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Abstract

The transport of charged test particles in two-dimensional turbulent plasma is
studied using numerical simulations. We have calculated the mean squared spatial
and velocity displacements and the particle trajectories for different values of the
parameter alpha (see below). The plasma is considered in the magnetohydrody-
namic approximation and the turbulence level is maintained stationary by the use
of an external mechanical force. The self-consistent electromagnetic field generated
by the plasma acts on the test particle via the Lorentz force while the interaction
between the test particles and the plasma constituents is modeled as a drag force.

1 Introduction

The transport of charged test particles in magnetohydrodynamic plasma is influenced
by two main effects. First we have the interaction between test particles and the plasma
constituents trough collisions and second we have the influence of the electromagnetic field
on the test particles by means of the Lorentz force. Assuming that the mass of the test
particles is much higher then that of the plasma constituents, the interaction of the two
can be seen as a drag force that acts on the test particles. The particle transport behavior
will be due to a combination of plasma effects: magnetic trapping, electric accelerations
and flow drag induced loss of kinetic energy. Also, for a turbulent state, the geometry of
the plasma and the type of the existing structures will have a crucial role in the behavior of
the particle transport. We are in the case of anomalous transport, defined as the process
in which the transport coefficients depend on the degree of disorder of the medium. Since
for a turbulent state of the plasma, the electromagnetic field that acts on the particles is
generated by the turbulent movement of the plasma, we will refer to this as a turbulent
field.

97

iu
Text Box
Physics AUC, vol. 24, 97-103 (2014)

iu
Text Box
PHYSICS AUC



2 Theoretical model

We consider a turbulent one-fluid plasma described in the framework of incompressible
magnetohydrodynamics (constant mass density ρ), for which the dimensionless equations
are:

∂U

∂t
+U · ∇U = −∇P +R−1

e ∇2U+ J×B+ F (1)

∂B

∂t
= ∇× (U×B) +R−1

m ∇2B (2)

where U = U(r, t) is the zero mean velocity field of the plasma. The magnetic field
B = B(r, t) is generated by the plasma motion and J, given as J = ∇×B, is the density
current. The Reynolds number Re = vALA/ν and the magnetic Reynolds number Rm =
vALA/η are taken to be equal, so that the magnetic Prandtl number (Pr = Rm/Re) is
unity. The Alfvén velocity, defined as vA = B/ρµ0 is taken as the characteristic turbulent
velocity scale and the LA the characteristic large scale turbulent length. When desired,
we force the velocity equation by means of an known, external force F = F(r, t). The
equations (1) and (2) are joined by the incompressibility condition for the fluid (∇·U = 0)
and the magnetic field zero-divergence (∇ · B = 0). Because of the incompressibility
condition, the total pressure (hydrodynamic pressure P plus the magnetic pressure), is
not an independent variable and depends on U and B. In the MHD formalism the
magnetic field is found directly from the MHD equations, while the electric field E(r, t)
is determined algebraically from the generalized Ohm’s law:

E = −U×B+
vALA

Rm

J (3)

The non-relativistic equation of motion for a heavy charged particle (the particle mass m
is much larger than that of the plasma constituents) due to the plasma is:

dr

dt
= v (4)

dv

dt
= α[E(r) + v ×B(r)]− χ|v−U(r)| (5)

where the r = r(t) represents the position of the particle and v = v(t) its velocity. The
parameter α = tA/tp represents the coupling between the particle (of charge q) and the
electromagnetic fields generated by the plasma and represents the ratio of the MHD time
scale to the characteristic time scale of the particle, given by the inverse of the Larmor
frequency (tp = 2π/Ω). The coupling between the plasma flow and the particle is given
by χ = tA/τ and represents the ratio between the Alfvén time (tA = LA/vA) and the
relaxation time τ (inverse of the collision frequency).

Under the influence of a strong external magnetic field (B0), the plasma will develop
an anisotropic direction parallel to B0. The influence of the external magnetic field will
cause the plasma to become quasi two-dimensional, as the plasma flow will decouple in
the B0 direction. As a simplifying approximation we consider a two-dimensional plasma
for which we initialize the velocity field as (Ux, Uy, 0) and the magnetic field as (0, 0, Bz).
In this configuration, the test particles will be constrained in a 2D plane.
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Figure 1: Velocity and magnetic spectra for the solved wave-number range

3 Numerical simulations

The MHD equations (1)-(2) are solved by a pseudo-spectral code [2] in a domain of length
L = 2π with periodic boundaries conditions and a resolution of N = 512 modes in the X
and Y direction. The time step is computed automatically by a CFL (Courant-Friedrichs-
Lewy) criterion and the time advancement is based on a third order Runge-Kutta scheme.
The nonlinear term is dealiased using a phase shift method. The external mechanical
force F injects a constant level of energy ε in a shell sf = [7.5, 8.5]. The choice of the
boundaries for the forcing shell for two-dimensional turbulence ensures a number of 92
modes. This will ensure an isotropic forcing for our system. We evolve the MHD equations
until we reach a statistically stationary state, for which the energy injected is equal to
the energy lost due to dissipative effects. Throughout our simulations we check that the
smallest turbulent scale (the Kolmogorov length lK) and the largest turbulent scale (LA)
are properly solved by our simulation. Since we simulate two-dimensional turbulence, an
inverse cascade is present, see Figure 1.

Once the plasma state has been generated, we use a frozen field approximation (Fig-
ure 2), and inject a number of 1000 particles. The particles are evolved using a 4th order
symplectic solver and a cubic interpolation method is used to obtain the fields required at
the particle position, [6]. We evolve the particles for a total time of about T = 1000tp. In
Figure 3 we plot three trajectory per coupling constant (α) to exemplify the qualitative
behavior for χ = 0. We see that increasing the coupling parameter between the fields and
the particle will increase the trapping. Taking χ = 0 is equivalent to ignoring the test
particle collision effects with the plasma.

We will look at the time evolution of the mean squared displacement (MSD), defined
for a direction i as: 〈δri(t)

2〉 =
〈

[ri(t)− ri(0)]
2
〉

. The angle brackets denote averaging
over the test particle. By looking at the anomalous scaling law:

〈

(δr(t))2
〉

= Atµ (6)

and extracting µ we find the diffusion regimes. The time present in our figures will be
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Figure 2: Plasma state. Top to bottom: the velocity, magnetic and electric fields
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Figure 3: Particle trajectories for succesive α: 10, 100, 1000
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Figure 4: Spatial mean square displacement, α = 100

Figure 5: Velocity mean square displacement, α = 100
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measured in particle proper time tp = 2π/Ω). We will look at mean squared displacement
evolution in time. In Figures 4 and 5 we represented the radial and poloidal spatial
(Figure 4) and velocity (Figure 5) mean squared displacements.

4 Discussion

In the absence of collisions, the mean electric field (due to U × B contribution to E)
accelerates the particles. This gives a super-diffusive regime in the velocity space and a
super-balistic regime for the position.

A large value for the coupling between the electromagnetic field and the particle (α)
signifies a high trapping rate due to the magnetic field. Particles will tend to follow the
magnetic field lines and the transport regime is given by the disorder (turbulence level)
of the magnetic field lines. The electric field will accelerate the particles, increasing their
kinetic energy and lowering the coupling α (particle velocity will increase compared to the
field reference vA). The presence of collision should decrease the level of energy gain in
the unit of time and restore trapping lost due to the increase in particle velocity. We will
continue our study for different collisional cases given by different values of the parameter
χ.
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