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Abstract

Some special travelling wave solutions for the 2D Ricci flow model under grav-
ity, in the conformal gauge, are constructed in this paper, by using of an uniform
algoritmic method. The proposed method is able to generate soliton solutions and
periodic wave solutions at the same time. These special solutions are compared to
the ones obtained by making use of other known and powerful methods for solving
nonlinear partial differential equations. In fact, this method is readily applicable to
a large variety of nonlinear dynamical models.
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1 Introduction

Many problems of physics in science and engineering may be modelled through nonlinear
partial differential equations. (NPDEs). In order to essentially describe the concerned
phenomena, to search for efficient algorithms able to discover a rich variety of solutions
to NPDEit is very important for us.

During the recent years various methods have been developed by many scientists
in order to find exact explicit solutions for NPDEsAmong them: the inverse scattering
method [1], the Bäcklund transformation [2], the Darboux transformation [3], Hirota’s
bilinear method [4], the homogeneous balance method [5], the (G′/G)-expansion method
[6], the Lie symmetry reduction [7, 8], the sine-cosine method [11], various extended tanh
method [12, 13] and many others.

The purpose of this paper is to present in an unified frame some travelling wave
solutions of the 2D Ricci flow model. Ricci flow equation on two dimensional manifolds
have attracted considerable attention upon physics’ literature that referes to the two-
dimensional black hole geometry, to the exact solutions of the renormalization group
equations which describe the decay of singularities in non-compact spaces, etc. [14]. The
evolution of the 2D Ricci flow model, within a local system of conformally flat coordinates
is described by the following second-order non-linear parabolic differential equation [15]:

ut =
uxy
u
− uxuy

u2
. (1)

This equation has been deeply studied from the algebraic point of view in [14]. The Lie
point symmetries of Eq. (1) are calculated in [16] in the terms of two arbitrary functions.
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Since this does mean to deal with an infinite number of symmetry generators, we did take
into consideration the linear sector of invariance, which does lead to a six-dimensional Lie
algebra generated by:

U1 = ∂x, U2 = ∂y, U3 = ∂t,

U4 = t∂x + u∂u, U5 = x∂x − u∂u, U6 = y∂y − u∂u. (2)

In [17], we have generalized the previous results to the nonlinear heat equation. In [18] the
algebra (2) imposed upon a 2D generalized nonlinear second-order evolution equation is
taken into consideration and important particular equations compatible with the linear Lie
invariance sector have been obtained. Conservation laws for the 2D Ricci flow model via
the direct construction method (see [19] and the references therein) have been established
in [20]. Some new invariant solutions have been derived.

The study of group invariant solutions for the Ricci flow model was also extended
in [21], where new sets of invariant solutions have been obtained by making use of the
optimal system of one-dimensional subalgebras from the Eq. (1). Using the linearization
approach, special classes of solutions involving arbitrary functions are reported in [15].
Conservation laws associated to the admitted Lie algebra (2) have been constructed in
[22] by using the Ibragimov’s method [23] suitable for nonlinear self-adjoint differential
equations.

In this paper an efficient algorithm able to find simultaneously various soliton solu-
tions and periodic solutions of NPDEs is described in Sectiom 2. By making use of the
hyperbolic function method, the solutions we are looking for come to be written into
specific forms. In Section 3, we successfully solved the 2D Ricci flow model. Some special
solutions which contain soliton solutions and periodic solutions are obtained in an unified
way. Finally, some concluding remarks are pointed out.

2 Method’ summary

In this section we do describe an important approach able to construct soliton solutions
and periodic solutions to NPDEs. It does extend the general ansatz [9] and it does simply
proceed as follows:

Step1: Consider a nonlinear evolution equation, for example one with three indepen-
dent variables x, y and t given by

E(u, ut, ux, uy, utt, utx, uty, uxy, ...) = 0, (3)

where u = u(t, x, y) is a physical field, E is a polynomial in u = u(t, x, y) and its various
partial derivatives, where highest order derivatives and nonlinear terms are involved.
Combining the independent variables t, x and y into one variable ξ, we first suppose the
existence of travelling wave solutions to (3) under the form:

u(t, x, y) = u(ξ), ξ = kx+my − vt. (4)

Then Eq. (3) is reduced to a nonlinear ordinary differential equation (NODE) for u =
u(ξ) :

E(u,−vu′, ku′, mu′, ...) = 0, (5)

where the prime denotes d/dξ.
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Step2: In order to seek for more exact travelling wave solutions, we suppose an
uniform frame for soliton solutions and periodic solutions [10] such as:

u(ξ) =
N∑

i=−N

aif
i(ω) +

N∑
i=1

bif
i−1(ω)g(ω) +

−1∑
i=−N

cif
i(w)g(ω), ω = ω(ξ), (6)

with the following properties

dω

dξ
= g(ω),

df(ω)

dω
= g(ω),

dg(ω)

dω
= f(ω), f 2(ω)− g2(ω) = δ, δ2 = 1. (7)

The parameter δ which connects the functions f(ω) and g(ω) is known. The constants
a0, a±1, ...a±N , b1, ..., bN , c−1, ...c−N , k, m, v are to be determined later. The parameter N
may be found by taking into consideration the homogeneous balance between the highest
order linear term and the nonlinear term in Eq. (5).

If we choose g(ω) = sinh(ω) then, through the use of the separation of variables method
to solve dω

dξ
= sinh(ω), we can get sinh(ω) = − csch(ξ) and cosh(ω) = − coth(ξ). For

similar reason, if dω
dξ

= cosh(ω), we can obtain sinh(ω) = − cot(ξ) and cosh(ω) = csc(ξ).

Doing that, the setting (6) can be splitted into the following two different forms:

u(ξ) =
N∑

i=−N

ai(− coth(ξ))i −
N∑
i=1

bi(− coth(ξ))i−1 csch(ξ)

−
−1∑

i=−N

ci(− coth(ξ))i csch(ξ), (8)

when δ = 1, f(ω) = cosh(ω), g(ω) = sinh(ω), and

u(ξ) =
N∑

i=−N

ai(− cot(ξ))i +
N∑
i=1

bi(− cot(ξ))i−1 csc(ξ) +
−1∑

i=−N

ci(− cot(ξ))i csc(ξ), (9)

when δ = −1, f(ω) = sinh(ω), g(ω) = cosh(ω).
Step3: Substituting (6) into Eq. (5) and tacking into account the properties (7), we

obtain a finite power series of fp(ω)gr(ω).
Step4: Set the coefficients of fp(ω)gr(ω)) obtained in Step 3 to zero, and generate a

set of algebraic equations for unknown parameters ai, bi, ci, k, m, v.
Step5: Solving the algebraic system. When substituting its solutions into (8) and

(9), we get soliton solutions and periodic solutions respectively, for the dynamical model
described by (3).

2.1 Applying on the 2D Ricci flow model

In this section we are dealing with the master Eq. (1). Consider its evolution equation in
terms of the travelling wave variable:

u(x, t) = u(ξ), ξ = kx+my − vt, k, m, v ∈ R∗, (10)

where v is the wave’speed. This change of variables does lead us to an ODE for u = u(ξ):

u2u′ + γu′′u− γ(u′)2 = 0, γ =
km

v
. (11)
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The balancing process between the highest degree linear term u
′′
u and the nonlinear term

u2u
′
, gives N = 1. This requirement allows us to write (6) under the form:

u(ξ) = a0 + a1f(ω) +
a−1
f(ω)

+ b1g(ω) + c−1
g(ω)

f(ω)
, (12)

Substituting (12) into (11) and making use of (7), the left-hand side of (11) is converted
into a finite power series of fp(ω)gr(ω). Setting each coefficient of this series to zero, gives
us a system of eleven algebraic equations for a0, a1, a−1, b1, c−1, γ = km

v
as follows:

3a21b1 + b31 + 2γa1b1 = 0,

3a1b
2
1 + a31 + γ(a21 + b21) = 0,

a21c−1 + 2a0a1b1 + b21c−1 + γ(a0b1 + a1c−1) = 0,

2a1b1c−1 + a0b
2
1 + a0a

2
1 + γ(a0a1 + b1c−1) = 0,

2a0a−1c−1 + a2−1b1 − δb1c2−1 + γδ(a0c−1 + a−1b1) = 0,

δ(2a0b1c−1 + a1c
2
−1 + a−1b

2
1)− γδ(c2−1 + 4a1a−1)− γa2−1
−a−1c2−1 − a1a2−1 − a−1a20 = 0,

δ(2a1a−1c−1 + 2a0a−1b1 + c3−1 + a20c−1) + 4γa1c−1

−γδa−1c−1 − 2a2−1c−1 − b21c−1 = 0,

δ(−a0c2−1 + 2b1a−1c−1)− γδa0a−1 + γb1c−1 − a0a2−1 = 0,

3δa−1c
2
−1 − a3−1 − γδa2−1 + γc2−1 = 0,

2δa0a−1c−1 + δb1a
2
−1 − b1c2−1 + γa0c−1 + γb1a−1 = 0,

3δa2−1c−1 − c3−1 + 2γa−1c−1 = 0. (13)

Solving the above over-determined nonlinear algebraic equations when δ = 1, we get
the following types of soliton wave solutions for Eq. (8):

u1,2(ξ) = a0 − a1[coth (ξ)± csch (ξ)], γ = −2a1,

u3(ξ) = a0 − a1 coth ξ, γ = −a1,
u4,5(ξ) = ±a−1(1∓ tanh ξ), γ = −a−1,
u6,7(ξ) = ±a−1(2∓ coth ξ ∓ tanh ξ), γ = −a−1, (14)

While substituting δ = −1 into determining system (13), we may as well derive some
types of real trigonometric function solutions of Eq. (8):

u8(ξ) = a0 − a1 cot ξ, γ = −a1,
u9,10(ξ) = a0 − a1(cot ξ ± csc ξ), γ = −2a1. (15)

In all the previous travelling wave solutions the wave variable ξ = kx+my− km
γ
t and

k, m, a0, a−1 ∈ R∗.

3 Concluding remarks

The algorithmic method applied in the present paper has proven itself to be simple and
efficient. It is more general than the method proposed in [9], when the following setting
has been used :
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u(ξ) =
N∑
i=0

ai sinhi(ω) +
N∑
i=1

bi sinhi−1(ω) cosh(ω), ω = ω(ξ)

with dω
dξ

= cosh(ω) or dω
dξ

= sinh(ω).
When we whould choose to investigate the fruitful 2D Ricci flow model, many so-

lutions, including solitary wave solutions (14) and periodic wave solutions (15) should
be obtained simultaneously. The unified algorithm proposed here can be more general
than other powerful methods developed in order to construct travelling wave solutions
of NPDEs. In what concerns our chosen matter, we could mention the

(
G′

G

)
-expansion

method which could generate soliton solution as a ratio of two solitary wave solutions
of type u3(ξ), the tanh-coth method [12] which does lead to soliton solutions of type
u3(ξ) and u4,5(ξ). When we have employed the famous generalized tanh function method
[24], we rediscovered the results reported here. This approach does deal with the ansatz

u(x, t) =
M∑
i=0

aiϕ
i(ξ) with ai = const. and does take full advantage of Riccati equation

ϕ
′

= A + Bϕ2 with special values for parameters (A,B),more exactly {(1, 1), (−1,−1),
(1,−1), (±1/2,±1/2), (1/2,−1/2)}. Consequently, there are nonlinear PDEs which could
be solved through the extended tanh function method and which could as well be solved
easily through the present method.

Not only the analyzed approach does contain the hyperbolic series expansion [25, 26,
27], but also it is as well a computer-shaped method, which does allow us to perform
complicated and tedious algebraic calculation on the computer. It is readily applicable
to a large variety of nonlinear dynamical models and it could generate a rich variety of
soliton solutions and periodic solution at the same time. We are also aware of the fact
that not all among the NPDEs may be studied through our discussed method. We are
investigating how the present method could be further improved in order to study other
more complicated kinds of nonlinear PDEs.
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