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Abstract

The first integral method is employed for describing memory effects in diffusion-
reaction processes. Using this method we construct new exact travelling wave so-
lutions for the Fisher equation in the presence of a nonlinear convection term with
a finite memory transport. A rich variety of solutions may be obtained, includ-
ing rational wave solutions, trigonometric, cnoidal and snoidal-type solutions or
kink-shaped soliton ones. The existence of these solutions is proved under cer-
tain parametric domains. The present method might also successfully solve other
high-dimensional nonlinear partial differential equations with various types of non-
linearity.
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1 Introduction

Many phenomena raised in science and engineering may be modeled through nonlinear
partial differential equations (NPDEs). They offer an important tool to better understand
the evolution paths and allow the use of computer symbolic systems like Maple and
Mathematica to perform some rather complicated and tedious algebraic calculations.

Dispersion, dissipation, diffusion, reaction and convection are examples of such phe-
nomena whose influence on the propagation of the nonlinear waves will be considered
here. A variety of powerful methods, such as the inverse scattering method [1], Bäcklund
transformation [2], Darboux transformation [3], Hirota’s bilinear method [4], the dress-
ing method [5], the homogeneous balance method [6], the (G′/G)-expansion method [7],
the Lie symmetry reduction [8, 9, 10, 11], the generalized conditional symmetry method
[12, 13, 14], the sine-cosine method [15], various extended tanh-methods [16, 17] and the
first integral method [18] have been made use of in order to obtain the travelling wave
solutions of NPDEs.

The first integral method (FIM) has been successfully implemented to various NPDEs
and to some fractional differential equations in many studies such as [19, 20, 21, 22].

A lot of attention has also attracted the analysis of memory effects in diffusive processes
as in [23, 24, 25, 26]. Fick’s law [27] constitutes the key element in the description of
transport. However, this description is significantly modified when memory effects are
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taken into account, i.e. when the dispersal of particles is not mutually independent. This
fact implies that, for a given concentration gradient, the correlation between the successive
movements of diffusing particles may be understood as a delay in the flux .

The diffusion equation states that the flux of diffusing particles in whatever part of
the system is proportional to the density gradient: J(x, t) = −D ∂u(x,t)

∂x
, where u(x, t) is

the particles’concentration and J(x, t) is the flux of the diffusing particles. If we also use

the continuity equation, ∂u(x,t)
∂t

= −∂J(x,t)
∂x

, we get the one-dimensional Fick’s law in the

form ∂u(x,t)
∂t

= D ∂2u
∂x2
. Here D is the diffusion coefficient. The memory effect appears when

the dispersal of the particle is mutually not independent [26].
When the memory effect is taken into account, then we have the following modification

of Fick’s law in the presence of the nonlinear convection term

J(x, t+ τ) = −D∂u(x, t)

∂x
+ vu2, (1)

which takes care of the adjustment of a concentration gradient at time t with a flux
J(x, t+ τ) at a later time (t+ τ). Here τ is the delay time of the particles taken to adopt
a precised direction of propagation and v is the coefficient of the nonlinear convective flux
term.

By expanding J in Eq. (1) up to first order in τ , one obtain:

J(x, t) + τ
∂J(x, t)

∂τ
= −D∂u(x, t)

∂x
+ vu2. (2)

On the other hand, the population balance equation for the particles takes into account
the conservation of the equation supplemented by a source function f(u) for the particles
in the form:

∂u(x, t)

∂t
= −∂J(x, t)

∂x
+ f(u), (3)

Now, differentiate Eq. (2) with respect to x, Eq. (3) with respect to t and eliminate
J(x, t) from the resulting expression, we obtain:

u2t − βDu2x − f ′(u)ut + β(ut − f(u)) + kβuux = 0, (4)

where the denotations β ≡ 1/τ , k ≡ 2v and f ′(u) = df
du
. are made use of. Let us remark

that Eq. (4) is an hyperbolic reaction-diffusion equation and that it is a generalization
of Fisher equation for finite memory transport and nonlinear damping. It describes a
transport phenomenon in which both diffusion and convection processes are of an equal
importance. It reduces to Burgers equation [28] in the absence of the source term (
f(u) = 0). For τ = 0 it becomes the standard Fisher equation, while for τ = 0 and
f(u) = 0 it turns into Burgers equation [24].

Our main interest in the present work is to implement the FIM in order to prove once
again its power of handling nonlinear equations, so that we could apply it to models with
various types of nonlinearity. By making use of the Division Theorem for polynomials,
we described this method in order to find exact travelling wave solutions for nonlinear
PDEs. In Section 3, the algorithmic method with a symbolic computation is applied in
detail upon Fisher equation with a finite memory effect. Some of the obtained solutions
are new, to the best of our knowledge. Finally, some essential facts are pointed out in
concluding remarks.
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2 First integral method for Fisher equation with mem-

ory effect

The procedure for making use of the first integral method may be summarized as follows:
Step1: Consider a general NPDE for the physical field u(t, x, u) given by:

E(u, ux, ut, u2x, uxt, utt, ...) = 0. (5)

Using a wave variable ξ = x± ct, we could rewrite Eq. (5) in the following nonlinear
ODE:

G(U, U
′
, U ′′, U

′′′
, ...) = 0, (6)

where the ”prime” index denotes the derivation with respect to ξ.
Step2: We assume that Eq. (6) has a solution of the form:

U(ξ) ≡ X(ξ) = u(x, t), (7)

and introduce a new independent variable Y = X
′
(ξ), which leads us towards a new

system of ODEs:
X

′
(ξ) = Y (ξ), Y

′
(ξ) = P (X(ξ), Y (ξ)). (8)

Step3: In accordance with the qualitative theory of ODEs [29], if it is possible to obtain
the first integrals for the system (8), the solutions of the system could be immediately
obtained. The division theorem (DT) [30] provides us an idea about how to obtain such
first integrals.

Division Theorem: Suppose that F (x, y), G(x, y) are polynomials in the complex
domain C[x, y] and that F (x, y) is irreducible in C[x, y]. If G(x, y) vanishes at all the
zero points of F (x, y), then there exists a polynomial H(x, y) in C[x, y] such that

G(x, y) = H(x, y)F (x, y). (9)

In this section, we illustrate the efficiency of the previously mentioned algorithmic
method upon Eq. (1). Using the wave variable ξ = x− ct, the master Eq. (1) turns into
the following ODE:

U
′′

+ (Aḟ(U)−B +QU)U
′ −Mf(U) = 0, (10)

where ”dot” denotes d/dU and the parameters A, B, M, Q are expressed by

A =
c

c2 − βD
, B =

βc

c2 − βD
, M =

β

c2 − βD
, Q =

kβ

c2 − βD
(11)

Using (7) and (8) we get:

X
′
(ξ) = Y (ξ),

Y
′
(ξ) = (−Aḟ(X) +B −QX)Y +Mf(X).

(12)

In accordance with the FIM, it is supposed that X(ξ) and Y (ξ) are non-trivial solutions
of the system (12) and that q(X, Y ) =

∑i=m
i=0 ai(X)Y i is an irreducible function in the

domain C[X, Y ] such that

q(X(ξ), Y (ξ)) =
m∑
i=0

ai(X)Y i = 0, (13)
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where ai(X), i = 1,m are polynomials of X and am(X) 6= 0. Eq. (13) is known as the
first integral to the system (12). Due to the Division Theorem, there exists a polynomial
ρ(X) + σ(X)Y in the complex domain C[X, Y ] such that

dq

dξ
=

dq

dX

dX

dξ
+
dq

dY

dY

dξ
= [ρ(X) + σ(X)Y ]

m∑
i=0

ai(X)Y i. (14)

3 Travelling wave solutions for Eq. (4)

In this study, let us take into consideration two different cases, by assuming that m = 1
and respectively m = 2 in Eq. (14).

3.1 Travelling wave solutions in the case m = 1

In this case, by equating the coefficients of Y i, i = 0, 1, 2 on both sides of Eq. (14), we
have:

ȧ1(X) = σ(X)a1(X),

ȧ0(X) = Aa1(X)ḟ(X)−Ba1(X) +QXa1(X)

+ρ(X)a1(X) + σ(X)a0(x),

Ma1(X)f(X) = ρ(X)a0(X).

(15)

Since ai(X), i = 0, 1 are polynomials, we may deduce from the first equation of (15) that
a1(X) is a constant and σ(X) = 0. For simplicity reasons, let us consider a1(X) = 1.The
system (15) becomes:

ȧ0(X) = Aḟ(X)−B +QX + ρ(X),

Mf(X) = ρ(X)a0(X).
(16)

Let us choose f(X) = e + sX + wX2, a0(X) = q + rX + vX2, ρ(X) = p = const. and
substitute them, as well as the parameters A, B, M, Q from (11) into the system (16).
Equating the coefficients of Xj, j = 0, 2 to zero, we get an algebraic system which admits
the solution:

q = − 2ewk(s+ β)

4βDw2 − k2s2
, r = − 2swk(s+ β)

4βDw2 − k2s2
,

v = − 2w2k(s+ β)

4βDw2 − k2s2
, c = −β(4w2D + sk2)

2wk(s+ β)
,

(17)

where we have to impose the constraints w2

s2
6= k2

4βD
, s 6= −β < 0, s, w 6= 0, k,D > 0,

D
k2
6= − s

4w2 ,
4w2D+sk2

w(s+β)
< 0. The solution (17) is expressed in terms of the coefficients β, D,

k, e, s, w involved into the concerned model (4).
Combining (17) with (13) and then with (12), we have to solve the integral:

X
′
(ξ) = −q − rX(ξ)− vX2(ξ). (18)

Let us consider ∆ = r2 − 4qv = −4w2k2(s+β)2(4ew−s2)
(4βDw2−k2s2)2 . Under the conditions (17), there

cases are to be discussed.
Case (i) : ∆ = 0 ⇔ s2 = 4ew. Then a rational-type solution of (18) is obtained:

X1(ξ) = − 1

v(ξ − ξ0)
− r

2v
. (19)
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Case (ii) : ∆ > 0⇔ s2 > 4ew. Then the hyperbolic-type solutions of (18) are pointed
out:

X2(ξ) = − r

2v
−
√

∆

2v
tanh

[√
∆

2
(ξ − ξ0)

]
,

X3(ξ) = − r

2v
+

√
∆

2v
coth

[√
∆

2
(ξ − ξ0)

]
.

(20)

Case (iii) : ∆ < 0⇔ s2 < 4ew. Eq. (18) admits a trigonometric solution with the form:

X4(ξ) = − r

2v
−
√
−∆

2v
tan

[√
−∆

2
(ξ − ξ0)

]
. (21)

3.2 Travelling wave solutions in the case m = 2

Suppose that m = 2, by equating the coefficients of Y i, i = 0, 1, 2, 3 on both sides of Eq.
(14), we have:

ȧ2(X) = σ(X)a2(X),

ȧ1(X) = 2Aa2(X)ḟ(X)− 2Ba2(X) + 2QXa2(X) + σ(X)a1(X),

ȧ0(X) = Aa1(X)ḟ(X)−Ba1(X) +QXa1(X)

−2Mf(X)a2(X) + a1(X)ρ(X) + σ(X)a0(X),

Ma1(X)f(X) = a0(X)ρ(X),

(22)

where the parameters A, B, M, Q are provided by (11).
Since ai(X), i = 0, 1, 2 are polynomials, the first equation from (22) leads to the

conditions a2(X) = const. and σ(X) = 0. For simplicity reasons, let us consider a2(X) =
1; therefore, the remaining equations could be written as:

ȧ1(X) = 2Aḟ(X)− 2B + 2QX,

ȧ0(X) = Aa1(X)ḟ(X)−Ba1(X)

+QXa1(X)− 2Mf(X) + a1(X)ρ(X),

Ma1(X)f(X) = a0(X)ρ(X).

(23)

Considering again deg(f(X)) = 2 and balancing the degrees of ρ(X), a0(X) and a1(X), we
concluded that deg(ρ(X)) = 0 only. The degrees of a0(X) and a1(X) could be evaluated
as follows: (1) ρ(X) = 0 implies a1(X) ≡ 0 and deg(a0(X)) = 3 while (2) ρ(X) = v =
const. 6= 0 leads to deg(a0(X)) = 4 and deg(a1(X)) = 2. We ought to solve the previous
system in these two cases separately.

Case 1: Suppose ρ(X) = 0, a1(X) ≡ 0, a0(X) = d + gX + hX2 + nX3 and f(X) =
e+ sX +wX2. Substituting them together with (11) into the former two equations of the
system (23), equating the coefficients of various powers of X, we get:

e =
βg

2h
, w =

3βn

2h
, D =

hc2 + β2

hβ
, k =

9cn

2h
, (24)

available for the arbitrary non-zero parameters β, c, s, d, g, h, n.
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Combining the conditions (24) with Eq. (14) and with the first equation from (12), we
conclude that the travelling wave solutions of Eq. (4) could be attributed to the resolution
of the following first order integrable ODE:

[X ′(ξ)]
2

= −d− gX − hX2 − nX3. (25)

With the change of variable and the one of parameters:

z = (−n)1/3X, d2 = (−h)(−n)−2/3, d1 = (−g)(−n)−1/3, d0 = −d, (26)

the ODE (25) becomes:

±(−n)1/3(ξ − ξ0) =

∫
dz√

z3 + d2z2 + d1z + d0
. (27)

The complete discrimination system [31] for the third degree polynomial P (z) = z3 +
d2z

2 + d1z + d0 is provided by:

∆ = −27

[
2d32
27

+ d0 −
d1d2

3

]2
− 4

(
d1 −

d22
3

)3

, D1 = d1 −
d22
3
. (28)

Here are the following four cases to be discussed. Let us only present the corresponding
solutions and leave the details to be seen in [32].

Case (i) : ∆ = 0 and D1 < 0., We have P (z) = (z − α)2(z − γ), α 6= γ. If z > γ, the
solutions are given as follows:

X = (−n)−1/3
[
(α− γ) tanh2

(√
α− γ

2
(−n)1/3(ξ − ξ0)

)
+ γ

]
,

X = (−n)−1/3
[
(α− γ) coth2

(√
α− γ

2
(−n)1/3(ξ − ξ0)

)
+ γ

]
,

α > γ,

X = (−n)−1/3
[
(−α + γ) tan2

(√
−α + γ

2
(−n)1/3(ξ − ξ0)

)
+ γ

]
,

α < γ.

(29)

Case (ii) : ∆ = 0 and D1 = 0. We have P (z) = (z − α)3. The solution admits the form:

X = 4(−n)−2/3(ξ − ξ0)−2 + α. (30)

Case (iii) : ∆ > 0 and D1 < 0. We see that P (z) = (z−α)(z− γ)(z− ζ). Let us suppose
that α < γ < ζ.

When z ∈ (α, γ) we have:

X = (−n)−1/3
[
α + (γ − α)sn2

(√
ζ − α
2

(−n)1/3(ξ − ξ0), l
)]

. (31)

When z > ζ, we have:

X = (−n)−1/3

ζ − γsn2
(√

ζ−α
2

(−n)1/3(ξ − ξ0), l
)

cn2
(√

ζ−α
2

(−n)1/3(ξ − ξ0), l
)

 , (32)
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where l2 = γ−α
ζ−α .

Case (iv) : ∆ < 0. We could introduce P (z) = (z − α)(z2 + µz + ϕ), µ2 − 4ϕ < 0.
Futhermore, we obtain:

X = (−n)−1/3

[
α−

√
α2 + µα + ϕ+

2
√
α2 + µα + ϕ

1 + cn ((α2 + µα + ϕ)1/4(−n)1/3(ξ − ξ0), l)

]
,

l2 =
1

2

(
1−

α + µ
2√

α2 + µα + ϕ

)
.

(33)
Case 2: Suppose ρ(X) = v 6= 0, a1(X) = q+rX+aX2, a0(X) = d+gX+hX2+nX3+pX4

and f(X) = e+ sX +wX2. Substituting these expressions into the system (23) and then
equating the coefficients of various powers of X, wherefrom an algebraic system with 11
equations results. From theformer 6 equations it could be useful to express a, q, r, p, h,
g with respect to n, v, e, s, w, A, B, M, Q. This partial result, together with (11) would
then be inserted into the remaining equations. Should we solve the final algebraic system
through the Maple program, an interesting solution would be pointed out:

s = n = 0, e =
−2vβc

vc+ 4β
, d =

4βv2(vc+ 2β)2

(vc+ 4β)3
,

k =
−2w(vc− 2β)

vβ
, D =

c(c2v2 + βvc− 4β2)

vβ(vc+ 2β)
,

(34)

available for the non-zero arbitrary constants v, w, β and for the wave velocity c 6={
−4β
v
, ±2β

v
, 0, −β(v∓

√
17|v|)

2v2

}
..

Futhermore, the conditions (34) generate for a, q, r, p, h, g the concrete expressions:

a =
w(vc+ 2β)

βc
, g = r = 0, q =

−2v(vc+ 2β)

vc+ 4β
,

h =
−4vw(vc+ 2β)2

c(vc+ 4β)2
, p =

w2(vc+ 2β)2

βc2(vc+ 4β)
.

In order to obtain the travelling wave solutions of Eq. (4), we need to solve (13), partic-
ularized to our results, as it follows:

4βv2(vc+ 2β)2

(vc+ 4β)3
− 4vw(vc+ 2β)2

c(vc+ 4β)2
X2 +

w2(vc+ 2β)2

βc2(vc+ 4β)
X4

+

[
−2v(vc+ 2β)

vc+ 4β
+
w(vc+ 2β)

βc
X2

]
Y + Y 2 = 0,

(35)

which leads, when taking into account that X
′
(ξ) = Y (ξ), to the ODEs:

X
′
(ξ)−

[
vc+ 4β ±

√
(vc+ 4β)

]
(2vβc− w(vc+ 4β)X2)(vc+ 2β)

2βc(vc+ 4β)2
= 0. (36)

Solving it, a kink-shaped soliton solution is obtained:

X(ξ) =

√
2vcβ

w(vc+ 4β)
tanh [χ(ξ + ξ0)] , (37)
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with the parameters ξ0 and χ = (vc+ 2β)[vc+ 4β±
√
vc(vc+ 4β)]

√
w

2cβ(vc+4β)3
. A similar

result, but making use of the extended tanh-method, may be seen in [24].

4 Concluding remarks

Many phenomena in the physical, chemical and biological sciences are described either
by the interaction of diffusion and reaction or by the interaction between convection
and diffusion. In this work, the first integral method hss been successfully made use
of in order to establish the travelling wave solutions of Fisher equation with a finite
memory effect, into which both convection as well as diffusion play important role. Kink-
shaped soliton solutions as well as other ones as well as other ones expressed through
trigonometric, rational or Jacobi elliptic functions were found. Our results do generalize
the ones reported in [24] which have been obtained through the generalized tanh-function
method. The existence of the solutions (19)-(21) is demonstrated under certain parametric
domain. It has become obvious that the wave speed c depends upon time delay τ = 1/β
and, as well as upon s, w, D and k. In other words, the speed of the travelling wavefront
depends upon the reaction, diffusion and convection coefficients. The solutions obtained
here may be used in order to explain biological and physical phenomena due to the fact
that, in many biological and physical systems, dispersal is influenced by the diffusion
coefficient D as well as by the convection coefficient k.

The performance of the FIM was found to be simultaneously reliable and effective;
it also provides a larger number of solutions. The availability of computer systems like
Maple allows us to solve complicated and tedious algebraic calculation. Therefore, it is
readily applicable to high-dimensional NPDEs with various types of nonlinearity.
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