemble:

() =

Z
00 (

0
 

0)2
 [()] h(0; 0) [x(); ]i (19)

where

 (0 
0) =  (0) (

0) = (2)
−1
exp

"
−
¡
0
¢2
+ (0)

2

2

#
(20)

is the probability density of (0 ) having the values
¡
0 

0
¢
at x = 0 and at the

"moment"  = 0. Since the initial fluctuating fields in the subensemble  are (0; 0) = 0
for all trajectories, the subensemble average defined in (19) is:

h(0; 0) [x(); ]i = 0 h [x(); ]i (21)
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and thus the Lagrangian correlation () is simply the weighted average Lagrangian of

the fluctuating field in all subensembles. We need first to calculate the average Eulerian

fields  in the subensemble :

(x; ) ≡ h (x; )i (22)

The next step in the DCT method is to define a deterministic trajectory in each

subensemble as a solution of the system (8-9) that becomes

()


=
¡
1− 

¢

£
x(); 

¤
()


= 

in which the right hand sides are replaced by the average fields  in the subensemble. It

can be seen also that the "Kubo number" () = (1− ) differs from a subensem-

ble to another. We have made the following assumption: in a subensemble  we factorize

the average of the terms of the form

h ()  (x; )i ≡ 
¡

¢

¡
x; 

¢
The system used in the DCT calculations can be formally written in the following compact

form



= 

¡

¢
 (23)




=  (24)

We need first to calculate the average Eulerian fields  in the subensemble :

(x; ) ≡ h (x; )i (25)

The DCT method is now systematically developed for the present problem. We first

define a set of subensembles  of the realizations of the stochastic sheared magnetic field

that are defined by given values of the potential  and magnetic field fluctuation b in the

point x = 0 at the "moment"  = 0:

(0; 0) = 0 (0; 0) = 0 (26)

The fluctuating magnetic potential (x; ) is assumed to be a Gaussian stochastic process

with zero average. The second order moment of (x; ), i.e., its Eulerian autocorrelation

function (x; ) is assumed to have the following factorized form:

(x; ) = h(0; 0)(x; )i =1(x)2() (27)

where:

1(x) = exp(−x
2

2
) 2() = exp(−

2

2
) (28)

The mixed Eulerian correlations between the potential and the fluctuating magnetic field

components are defined in [6] as:

(x; ) = h(0; 0)(x; )i
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Figure 1: Radial running diffusion coefficient for  = 05 and various values of 

(x; ) = h(0; 0)(x; )i (29)

and the following relations between these correlations hold [6]:

(x; ) = −(x; ) =
(x; )


= −(x; )

The dimensionless fluctuating magnetic field autocorrelation tensor components are de-

rived from (x; ) as [6], [7]:

(x; ) = −
2(x; )

2
=
¡
1− 2

¢
(x; )

The Eulerian average of the radial fluctuation are:


¡
x; 

¢
= 0

¡
x; 

¢
+ 0

¡
x; 

¢ ≡
≡ £−0 + 0

¡
1−  2

¢¤
(x; ) (30)

The Lagrangian correlation tensor has the following components:

() =

∞Z
−∞

0
∞Z

−∞

0 (
0
 

0)2


£
()

¤
0




£
x(); 

¤
(31)

4 Conclusion

In this paper we have calculated the diffusion coefficients for the radial stochastic, inhomo-

geneous and sheared magnetic field lines. Different Kubo numbers involved in the model

have influenced the diffusion. Some results were obtained in [5] for the 2-anisotropic

case but not in the inhomogeneous case.
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Figure 2: Radial running diffusion coefficient for  = 10 and various values of 

Figure 3: Radial running diffusion coefficient for  = 30 and various values of 

and/or 
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