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Abstract

The mainstream in the theory and applications of electromagnetic wave propaga-
tion in kinetic media is oriented to frequency-domain asymptotic methods, assuming
linear dielectric response, where a solution of the Vlasov-Maxwell problem is more
feasible. Even for the cases when the short-wavelength limit breaks down, asymp-
totic methods are in principle robust in still providing a meaningful solution. The
most popular of these methods are the ray and beam tracing techniques, which
reduce the (partial differential)full-wave equation to a set of ordinary differential
equations. In most computer applications, the ray/beam tracing codes are config-
ured to follow Gaussian beams only. In this paper, the extension of such schemes
to include more complicated, arbitrary beams is presented. As a first step, the de-
composition of the beam propagation into the one of properly configured ray/beam
modes is analyzed. Then, a generalization of the Gaussian beam parameters and of
the amplitude transport of the modes is formulated. As an instructive application,
we solve the propagation of non-Gaussian electron-cyclotron beams in a plasma with
stratified magnetic geometry and kinetic pressure.

1 Introduction

The propagation of electromagnetic waves in inhomogeneous media is described by the
vector wave equation [1]. In principle, the derivation of a full-wave solution is very hard,
because this equation is partial differential and a constitutive relation for the medium
current response must be provided. In cases where the wavelength is small compared to
the scale length of inhomogeneity of the medium, a simplification is achieved by employing
frequency-domain asymptotic methods: Ray tracing (geometric optics) [2], quasi-optical
ray/beam tracing [3, 4] or paraxial Wentzel-Krammers-Brillouin beam tracing [5]. These
methods, initially intended for plasma applications but indeed being more general, exploit
an asymptotic series expansion of the solution sought in a neighborhood of the considered
location and time, and solve the equations emanating from the separation of terms of
different orders [6].

Such ”corpuscular” description of the propagation, in terms (among others) of a bun-
dle of rays continuously refracted by a medium slowly-varying in time/space, makes the
problem resemble to the motion of a particle deflected by a scalar potential [7]: The rays
correspond to the particle trajectories and the wave vector and frequency correspond to
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the particle momentum and energy. In particular, both of the latter wave properties de-
pend on the position along the ray in the same way as the particle momentum and energy
depend on time; thus, one refers to local wave vector and local frequency in this frame-
work. Moreover, the wave phase corresponds to the action of the equivalent mechanical
system, and thus satisfies a Hamilton-Jacobi equation.

In ray and beam tracing analysis, the solution is obtained through ordinary differential
equations emerging from a canonical formalism, where the wave dispersion function plays
the role of the Hamiltonian. For problems related to plasmas, it is customary to assume
fluid-like (i.e cold plasma) dispersion for the Hamiltonian function, where the medium
dielectric tensor is derived in terms of the linear theory of plasma oscillations in the
presence of small-amplitude waves [8]. There are several ray and beam tracing codes that
implement the schemes described above (see e.g. [9, 10, 11]), and the results obtained are
in reasonable agreement with the experiment (details can be found in [12, 13]) apart from
cases where the short-wavelength limit breaks down, e.g. due to steep density gradients
[14] or cut-offs, or where the system has gone beyond the linear threshold of wave-particle
interaction [15, 16].

In the majority of applications, especially to tokamak fusion, high-frequency waves
with narrow profile of the electric field amplitude and an initial focusing of the wave-front
(i.e. beam-shaped) are considered [13, 17]. The advantages of this option are numerous;
just to mention, in plasma heating experiments the localization of wave-particle resonant
absorption is increased, in diagnostics the investigated region is made as small as possible,
and in magnetohydrodynamic stability control an alignment is achieved with the phases
of the instabilities. The state-of-the-art in theory and experiment is mainly based on
Gaussian-shaped beams. Their employment is preferable because of their low Ohmic
losses in the wave transmission lines, and also due to the fact that they allow an easy
coupling to waveguide modes; furthermore, such wave structures are easy to model in
theoretical and numerical investigations.

It is the case, however, that the beam, before entering the plasma region, already
does not have a Gaussian profile shape. This is usually an unwelcome effect, owed to a
misalignment of the wave launching system or to a deformation of the materials involved
due to extreme heat load (e.g. when the wave power density attains large values). In
the latter case then, a non-Gaussian beam profile may be intentionally set up in order to
reduce the power density on the optical structures between the wave source, the trans-
mission line and the plasma vessel. Furthermore, in the plasma, a modification of the
initial Gaussian beam might occur due to localized absorption, non-local redistribution of
energy by resonant particles along the magnetic field lines, vivid focusing and/or strong
wave interference.

The coupling of non-Gaussian beams to the plasma is a part of the literature that has
not been significantly studied (the reader is referred to [18] and the comments in [5]). In
this paper, models based on the asymptotic methods are formulated for the calculation
of the propagation of arbitrary beams in inhomogeneous anisotropic media. First, the
sequence for following arbitrary beams in terms of ray tracing, as a bunch of independent
rays carrying the non-Gaussian power profile, and paraxial beam tracing, as a central
ray bound to scalar functions of the beam geometry, is established. Then, the beam
description through well-known parameters, like e.g. the width and the curvature radius,
is recovered by generalizing the parameters already defined for Gaussian beams. As an
example case, the propagation of a non-Gaussian electron-cyclotron beam in simplified
plasma geometry is calculated.

The structure of the paper is as follows: In Section 2 the ray and beam tracing
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techniques are briefly presented, and in Section 3 the sequence of tracing the beam path
and amplitude/power in terms of the two different techniques is analyzed and explained.
In Section 4, a set of generalized beam parameters are introduced in the specific setup
of each model, and in Section 5 the merits of the two models are uncovered with the
application in an example problem. Finally, in the last section, conclusions are made and
the future targets of our modeling are discussed.

2 Frequency-domain asymptotic wave methods

The evolution of any type of electromagnetic field in all kinds of media is described by
Maxwell’s equations. Especially for wave propagation, a manipulation of these equations
yields the vector wave equation, a separate one for the electric and the magnetic field,
which relates more straightforwardly the electromagnetic fields to the response of the
medium where the wave propagates. The general form of the wave equation for the
complex electric field vector E reads [8]

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
=

∇ρ(r, t)
ε0

+ µ0
∂ j̄(r, t)

∂t
, (1)

with ρ, j̄ respectively the electric charge and current volume densities in the medium.
With the intention to achieve a simplification to the solution of Equation (1) in

problems related to propagation in magnetized plasmas with slow spatiotemporal vari-
ation, we consider a medium which is, in principle, time-independent, weakly inhomo-
geneous and anisotropic. Then, the wave electric field can be considered of the form
E(r, t) = E(r) exp(−iωt) (ω is the wave frequency), whereas the medium response may
be expressed in terms of a spatially inhomogeneous dielectric tensor ε̂, obtained by in-
troducing a spatial dependence to the corresponding quantities that enter the dielectric
tensor formula of the homogeneous plasma (see [8] for details). In that frame, the general
wave equation reduces to the vector Helmholtz equation [1]

∇× [∇× E(r)]− ω2

c2
ε̂(r, ω) · E(r) = 0. (2)

Historically, the first method to provide an asymptotic solution of (2) is ray tracing, a
product of geometric optics theory [2]. Within this technique, the wave field is expressed
in the eikonal form, which is actually a generalization of the standard ansatz for the plane
wave that includes the weak inhomogeneity [6]

E(r) = A(r) exp[iκs(r)]. (3)

In the above relation, A is the electric field amplitude, s is the eikonal function that gen-
eralizes the plane-wave phase k ·r for weakly inhomogeneous media, and κ = ωL/c≫ 1 is
the short-wavelength limit parameter, with L being the typical inhomogeneity scale length
of the medium, defined as the maximum of the average normalized gradients among the
parameters affecting propagation (i.e. entering the dispersion relation). The connection
of the eikonal function and the wave-vector is k = κ∇s.

For each ray, one can determine the ”backbone” of the wave field by means of a set
of ordinary differential equations that give the variation of the phase and the amplitude
along the ray. These are obtained by exploiting an asymptotic series expansion of the
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solution form assumed in a neighborhood of the considered position

A =
∑
m

Amκ
−m, (4)

inserting (3), (4) in (2) and separating terms of different order in the parameter κ−1.
From the emerging equations, the one of zero-order describes the evolution of the wave
phase in space and involves the Hermitian part of the dielectric tensor[

κ2(−k2Î+ kk) + ε̂H
]
·A0 ≡ Λ̂ ·A0 = 0. (5)

The solvability condition of Equation (5) reads det[Λ̂] ≡ D = 0 and is actually the

linear dispersion relation for the wave, involving the dispersion tensor Λ̂. The specific
relation may be viewed as a Hamilton-Jacobi equation with respect to s; in this manner,
it is possible to derive Hamiltonian ray equations which trace the evolution of the wave
trajectory and the wave-number along the ray

dr

dτ
=
∂D

∂k
, (6a)

dk

dτ
= −∂D

∂r
. (6b)

Moreover, the first-order equation provides the wave amplitude transport (i.e. the evolu-
tion of the amplitude along the ray)

d|A0|2

dτ
= − (∇ · vg + 2γ) |A0|2, (7)

where γ = ē∗ · ε̂A · ē is the absorption coefficient, describing the wave power damping
by the medium, and ē the unitary (complex) polarization vector (hence A0 = A0ē).
Equation (7) implies that the wave energy propagates in the direction of the group velocity
vg ∝ ∂D/∂k, and also that the absorption is proportional to the projection of the anti-
Hermitian part of the dielectric tensor onto the polarization vector.

The ray tracing approach provides a very effective solution to the wave equation within
the short-wavelength limit, with the caveat, however, that wave phenomena related to
diffraction and interference are not included in the description. This comes from the
fact that, in the conventional formulation of geometric optics, such effects appear in the
higher-order equations, which are cumbersome to treat and are left out of the picture
(for more information, the reader is pointed to [19]). In situations where focused or
collimated beams are involved, and therefore diffraction cannot be neglected, ray tracing
computations lead to physical inconsistencies near the beam focus point (as seen in Figure
1a). For that reason, theoretical tools that upgrade geometric optics have been developed
for the consistent modeling of the diffractive variation of the beam width. These are
complex geometric optics and paraxial beam tracing, which are also referred to as quasi-
optical methods.

The former technique introduces that the wave phase is complex-valued, i.e. s̄ = s+iϕ,
with the imaginary part being related to the electric field profile transverse to the beam
propagation. The ansatz for E is modified to [3, 4]

E(r) = A(r) exp[iκs(r)] = A(r) exp[−κϕ(r)] exp[iκs(r)], (8)
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(a) (b)

Figure 1: (a) Illustration of the wave beam representation in terms of the asymptotic
methods, (b) The local beam coordinate system (τ, ξ1, ξ2) (figures reprinted from Reference
[10]).

where the imaginary wave-vector Im(k̄) = κ∇ϕ is, according to the above definition,
normal to vg. A new scale length comes into play, the beam width w, which is intermediate
to the wavelength λ and L since, according to the Fresnel condition w2 ≥ λL, Im(k̄) ∝ w−1

is of order κ−1/2 with respect to Re(k̄). The corresponding complex solutions can be
obtained in two different ways: First, a set of Hamiltonian equations describing modified
rays is derived, followed by a Taylor expansion in the complex dispersion relation according
to Im(k̄) ≪ Re(k̄). The resulting dispersion function consists only of real terms, the
zero-order term of geometrical optics and a higher-order term that describes diffraction
[3]. On the other hand, one can extend the equations in complex space by means of
the analytical continuation of D, and then derive a geometric optics solution in complex
space. Thereafter, the physical wave field is obtained by evaluating the solution at a
real-valued observation point (details in [4]).

The third approach is the paraxial beam tracing method, which combines the sim-
plicity of ray tracing with the provision of a description of diffractive effects. There, the
electric field has the same form as in quasi-optics theory, however the amplitude series
expansion implicitly contains the intermediate order κ−1/2 [5]

A=
∑
m,n

[
Φm,nA0− iκ−1/2

∑
j

∂Φm,n

∂ξj
A

j

1−κ−1

(
1

2

∑
j,l

∂2Φm,n

∂ξj∂ξl
A

jl

2 − iΦm,nA3

)]
. (9)

The function Φm,n(ξ1, ξ2) = ϕm(ξ1)ϕn(ξ2) describes the transverse beam profile on the
basis of orthogonal wave modes with base function ϕn(x) = exp (−x2/2)Hn(x) (Hn the
normalized Hermite polynomials). In the above, a local system of dimensionless beam
coordinates (τ, ξ1, ξ2) has been introduced, visualized in Figure 1b, where τ is along and
ξ1, ξ2 across the propagation direction. The curve R{ξ1 = ξ2 = 0} is a geometric-optics
ray that describes the center of gravity of the beam, and the electric field profile spans
across R according to the unitary quadratic form ϕ = δi,jξiξj/2.

The complex phase of the wave field may be expanded in Taylor series around R

s̄ = s̄(R) +
∑
α

∂s̄

∂xα
[xα − xα(R)] +

1

2

∑
α,β

∂2s̄

∂xα∂xβ
[xα − xα(R)] [xβ − xβ(R)] , (10)
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which is the rationale behind the characterization of this method as ”paraxial”. The
coefficients s̄α = ∂s̄/∂xα are zero due to the normality of the wavenumber on the group
velocity, and s̄α,β = ∂2s̄/(∂xα∂xβ) = sα,β + iϕα,β are determined by ordinary differential
equations emerging from the terms of order κ−1/2 in (9)

ds̄α,β
dτ

= − ∂2D

∂xα∂xβ
−
∑
γ

[
∂2D

∂xβ∂kγ
s̄α,γ −

∂2D

∂xα∂kγ
s̄β,γ

]
−
∑
γ,δ

∂2D

∂kγ∂kδ
s̄α,γ s̄β,δ. (11)

The coefficients sα,β relate to the curvature radius (∝ r−1
c ), whereas ϕα,β relate to the

beam width (∝ w−2). The equation for the amplitude transport is similar to (7), however
here absorption is calculated on R but refers to the whole beam. In that frame, one
employs the amplitudes Cm,n = A0 exp (iΘm,n), each one of which is the geometric-optics
amplitude excluding the phase shift Θm,n over R, given by [18]

dΘm,n

dτ
=

(
m+

1

2

)∑
α,β

∂2D

∂kα∂kβ

∂ξ1
∂xα

∂ξ1
∂xβ

+

(
n+

1

2

)∑
α,β

∂2D

∂kα∂kβ

∂ξ2
∂xα

∂ξ2
∂xβ

. (12)

3 Asymptotic solution for arbitrary wave beams

The description of arbitrary wave beam structures in terms of the superposition of
simpler wave modes, compatible with the solution provided by the asymptotic methods,
will be of assistance in following the propagation of generic beam profiles, as e.g. the
one of a properly set-up bunch of ray-based or Gaussian-like modes. The results may
be employed in the modeling of the wave power absorption in the plasma taking into
account the modifications of the profile shape, due to localized absorption, in terms of the
generation of higher-order modes which exchange energy among them. Such a model, in
combination with advanced asymptotic codes like e.g. TORBEAM [10], may provide an
improved description of the propagation, absorption and current drive in many cases of
interest for tokamak plasma experiments.

The first step in this direction is to formulate a theoretical method, oriented to nu-
merical applications, for the analysis of the arbitrary electric field profile into simpler
components relevant to the asymptotic solution method at hand (ray or beam tracing).
The two asymptotic methods, as seen also in the previous section, appear a notable dif-
ference in the description of the electric field vector: In ray tracing, each wave structure
(i.e. the ray) is assumed to be a localized plane wave carrying all the wave power as-
signed at the launch point, whereas in beam tracing the wave is modeled as a central
ray accompanied by scalar functions for the beam width and the curvature of the wave-
front. These facts, together with the overall mathematical properties of each asymptotic
method, should be considered in order to reach, per case, an optimal decomposition of
the non-Gaussian beam.

We start with the paraxial beam tracing technique, where any wave beam is read-
ily expressed as a superposition of Gaussian-Hermite modes [5]. With reference to the
previous section, the ansatz for the spatial part of the electric field is written as

E(r) = ē(r) exp [iκs(r)]
∑
m,n

Cm,n(r) exp [−iΘm,n(r)]ϕm[ξ1(r)]ϕn[ξ2(r)]. (13)

As seen from (13), the amplitude of the electric field consists of two parts: The first one,
essentially the function Φm,n, determines the transverse distribution of the field amplitude
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Figure 2: (a) Normalized amplitude profile of a two-dimensional square beam, as recon-
structed using MN = 20 · 20 = 400 modes. (b) Normalized coefficients of the Gaussian-
Hermite modes, corresponding to the previous expansion, as a function of the mode
indices.

in space (i.e. the beam profile). It is apparent that the amplitude decreases rapidly when
moving outwards from the beam axis, a statement for the localization of the beam. On
the other hand, the phase-shifted coefficients Sm,n = Cm,n exp (−iΘm,n) have to do with
the intensity of the beam, or, else said, with the energy density of the wave field; the exact
connection is UE =

∑
m,n |Sm,n|2 =

∑
m,n |Cm,n|2. One has to notice also that, within this

description, all the modes have the same polarization and generalized phase, as these are
characteristics of the central ray.

For our purpose of decomposing the beam into simpler modes, the electric field may
be cast in the form E = E0 exp (iκs)Re(ē), with E0 the complex amplitude

E0(ξ1, ξ2) =
∑
m,n

Sm,nϕm(ξ1)ϕn(ξ2). (14)

It is trivial to understand that, apart from describing the evolution of the wave energy,
the coefficients Sm,n contribute also to the exact shape of the beam profile as statistical
weight coefficients. For obtaining the beam tracing solution when a certain type of input
for the wave electric field is given, the coefficient values of the representing modes for
this initial field should be calculated; then, together with the phase and polarization,
their values may be found at each propagation instant by solving the amplitude transport
equation per mode, and the solution is complete.

The coefficients of the series approximation given in (14) are computed from the
generalized Fourier relation stemming from the orthogonality of the base functions [20]

Sm,n =

∫ ∞

−∞
E0(ξ1, ξ2)ϕm(ξ1)ϕn(ξ2)dξ1dξ2. (15)

Due to the phase difference existing between the propagating modes, one cannot determine
directly from the initial amplitude E0 the values Cmn, but only their phase-shifted versions
Sm,n. Furthermore, in practical applications, it is not possible to include the required,
according to theory, infinite number of terms in the series expansion. In this case, one
may resort to Bessel’s inequality and define an ”error function” for checking the accuracy
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of the series approximation

DE(m,n) =
∑
m,n

|Sm,n|2 −
∫ ∞

−∞

∫ ∞

−∞
|E0(ξ1, ξ2)|2dξ1dξ2 ≤ 0. (16)

As the number of terms increases, the amplitude sum should approach the value of the
integral, and the error should proceed towards zero.

As an example, we consider the decomposition of a real-valued, square-shaped profile
in two dimensions, represented in the form

E0(ξ1, ξ2) = C0[h(ξ1 + d)− h(ξ1 − d)][h(ξ2 + d)− h(ξ2 − d)], (17)

which actually means that the electric field E0 is nonzero only in the cubic box {[−d, d]×
[−d, d]} around the propagation. In the previous relation, d is the half-width of the
square profile, normalized by the same factor as the transverse coordinates, and h(x) is
the Heaviside step function [20]. By inserting (17) into (15), and using also the mathe-
matical expression for the Gauss-Hermite base functions, the real-valued coefficients for
the specific expansion are obtained

Sm,n = C0

∫ d

−d

exp (−ξ21/2)Hm(ξ1)dξ1

∫ d

−d

exp (−ξ22/2)Hn(ξ2)dξ2. (18)

The integrals on the right-hand side of (18) are of the same form and can be calculated
analytically for certain values of n, but not also represented in a general analytic form.
Another way to proceed with this calculation is through numerical methods.

In Figure 2 we show the results of the numerical solution for the square profile decom-
position and reconstruction by a finite number of modes (M ·N = 20 · 20 = 400 modes)
with d = 4, C0 = 1. From the reconstructed profile one concludes that the model is very
efficient, except near the discontinuity planes ±d. In Figure 2b, the expansion coefficients
(normalized to C0), are plotted as a function of m, n. The higher-order modes are found
to have very small coefficients and not playing an important role in the reconstructed
beam. The error DE falls under 1% for M,N > 10, which means sufficient accuracy in
this region. Notice here also that, since the beams studied are localized in space, the
theoretical requirement for integration to infinity is overcome and the integration limits
can be cut-off, without error, at sufficient distances.

Having the ability to decompose the launched waveform into beam-tracing compatible
modes and to reconstruct the field along propagation, brings the solution pursuit to
the point where all required quantities in (13) should be computed, namely ē, s, Cm,n

and Θm,n. According to the aforementioned, the computation is straightforward; the only
thing to keep in mind, in solving the amplitude transport equations, is that the absorption
coefficient depends on the wave-vector which is different for each mode. In specific, the
following relation holds [18]

km,n = ∇(κs−Θm,n) = k− dΘm,n

dτ
∇τ, (19)

where ∇τ is computed from the reciprocal of the ray-tracing equation involving dr/dτ .
The absorption coefficient can be evaluated directly from analytical models [21] or by
solving the hot plasma dispersion relation as e.g. done in [9].

Within the ray tracing approach now, the situation is much more simple: The wave
beam can be represented as a bunch of rays, initialized properly in order to shape the
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Figure 3: (a) Illustration of the beam representation in terms of propagating wave rays.
(b) Beam electric field amplitude reconstruction by the amplitudes of rays set spatially
dense across propagation.

beam contour, which sum up to the expected electric field profile across propagation.
Assuming that the rays have amplitudes Cm, polarization vectors ēm and generalized
(eikonal) phases sm along the propagation paths defined by the position vectors rm,
where all these quantities are known from the solution of the corresponding Hamiltonian
ray and amplitude transport equations, the arbitrary electric field has the form

E(r) =
∑
m

δ(r− rm)Cm(r) exp [iκsm(r)]ēm(r). (20)

The above expression is actually a discrete approximation of the beam over locally plane
waves, contrary to the updated paraxial beam tracing technique described previously
where the discretization aims to the employment of different orders of generalized Gaussian
modes. Using rays, the requirements for achieving accuracy in the approximation are
different regarding the beam extent and the amplitude profile: The correct description
of the beam extent relies mainly on the proper modeling of the few rays neighbouring
to the beam transverse borders, whereas a large number of rays is required to describe
sufficiently the electric field profile, in order to provide amplitude values densely within
the region enclosed by the bordering rays.

In Figure 3 the details of the beam approximation via asymptotic rays are illustrated.
In comparison to beam tracing, the ray-based description does not provide a detailed
computation of diffractive or interference effects on the beam extent, because, as it stands
for geometric optics, the propagation of each ray the beam is composed of is calculated
independently, not influenced by its neighbouring rays. In the amplitude description,
the method based on rays may have a better performance in the modeling of extremely
asymmetric beams, e.g. due to truncation induced by inhomogeneous power absorption
or partial reflection, however the number of modes required for achieving good accuracy
is much more increased with respect to beam tracing.
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4 Generalization of the Gaussian beam parametriza-

tion

In the majority of studies involving wave beams in applied optics, the propagating
beams are considered to be of Gaussian shape, although this is a (at least) desirable situa-
tion in some cases. In terms of optics, Gaussian beams are preferable because they appear
smoother propagation and are easier to model. For applications relevant to fusion, Gaus-
sian beams provide enhanced spatial localization and thus ”surgical” accuracy in plasma
perturbation plus more reliable measurements [22]. In order to be able to take advantage
of the extensive knowhow available on the symmetric beam description, the notion of the
parameters relevant to the Gaussian beam has to be refined. This is necessary, because
for arbitrary beams the standard definitions are inadequate since, in most cases, they
underestimate the contour size of the beam and/or provide a misleading picture of the
wavefront boundary.

In the context of paraxial beam tracing, the width W , the divergence angle Θ0 and
the curvature radius of the wavefront RC of an arbitrary beam may be generalized on
the basis of the distribution of the electric field amplitude E per direction ξj (j = 1, 2)
transverse to the propagation. The specific formulas are [23]

W̃ 2
j =

∫ +∞
−∞ ξ2j |E|2dξ1dξ2∫ +∞
−∞ |E|2dξ1dξ2

−

(∫ +∞
−∞ ξj|E|2dξ1dξ2∫ +∞
−∞ |E|2dξ1dξ2

)2

, (21a)

Θ̃2
0,j =

∫ +∞
−∞ ψ2

j |E|2dψ1dψ2∫ +∞
−∞ |E|2dψ1dψ2

−

(∫ +∞
−∞ ψj|E|2dψ1dψ2∫ +∞
−∞ |E|2dψ1dψ2

)2

, (21b)

W̃ 2
j

R̃C,j

=

∫ +∞
−∞ ξj

(
EE

⋆′
j −E

′
jE

⋆
)
dξ1dξ2∫ +∞

−∞ |E|2dξ1dξ2
+

∫ +∞
−∞ ξj|E|2dξ1dξ2∫ +∞
−∞ |E|2dξ1dξ2

∫ +∞
−∞ ψj|E|2dψ1dψ2∫ +∞
−∞ |E|2dψ1dψ2

, (21c)

with ψ, E being the Fourier transforms of ξ, E, E
⋆
being the complex conjugate of E, the

primes referring to differentiation over ξj, and the tilde denoting normalization over the
corresponding values of the Gaussian mode. It is clear that W and Θ0 are formed by the
moments of the amplitude distribution of the field and of its Fourier transform, while RC

additionally invokes the slope across propagation and the field polarization.
With the expression of Equation (13) for the electric field, the calculation of the

generalized beam parameters from (21) is straightforward. Considering the beam field
as the sum of the purely Gaussian (zero-order) term plus all the higher-order modes, i.e.
E = E0,0 +

∑
m,nEm,n, the beam-tracing ansatz reaches a compact form

E=C0,0 exp[i(κs−Θ0,0)]exp

[
−ξ

2
1+ξ

2
2

2

][
1+
∑
m,n

c̄m,n exp (−iΘm,n)Hm(ξ1)Hn(ξ2)

]
, (22)

where c̄m,n = Cm,n/C0,0 is the ratio of the amplitude of the higher-order mode (m,n) over

the amplitude of the Gaussian mode. The square of the electric field |E|2 = E · E∗
can
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then be expressed as follows

|E|2 =|C0,0|2 exp
(
−ξ21 − ξ22

) [
1 +

∑
m,n

|c̄m,n|2H2
m(ξ1)H

2
n(ξ2)+

2
∑
m,n

|c̄m,n| cos θm,nHm(ξ1)Hn(ξ2)+

∑
m,n,k,l

|c̄m,n||c̄k,l| cos(θm,n − θk,l)Hm(ξ1)Hn(ξ2)Hk(ξ1)Hl(ξ2)δ
′
m,k,n,l

]
. (23)

In Equation (23), the angle θm,n = Θm,n − Θ0,0 − arg (c̄m,n) is the total phase shift due
to the complex part of the beam amplitude plus the different group velocity of each
propagating mode, and the term δ′m,k,n,l = 1 − δm,kδn,l invokes Kronecker delta symbols
for switching on/off the presence of specific coupling terms.

According to the above, the moments of |E|2 (required for deriving all the beam
parameters) may be calculated analytically. The result for the zero-order moment is

Ξ0 = |C0,0|2
(
1 +

∑
m,n

|c̄m,n|2
)
, (24)

and the calculation for the higher-order moments relevant to ξ1 yields [18]

Ξ1
1 =|C0,0|2

∑
m,n,k,l

|c̄m,n||c̄k,l| cos(θm,n − θk,l)δn,l

(√
m

2
δm,k+1 +

√
k

2
δm,k−1

)
+

2|C0,0|2
∑
m,n

|c̄m,n| cos θm,n

√
m

2
δm,1δn,0, (25a)

Ξ2
1 =|C0,0|2

∑
m,n,k,l

|c̄m,n||c̄k,l| cos(θm,n−θk,l)δn,l·[√
m(m−1)δm,k+2+

√
k(k−1)δm,k−2

]
+

|C0,0|2
[
1+
∑
m,n

|c̄m,n|2+2
∑
m,n

|c̄m,n| cos θm,n

√
m(m−1)δm,2δn,0

]
, (25b)

The same moments for the second transverse coordinate may be found easily from the
above by interchanging the subscripts (m, k) with (n, l), whereas the moments Ψ of the
Fourier-transformed field E , corresponding to the ”angles” ψ, emanate from the moments
Ξ by changing the sign in front of every cosine in (25).

A direct comparison of Equations (24) and (25) with the definitions in (21) shows that
the generalized beam width and divergence must be given by

W̃j =

√
Ξ2
j

Ξ0
−
(
Ξ1
j

Ξ0

)2

, (26a)

Θ̃0,j =

√
Ψ2

j

Ψ0
−
(
Ψ1

j

Ψ0

)2

, (26b)
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whereas, regarding the radius of curvature of the wavefront, straightforward calculus yields

the relation
∫ +∞
−∞ ξj

(
EE

⋆′
j − E

′
jE

⋆
)
dξ1dξ2 = Ξ2

jΨ
1
j − Ξ1

jΨ
2
j , which correlates the integral

with the amplitude distributions, and therefore one finally obtains for RC a result in the
same context with W and Θ0

R̃C,j =
Ξ0Ψ0

Ξ0(Ξ2
jΨ

1
j − Ξ1

jΨ
2
j) + Ξ1

jΨ
1
j

W̃ 2
j . (27)

In the framework of the ray tracing method, the formulation described previously
cannot be directly applied because each ray is actually a locally plane wave, and, conse-
quently, it defines a value of the wave amplitude on a single point rather than a transverse
profile. This is verified by looking at Equation (20), where an explicit dependence on other
coordinates than the one along the ray propagation path does not exist. Therefore, here,
the generalized parameters will be calculated in terms of the trajectories and the ampli-
tudes (relevant to the carried fraction of wave power) of the ensemble of rays constituting
the beam, using the standard parameter definitions. This calculation is performed by
integrating the ray equations with proper initial conditions, such that the beam extent
and the wavefront are implicitly simulated.

Assuming that the central ray of the beam is on the position vector r0 and the periph-
eral rays defining the beam boundary are on the vectors r+,j and r−,j, the beam widths
may be defined as the distances between the peripherals (actually the line segments con-
necting r0 and the tangential vectors dr+,j/dτ , dr−,j/dτ on these points)

Wj(τ) =
1

2
|r+,j(τ)− r−,j(τ)| . (28)

Having completed the calculation of the values of the beam width along the propagation,
the divergence angle per direction may be computed in terms of its standard definition as
the angular measure of the increase of the beam transversal extent as it propagates away
from the initial (launch) point [24]

Θ0,j(τ) = arctan

[
Wj(τ)−Wj(0)

|r0(τ)− r0(0)|

]
. (29)

Finally, regarding the wavefront curvature, one again resorts to the classical definition:
The wavefront is the geometrical locus of all the points along propagation that have
the same wave phase, and, in general, it is an approximately spherical curve of some
radius. In our problem, at each propagation instant defined by τ , this involves the point
ρm,j(τ) from each ray that has a phase equal to the eikonal phase s0(τ) on the central
ray. Having calculated and stored theseM points, one approximates the curvature radius
as their mean distance from the launch point, taking also into account, in its sign, the
focusing/defocusing region of the beam in terms of the width derivative

RC,j(τ) = sign

[
dWj(τ)

dτ

]
1

M

∑
m

|ρm,j(τ)− ρm,j(0)| . (30)

5 Numerical application

As an application for illustrating the capabilities of the above formalisms, the case of
O-mode electron-cyclotron beam propagation in a stratified, cold magnetized plasma is
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treated. The medium is confined in the region −a ≤ X ≤ a along the X−axis, while it
runs unlimited in the other directions Y , Z of the laboratory frame. In the following, all
the lengths are normalized to α and the wave-vectors to the vacuum wave-vector ω/c, and
the lab frame coordinates in their dimensionless form read (x, y, z) = (X/a, Y/a, Z/a). All
the plasma properties are assumed to be functions only of the x−coordinate. The static
magnetic field is along the z−axis, and the wave beam is launched from the low-field side
at X = X0 = a in the negative x−direction, i.e. ky(x0) = kz(x0) = 0. In this context, τ is
a function of x only and the normalized transverse coordinates describing the amplitude
profile are y/wy and z/wz, where wy, wz are the normalized principal (Gaussian) widths
in each perpendicular direction.

An analytic solution of the equations for ray tracing and paraxial beam tracing for
this problem has been obtained in [25]. The simplification here is that the dispersion
(Hamiltonian) function reduces to a quadratic form in Cartesian coordinates [8],

D =
∑
α

1

2
DM

α,αk
2
α − 1

2
= 0, (31)

and yields simple ray tracing equations (M = O,X indicates the polarization mode)

dxα
dτ

=
∂D

∂kα
= DM

α,αkα, (32a)

dkα
dτ

= − ∂D

∂xα
=

1

2

∂DM
α,α

∂xα
k2α. (32b)

In the above, D does not depend on y, z, and hence the wave-vectors ky, kz are constantly
zero throughout the propagation.

The complex tensor s̄α,β, formed as a result of the paraxial expansion (see again Section
2), is also diagonal in the simplified geometry

s̄α,α(x) =
s̄α,α(x0)

1 + s̄α,α(x0)ζα(x)
, (33)

where the effective lengths ζα are defined by the relations

ζα(x) =

∫ τ

0

DM
α,α(τ

′)dτ ′ = −
∫ x

x0

DM
α,α(x

′)√
DM

x,x(x
′)
dx′. (34)

If Equation (33) is expressed in terms of the real and imaginary parts of s̄α,α = sα,α +
iϕα,α and the corresponding initial values, it provides the solution of the beam tracing
equations for the wavefront curvature (rc,a = κ−1/sα,α) and the width (w2

a = 2κ−1/ϕα,α).
A straightforward manipulation yields

sα,α(x) =
sα,α(x0) +

[
s2α,α(x0) + ϕ2

α,α(x0)
]
ζα(x)

[1 + sα,α(x0)ζα(x)]
2 + [ϕα,α(x0)ζα(x)]

2 , (35a)

ϕα,α(x) =
ϕα,α(x0)

[1 + sα,α(x0)ζα(x)]
2 + [ϕα,α(x0)ζα(x)]

2 . (35b)
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For waves with O-mode polarization, the tensor elements are DO
α,α = (δα,x+ δα,y)/P +

δα,z [8], where P = 1 − ω2
p/ω

2 is a dimensionless parameter determined by the plasma
density profile. In our simple, geometrically stratified case, we assume a parabolic profile
of the form P (x) = p1 + p2x

2. As a consequence, the effective lengths may be directly
evaluated using lookup tables of integrals (e.g. [20])

ζy(x) =
1

√
p2

ln

( √
p2 +

√
p1 + p2

x
√
p2 +

√
p1 + p2x2

)
, (36a)

ζz(x) =
1

2

[√
p1 + p2 − x

√
p1 + p2x2

]
+

1
√
p2

ln

( √
p2 +

√
p1 + p2

x
√
p2 +

√
p1 + p2x2

)
. (36b)

Finally, regarding the phase difference θmn of the modes, it is given by

θm,n(x) = − arg[c̄m,n(x)] +m

∫ x

x0

DM
y,y(x

′)ϕy,y(x
′)dx′ + n

∫ x

x0

DM
z,z(x

′)ϕz,z(x
′)dx′. (37)

Especially for this case where wave-particle absorption does not occur, the amplitude
ratios c̄m,n do not vary along the propagation path. This is a direct consequence of the
energy conservation, as expressed in the version of (7) with zero absorption coefficient γ.
In such cases, this equation is exactly the same for all propagating modes, and therefore
all the amplitudes Cm,n scale as the same function of x along the propagation path. In
this paper we will not deal further with the amplitude transport; for a more detailed
treatment of this issue, the reader is pointed to [18].

In the following, indicative results are presented from the numerical solution of the
problem for non-Gaussian input, based on the asymptotic solutions and the generalizations
of the beam parameters presented in the previous sections. A small computer code was
built for the calculation of the widths Wj, wj and all the other relevant parameters, to
which the user should provide as input the half-width a of the plasma slab, the mode
numbers m, n of the higher-order modes, the initial beam widths and radii of curvature,
the parameters p1, p2 for the parabolic profile of the plasma frequency, and also the ratios
ϵm,n of the power corresponding to the extra modes over the total wave power. These
ratios are connected to the amplitude ratios through the relation

ϵm,n =
|C̄m,n|2

|C̄0,0|2 + |C̄m,n|2
=

|c̄m,n|2

1 + |c̄m,n|2
, (38)

and one can distinguish the connection between the distribution of the beam energy among
the different modes and the geometry of the beam.

The input and output values of the program are expressed in physical units, and any
normalization needed is performed in the routine part of the code. For the results in this
application, the fixed parameters have the following values: The half-width of the plasma
slab is a = 100 cm, the wave frequency is ω/2π = 140 GHz (near the cyclotron frequency),
the zero-order (Gaussian) mode E0,0 has a circularly symmetric initial amplitude profile
with principal widths wy(x0) = wz(x0) = 4.27 cm, as well as a symmetric initial beam
focusing with principal curvature radii ry(x0) = rz(x0) = −82 cm, the scaling parameters
for the plasma frequency radial profile are c1 = 0.9, c2 = 0.5, and the short-wavelength
limit parameter is κ = ωα/c = 2932.15. We should also note that we have chosen the
modes to have the same initial polarization, and as a result arg(c̄m,n) is constantly zero
throughout the beam propagation.
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Figure 4: (a) Generalized beam width along propagation in a stratified anisotropic plasma
as predicted by the ray and beam tracing techniques. (b) Generalized wavefront curvature
radius vs propagation path in the stratified anisotropic plasma as predicted by the ray
and beam methods.

In Figure 4, the generalized beam coordinates in both transverse directions y, z are
shown as a function of the propagation path coordinate x, for the case of a non-Gaussian
beam generated by perturbing a Gaussian beam with only one Hermite mode of order
(m,n) = (1, 2), and an energy deposit on the higher-order term equal to ϵm,n = 0.05.
Regarding the width, one can see that the beam tracing result, which incudes diffraction
in the description, yields that the beam reaches a minimum of finite size, whereas the
ray tracing estimation presents an unphysical focus as a minimum. It is also apparent
that the beam behaviour is different in the two directions, which means that the initial
symmetry of the beam contour has disappeared. This effect is owed to the presence of
the magnetic field (in the direction z), which induces a strong anisotropy in the plasma
and, accordingly, an astigmatic behaviour to the beam.

6 Conclusions

In this work, we presented a way of extending the state-of-the-art in asymptotic wave
methods in order to be able to model the evolution of arbitrary wave beam structures.
The sequence breaks down to the decomposition of the beam propagation into the one of
properly configured ray/beam modes, and, following that, the generalization of the typical
Gaussian beam parameters into a new scheme capable of describing arbitrary beam profiles
under the same context. As an instructive application, we followed the propagation of a
non-Gaussian high-frequency beam in a bounded plasma with simple magnetic geometry,
a case where an analytic solution of the problem (and thus a highly-trackable benchmark)
is possible.

A feasible application of the above is the extension of asymptotic ray/beam tracing
codes to include the propagation of arbitrary beams and assessment in further computa-
tions, like e.g. the consistent description of the propagation, absorption and current drive
of arbitrary beams in a tokamak plasma. Apart from the evolution of more complex wave
objects, the study of non-Gaussian beams is also important for the improvement of the
modelling of the wave power absorption in the plasma, by describing modifications of the
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profile shape due to localized asymmetric and/or inhomogeneous absorption in terms of
the generation of higher-order modes which exchange energy.
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