
Distribution function for plasma with RF heating from
quasilinear Fokker-Planck equation

N. Pometescu1, G. Sonnino2
1Department of Physics, University of Craiova,

13 A.I. Cuza, 200585 - Craiova
2Department of Theoretical Physics and Mathematics,
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Abstract

In the present paper we consider a magnetically confined plasma in the presence
of ion cyclotron resonant heating (ICRH) in the minority scheme. The distribution
function of the minority species was split into a steady state part corresponding to
the time averaged part and the time harmonic perturbation corresponding to the
rapid varying part driven by high-frequency field. The both distribution functions
are supposed non-Maxwellian and written as Maxwellian multiplied by deformation
functions, specific for each part. The goal of the paper is to study the radial profile of
these deformation functions and their relation with power density absorbtion in the
particular case of isotropic velocity space. The steady state part of the distribution
function is obtained from the quasilinear Fokker-Planck equation. On the other
hand, the kinetic equation is used to find the rapid varying part of the distribution
function driven by radio-frequency field in terms of the steady state part and so
the deformation functions from Maxwellian form. The both deformation functions
and the diffusion coefficient are plotted for some specific situations using density
and temperature profiles inspired by experiment data in JET. The obtained results
show how the deformation functions depends both on the power density deposition
profile and the value of power density deposition.

1 Introduction

Among of different range of RF heating, the ion cyclotron resonance heating (ICRH)
represents a certain option for heating plasma in future devices as ITER and DEMO.
Spotlight on particular aspects of the characteristics of ICRH will help us to better un-
derstand this process.

In the present paper we consider a magnetically confined plasma in the presence of
ICRH in the minority scheme. The expression of the distribution function in the presence
of ICRH for various plasma constituents are largely discussed in literature, see for example
[1] - [8]. Often, for the facility of calculation, the equilibrium distribution function is taken
in Maxwellian form, but actually the equilibrium distribution function is not a Maxwellian.
The question is: how much the Maxwellian is deformed by heating process? To study
this question, we start with an equilibrium distribution function written as a Maxwell
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distribution function multiplied by a deformation function. On the other hand, in the
presence of ICRH the steady state part of the distribution function is written as a sum of
two components: one is corresponding to the time averaged part, Fα, and the second one,
gα, to the rapid varying part driven by high-frequency field. These two components are
in fact not independently of each other, but are respectively the zero order approximation
and the first order approximation of the actual steady state distribution function. This
aspect becomes clear in Sec II where the kinetic equation for plasma with ICRH is written
in zero and first order approximation. Following the same steps in solving the system of
equations as in [7], the spectral component of the rapid varying part of the distribution
function gα will be given in terms of the Fα.

The last one will be obtained in Sec III using the formalism of the quasilinear Fokker-
Planck equation (see for example [5], [8]) applied in the case of isotropic velocity space.
Then we derive the relation between the two first orders for distortion of the density distri-
bution function (DDF) from a Maxwellian due to the ICRF heating in the simplified case
of isotropic velocity space and use this to obtain the distribution function corresponding
to the rapid varying scale.

In Sec IV, an estimation of the perpendicular electric field will be used in the differ-
ential equation which relates the deformation functions for Fα and gα in order to obtain
an algebraic relation between the two deformation functions. In Sec V is given a numeri-
cal illustration of the deformation from Maxwellian distribution function using values of
plasma and heating parameters similar to a specific shot in JET [3]. A testing radial
profile of the density power absorption and relevant density and temperature profiles are
used to plot the radial profiles for quasilinear diffusion coefficient, deformation function
for Fα, and for the spectral component of deformation function for gα. Their dependence
on the power density absorption will be also shown.

The last section is dedicated to discussion and conclusions, where the behaviour of the
quasilinear diffusion coefficient and the deformation functions are analysed.

2 The kinetic equation

We consider a non-ohmic multi-component plasma heated at the ion cyclotron resonance
for minority species i. The kinetic equation for the particles of species α (α = e,D, i)
that applies in such conditions is written in conservative form as :

∂tf
α +∇ · (vf α) + Lα

0f
α = Cα

(
f α, f β

)
− Lα f α (1)

where the force operator has been split into two contributions: one, Lα
0 , due to the

equilibrium magnetic field (equilibrium electric field E0 = 0)

Lα
0 ≡ eα

mα

(
1

c
v ×B0

)
· ∂

∂v
(2)

and the second one, Lα, arising from the RF electromagnetic field

Lα ≡ eα
mα

(
E+

1

c
v ×B

)
· ∂

∂v
(3)

with eα and mα the charge and mass of the particles of species α. The non-canonical
phase-space variables are the particle’s position x and velocity v. The operator Cα is the
collision operator.
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The distribution function is also split into two contributions: one, Fα, corresponding
to the time averaged part (secular behavior) and the second one, gα, corresponding to the
rapid varying part (due to RF waves) of the distribution function:

fα = Fα + gα (4)

In the absence of the RF heating, the kinetic equation is written as

∂tF
α

0 +∇ · (vF α
0 ) + Lα

0F
α

0 = Cα
(
F α
0 , F β

0

)
(5)

with the stationary solution F α
0 approximated as Maxwellian Fα

M ,

Fα
M = n0α

(
πv2thα

)−3/2
exp

(
− v2

v2thα

)
(6)

where vthα =
√
2Tα/mα is the thermal velocity of the species α and Tα , mα (with

α = e, i,m), denote the temperature and the mass of the species α, respectively.
The solution for the pair (Fα, gα) results from (1), by series expansion after gα. Then,

the equation (1) reads as

∂α
t Fα +∇ · [vFα] + Lα

0Fα = 0 (7)

in the zero order approximation, and

∂tg
α +∇ · [vgα] = −Lα Fα (8)

in first order approximation.
The equilibrium distribution function Fα corresponding to the slow scale for the

plasma with RF heating will be assumed of the form

Fα (r, t) = χα
1 (r, t)Fα

M (9)

With Fourier transform defined as

gα (r, t) =

∫
dk

∫
dω gαk,ω exp (ik · r− iωt) (10)

the gyrophase averaging of the spectral component gαk,ω will be written as deformed
Maxwellian ⟨

gαk,ω
⟩
φ
=

1

2π

2π∫
0

dφ gαk,ω ≡ χα
2 k,ω Fα

M (11)

Following the reasoning indicated in standard books (see for example [7]), the solution
of equation (8) for

⟨
gmk,ω

⟩
φ
in the case of minority species heating (α = m) is obtained as

⟨
gmk,ω

⟩
φ
=

em
mm

Fm
Mχm

1 Ey

(
mmv⊥
Tm

− ∂ lnχ1

∂v⊥
−

k∥
ω
β1

)
J1 (z) J0 (z)

ω − k∥v∥
(12)

where we assumed Im
⟨
gmk,ω

⟩
φ
= 0. From (11) and (12) results the equation which relates

χ1 and χm
2 k,ω in the minority heating scheme, which read as

χm
2 k,ω =

cEy

B

(
mmv⊥
Tm

χm
1 − ∂χm

1

∂v⊥
−

k∥
ω
β1

)
J1 (ξ⊥v⊥/vthm) J0 (ξ⊥v⊥/vthm)

ω − ξ∥v∥/vthm
(13)
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where

β1 = v⊥
∂ lnχ1

∂v∥
− v∥

∂ lnχ1

∂v⊥
(14)

ξ∥ =
k∥vthm
Ωcm

, ξ⊥ =
k⊥vthm
Ωcm

, ω =
ω

Ωcm

, Ωcm =
ZmeB0

mmc
(15)

with Ωcm denoting the Larmor gyro-frequency of the minority, Zm the charge number of
the minority and vthm the thermal velocity of the minority species.

3 Solution for distribution functions in isotropic case

A solution for χ1 can be obtained as solution of a quasilinear Fokker-Planck equation
(QLFPE) where it is taken into account only the contribution due to the perpendicular
component of the electric field, E+

⊥ , (which is concordant to the direction of rotation of
the minority). The contributions due to the perpendicular component of the electric field,
E−

⊥ and the one due to the parallel component of the electric field, E∥ are neglected.
In the case of minority heating it is sufficient to regard the heated ions as test particles

colliding with a Maxwellian background plasma. Owing to the weak nonlinearity of the
Fokker-Planck operator this is usually an acceptable approximation. If the applied power
is not too large we can (as a first approximation) simplify the QLFPE further by neglecting
the anisotropy which develops in the ion distribution function, Fm(w) , which should
satisfy the steady-state, Fokker-Planck equation [8] with the solution given as (9) with

χm
1 ≡ exp

w2 − 2

w∫
0

B (u) udu

A (u) + 2u
⟨D(ξ⊥u)⟩ql
v2thmνm/e

 (16)

where

A (w) ≡ Ψ

(
vthm
vthe

w

)
+

νm/i

νm/e
Ψ

(
vthm
vthi

w

)
(17)

B (w) ≡ Tm

Te

Ψ

(
vthm
vthe

w

)
+

νm/i

νm/e

Tm

Ti

Ψ

(
vthm
vthi

w

)
(18)

Ψ (u) ≡ 1

u2

[
erf (u)− 2√

π
u exp

(
−u2

)]
(19)

and ⟨D (ξ⊥w)⟩ql is the normalized quasilinear diffusion operator. The isotropic part of the
normalized quasilinear diffusion operator for minority heating, see for example [8], reads
as

⟨D (ξ⊥w)⟩ql =
Dm

0

2

+1∫
−1

dλ
(
1− λ2

)
J2
p

(
ξ⊥w

√
1− λ2

)
(20)

with λ = v∥/v the pitch angle and Dm
0 given as

Dm
0 =

P lin
abs

4nmmm

∞∫
0

w3 J2
0 (ξ⊥w) exp (−w2) dw

(21)

Here, J0(x) indicates the Bessel functions of the first kind, P lin
abs is the power absorbed

per unit volume by the heated species, nm is the number density of the minority species,
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respectively. The coefficient Dm
0 (with dimension of νmv

2
thm) is proportional to the power

available per ion of the heated species (here the minority species m). When ⟨D (ξ⊥w)⟩ql ≡
0 and all species have the same temperature, Fm (w) reduces to unperturbed Maxwellian,
Fm

M(w).
As can be seen from (17) and (18), the collisions between minority species (seen as a

test particle) and the background particles (electrons and majority ion species) are taking
into account through the quantities A (r, w) and B (r, w).

In the isotropic case, v⊥ = v∥ = v and β1 = 0, equation (13) reads as

χm,is
2 k,ω =

emEy

mmΩcmvthm

(
2wχm

1 − ∂χm
1

∂w

)
J1 (ξ⊥w) J0 (ξ⊥w)

ω − ξ∥w
(22)

where χm
1 is given by (16). At the limit, in the absence of RF heating Ey = 0 and

χm,is
2 k,ω = 0.
The component electric field Ey can be estimated from the power density absorption,

(see [7] or [10]),

P lin
abs = 2

nmeZmc

B0

R0

r |sin θ|

[
1 +

r

R0

cos θ

]3
E2

y (23)

where θ is the poloidal angle (angle between minor radius r and the horizontal midplane),
and for estimation was assumed |E⊥|2 ≃ 2E2

y .

Introducing expression (16) for χm
1 in (22) and Ey from (23), the function χm,is

2 k,ω can
be written as

χm,is
2 k,ω = Hm

k,ω χm
1 (24)

where
Hm

k,ω ≡ Y m Zm
k,ω Qm (25)

and

Y m =
1

vthmB

[
2cB0

nmeZm

(
R0

R

)3(
R

R0

− 1

)
|tan θ|

]1/2

(26)

Zm
k,ω =

wB(w)J1 (ξ⊥w) J0 (ξ⊥w)

ω − ξ∥w
(27)

Qm =

√
P lin
abs

A(w) + 2w
<D(w)>ql

vm,ev2thi

(28)

The factor Y m is a constant in the velocity space and is also independent on the
power of rf wave, but the factor Qm depends on the heating power both through

√
P lin
abs

and < D(w) >ql (which also contains the heating power P lin
abs). The factor Zm

k,ω depends
both on the particles velocity and the characteristics of the wave (k, ω).

4 Illustration of the deformation from Maxwellian of

the minority distribution function due to ICRH

In order to illustrate the behaviour of χm
1 and χm,is

2 k,ω let us consider the case of a low
concentration of ions 3He colliding with a thermal background plasma, composed by Hy-
drogen and electrons. This corresponds to the situation in some experiments at JET, see
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for example details about shot # 79352 given in [11]. As has been discussed there, at low
concentration of 3He (less than 3%) the heating correspond to the ICRH minority heat-
ing scheme and for a concentrationX(3He) higher than 5%, to a MC (mode conversion)
scheme. In the present paper we consider ICRH minority heating scheme with X(3He)
about 3% of the density of the majority ion species.

The frequency of the applied RF wave is ω = 32 MHz and the toroidal magnetic field
at the magnetic axis is B0 = 3.41 Tesla. The perpendicular wave number k⊥ is assumed
here as k⊥ ≈ 0.5/ρLm (so ξ⊥ = k⊥vthm/Ωcm = 0.5 < 1), and the parallel wave number k∥
is assumed as k∥ = 27/R.

The initial electron density radial profile and presumed density radial profile of mi-
nority ion species are given in fig.1 and fig.2 , respectively.
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Figure 1. Electron density
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Figure 2. Radial variation of the minority ion species He3 density.
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Figure 3. Electron temperature profile (solid blue line) and minority ions species
temperature profile (dashed red line).

The initial temperatures (given in keV) of electrons and minority ion species, respec-
tively, are plotted in fig.3. Before starting RF heating we assume Tm = Ti (minority ion
species have the same temperature as majority ion species).

320 330 340 350 360 370 380
R@cmD

5

10

15

Pabs
lin @W�cm3D

Figure 4. The density power profile.

Rigorously, the squared magnitude of the perpendicular electric field can be obtained
by solving the dispersion equation. Here will be used an estimation of Ey given in [12] for
typical JET case, where |E⊥|2 ∼ 10÷ 50 [kV 2/m2] for 1 MW of coupled power. In this
case, equation (23) leads to values P lin

abs ≃ 3 ÷ 16 W/cm3 per 1 MW of coupled power.
For the fundamental (n = 1) minority heating the cyclotron resonance layer for 3He is
located approximately at 0.24 m to the low field side of the plasma core, [11]. Given that,
we choose the density power profile (as test form) sketched in fig.4.

w=1.2

w=2

320 340 360 380
R@cmD

0.5

1.0

1.5

Dql@1019cm2.s-3D

Figure 5. Quasilinear diffusion coefficient ⟨D (ξ⊥w)⟩ql for w = 1.2 (dashed line) and
w = 2 (solid line).
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w=1.5

w=1.2

300 320 340 360 380
R@cmD

2

4

6

8

Χ1

Figure 6. The function χ1 as function of R at w = 1.5 (continuous line) and w = 1.2
(dashed line).

Then, the quasilinear diffusion coefficient ⟨D (ξ⊥w)⟩ql as given by (20) is plotted for
w = 1.2 and w = 2 in fig.5. We remark that the profile of ⟨D (ξ⊥w)⟩ql follow the aspect of

P lin
abs and is continuously decreasing with increasing of w. The function χm

1 (R,w), which is
continuously increasing with w, has radial profiles like pedestals in the power deposition
layer as is shown in fig.6, where the profiles are represented for two given values of the
normalized velocity (w = 1.5 and w = 1.2) of the heated species.

for Pabs
lin

for Pabs
lin � 10

300 320 340 360 380
R@cmD

2
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8

Χ1

Figure 7. The function χm
1 (R,w) plotted for w = 1.5 and two different values of the

power density deposition, P lin
abs (solid line) and P lin

1, abs = P lin
abs/10 (dot-dashed line).

w=1.5

w=1.2
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Figure 8. The function χm,is
2 k,ω plotted as function of R for w = 1.5 (dashed blue line) and

w = 1.2 (solid red line).
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for Pabs
lin � 10

for Pabs
lin
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Figure 9. The function χm,is
2 k,ω(R) is plotted for w = 1.5 and two different values of the

power density deposition, P lin
abs (blue dashed line) and P lin

1, abs = P lin
abs/10 (red solid line).

We note that the radial variation of χm
1 (R,w) is sensitive to the profile of the power

density deposition, P lin
abs , but less sensitive than ⟨D (ξ⊥w)⟩ql . For a power density de-

position ten times smaller, P lin
1, abs = P lin

abs/10, (with P lin
abs as given in fig.4, the quasilinear

diffusion coefficient is now ⟨Da (ξ⊥w)⟩ql = ⟨D (ξ⊥w)⟩ql /10 . The values of the function

χm
1a (R) which corresponds to P lin

1, abs is not so drastically reduced comparative with χm
1 (R)

which corresponds to P lin
abs. Concerning the aspect of χm

1a (R), this is more sensitive to the
aspect of the power deposition profile than χm

1 (R) is, see fig.7.
The spectral function χm,is

2 k,ω given in (24) is plotted in fig.8 as function of R for two
given values of the reduced velocity, w = 1.2 and w = 1.5.

5 Discussion and conclusions

The equilibrium distribution function for a given species in a non-ohmic multi-component
plasma is distorted from Maxwellian when the plasma is heated using ion cyclotron res-
onance frequency waves. A particular case considered here (and very often met in the
heating of plasma) is the using of the ion cyclotron resonance for minority species. The
effect of the ICRH is observed on both the steady state part of the distribution function
(described here by χm

1 ) and also to the rapid varying part driven by high-frequency field
(described here by χm,is

2 k,ω ). So, χm
1 and χm,is

2 k,ω are the ”disturbances from the Maxwellian”
form of the respective distribution functions.

The magnitude order and the shape of these ”disturbances” was illustrated using
numerical examples for the plasma and heating parameters similar to some experiments
in JET. As can be seen from the plots, the radial profile of the quasilinear diffusion
coefficient ⟨D (ξ⊥w)⟩ql follows the aspect of P lin

abs (see Fig.4 and Fig.5), but the radial
profile of the function χm

1 (R,w) has a pedestal in the power deposition layer (see fig.6).
The aspect of the radial profile of χm,is

2 k,ω depends both on the profile and values of the
power density deposition, as can be seen in fig.9. The difference between the profiles of
χm,is
2 k,ω for P lin

abs and P lin
1, abs is very drastically in the center region of the deposition layer.

In the first case we remark that the maximum values of χm,is
2 k,ω are at the border of the

resonance layer with the minimum values in the center. The relevance of results obtained
in the present work are however limited by using the quasilinear theory and restricted to
values of w so that ξ⊥w . 1.

Finally, the gyrophase average of the distribution function reads now as
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⟨
f m,is

⟩
φ
= (1 + ∆)χm

1 Fm
M

∆ =

∫
dk

∫
dω Hm

k,ω exp (ik · r− iωt)

where Hm
k,ω is given by (25)-(28). The quantity ∆ contains the influence of the ICRF wave

spectrum on the distribution function. We remark the presence of non-linear effects even
in the case of isotropic velocity space.
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