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Abstract

We apply the method of reduction of couplings in a Finite Unified Theory and
in the MSSM. The method consists on searching for renormalization group invari-
ant relations among couplings of a renormalizable theory holding to all orders in
perturbation theory. In both cases we predict the masses of the top and bottom
quarks and the light Higgs in remarkable agreement with the experiment. More-
over, we predict the masses of the other Higgses too, as well as the supersymmetric
spectrum, the latter being in very confortable agreement with the LHC bounds on
supersymmetric particles.

1 Introduction

The discovery of a Higgs boson [1–4] at the LHC completes the search for the particles
of the Standard Model (SM), and confirms the existence of a Higgs field and the spon-
taneous electroweak symmetry breaking mechanism as the way to explain the masses of
the fundamental particles. The over twenty free parameters of the SM, the hierarchy
problem, the existence of Dark Matter, the very small masses of the neutrinos, among
others, point towards a more fundamental theory, whose goal among others should be to
explain at least some of these facts.

The main achievement expected from a unified description of interactions is to un-
derstand the large number of free parameters of the Standard Model (SM) in terms of a
few fundamental ones. In other words, to achieve reduction of couplings at a more fun-
damental level. To reduce the number of free parameters of a theory, and thus render it
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more predictive, one is usually led to introduce more symmetry. Supersymmetric Grand
Unified Theories (GUTs) are very good examples of such a procedure [5–11].

For instance, in the case of minimal SU(5), because of (approximate) gauge coupling
unification, it was possible to reduce the gauge couplings to one. LEP data [12] seem to
suggest that a further symmetry, namely N = 1 global supersymmetry [10,11] should also
be required to make the prediction viable. GUTs can also relate the Yukawa couplings
among themselves, again SU(5) provided an example of this by predicting the ratioMτ/Mb

[13] in the SM. Unfortunately, requiring more gauge symmetry does not seem to help, since
additional complications are introduced due to new degrees of freedom and in the ways
and channels of breaking the symmetry.

A natural extension of the GUT idea is to find a way to relate the gauge and Yukawa
sectors of a theory, that is to achieve Gauge-Yukawa Unification (GYU) [14–23]. A sym-
metry which naturally relates the two sectors is supersymmetry, in particular N = 2
supersymmetry [24]. It turns out, however, that N = 2 supersymmetric theories have se-
rious phenomenological problems due to light mirror fermions. Also in superstring theories
and in composite models there exist relations among the gauge and Yukawa couplings,
but both kind of theories have other phenomenological problems, which we are not going
to address here.

A complementary strategy in searching for a more fundamental theory, consists in look-
ing for all-loop renormalization group invariant (RGI) relations [25,26] holding below the
Planck scale, which in turn are preserved down to the unification scale [15–23]. Through
this method of reduction of couplings [25,26] it is possible to achieve Gauge-Yukawa Uni-
fication [14–23]. Even more remarkable is the fact that it is possible to find RGI relations
among couplings that guarantee finiteness to all-orders in perturbation theory [27–29].

Although supersymmetry seems to be an essential feature for a successful realization
of the above programme, its breaking has to be understood too, since it has the ambition
to supply the SM with predictions for several of its free parameters. Indeed, the search
for RGI relations has been extended to the soft supersymmetry breaking sector (SSB) of
these theories [21, 30,31], which involves parameters of dimension one and two.

2 Theoretical basis and the reduction of dimension-

less couplings

In this section we outline the idea of reduction of couplings. Any RGI relation among
couplings (which does not depend on the renormalization scale µ explicitly) can be ex-
pressed, in the implicit form Φ(g1, · · · , gA) = const., which has to satisfy the partial
differential equation (PDE)

µ
dΦ

dµ
= ∇⃗ · β⃗ =

A∑
a=1

βa
∂Φ

∂ga
= 0 , (1)

where βa is the β-function of ga. This PDE is equivalent to a set of ordinary differential
equations, the so-called reduction equations (REs) [25,26,32],

βg
dga
dg

= βa , a = 1, · · · , A , (2)

where g and βg are the primary coupling and its β-function, and the counting on a does not
include g. Since maximally (A− 1) independent RGI “constraints” in the A-dimensional
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space of couplings can be imposed by the Φa’s, one could in principle express all the
couplings in terms of a single coupling g. The strongest requirement is to demand power
series solutions to the REs,

ga =
∑
n

ρ(n)a g2n+1 , (3)

which formally preserve perturbative renormalizability. Remarkably, the uniqueness of
such power series solutions can be decided already at the one-loop level [25, 26, 32]. To
illustrate this, let us assume that the β-functions have the form

βa =
1

16π2
[
∑

b,c,d̸=g

β(1) bcd
a gbgcgd +

∑
b̸=g

β(1) b
a gbg

2] + · · · ,

βg =
1

16π2
β(1)
g g3 + · · · , (4)

where · · · stands for higher order terms, and β
(1) bcd
a ’s are symmetric in b, c, d. We then

assume that the ρ
(n)
a ’s with n ≤ r have been uniquely determined. To obtain ρ

(r+1)
a ’s, we

insert the power series (3) into the REs (2) and collect terms of O(g2r+3) and find∑
d ̸=g

M(r)da ρ
(r+1)
d = lower order quantities ,

where the r.h.s. is known by assumption, and

M(r)da = 3
∑
b,c̸=g

β(1) bcd
a ρ

(1)
b ρ(1)c + β(1) d

a − (2r + 1) β(1)
g δda , (5)

0 =
∑

b,c,d̸=g

β(1) bcd
a ρ

(1)
b ρ(1)c ρ

(1)
d +

∑
d ̸=g

β(1) d
a ρ

(1)
d − β(1)

g ρ(1)a , (6)

Therefore, the ρ
(n)
a ’s for all n > 1 for a given set of ρ

(1)
a ’s can be uniquely determined

if detM(n)da ̸= 0 for all n ≥ 0.
As it will be clear later by examining specific examples, the various couplings in

supersymmetric theories have the same asymptotic behaviour. Therefore searching for a
power series solution of the form (3) to the REs (2) is justified. This is not the case in non-
supersymmetric theories, although the deeper reason for this fact is not fully understood.

The possibility of coupling unification described in this section is without any doubt
attractive because the “completely reduced” theory contains only one independent cou-
pling, but it can be unrealistic. Therefore, one often would like to impose fewer RGI
constraints, and this is the idea of partial reduction [33,34].

2.1 Reduction of dimensionful parameters

The reduction of couplings was originally formulated for massless theories on the basis
of the Callan-Symanzik equation [25, 26, 32]. The extension to theories with massive
parameters is not straightforward if one wants to keep the generality and the rigor on
the same level as for the massless case; one has to fulfill a set of requirements coming
from the renormalization group equations, the Callan-Symanzik equations, etc. along
with the normalization conditions imposed on irreducible Green’s functions [35]. See
[36] for interesting results in this direction. Here to simplify the situation and following
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Ref. [21] we would like to assume that a mass-independent renormalization scheme has
been employed so that all the RG functions have only trivial dependencies of dimensional
parameters.

To be general, we consider a renormalizable theory which contains a set of (N + 1)
dimension-zero couplings, {ĝ0, ĝ1, . . . , ĝN}, a set of L parameters with dimension one,
{ĥ1, . . . , ĥL}, and a set of M parameters with dimension two, {m̂2

1, . . . , m̂
2
M}. The renor-

malized irreducible vertex function satisfies the RG equation

0 = DΓ[ Φ′s; ĝ0, ĝ1, . . . , ĝN ; ĥ1, . . . , ĥL; m̂
2
1, . . . , m̂

2
M ;µ ] , (7)

D = µ
∂

∂µ
+

N∑
i=0

βi
∂

∂ĝi
+

L∑
a=1

γh
a

∂

∂ĥa

+
M∑
α=1

γm2

α

∂

∂m̂2
α

+
∑
J

ΦIγ
ϕI

J

δ

δΦJ

.

Since we assume a mass-independent renormalization scheme, the γ’s have the form

γh
a =

L∑
b=1

γh,b
a (g0, . . . , gN)ĥb ,

γm2

α =
M∑
β=1

γm2,β
α (g0, . . . , gN)m̂

2
β +

L∑
a,b=1

γm2,ab
α (g0, . . . , gN)ĥaĥb , (8)

where γh,b
a , γm2,β

α and γm2,ab
a are power series of the dimension-zero couplings g’s in per-

turbation theory.
As in the massless case, we then look for conditions under which the reduction of

parameters,

ĝi = ĝi(g) , (i = 1, . . . , N) , (9)

ĥa =
P∑
b=1

f b
a(g)hb , (a = P + 1, . . . , L) , (10)

m̂2
α =

Q∑
β=1

eβα(g)m
2
β +

P∑
a,b=1

kab
α (g)hahb , (α = Q+ 1, . . . ,M) , (11)

is consistent with the RG equation (1), where we assume that g ≡ g0, ha ≡ ĥa (1 ≤ a ≤ P )
and m2

α ≡ m̂2
α (1 ≤ α ≤ Q) are independent parameters of the reduced theory. We find

that the following set of equations has to be satisfied:

βg
∂ĝi
∂g

= βi , (i = 1, . . . , N) , (12)

βg
∂ĥa

∂g
+

P∑
b=1

γh
b

∂ĥa

∂hb

= γh
a , (a = P + 1, . . . , L) , (13)

βg
∂m̂2

α

∂g
+

P∑
a=1

γh
a

∂m̂2
α

∂ha

+

Q∑
β=1

γm2

β

∂m̂2
α

∂m2
β

= γm2

α , (α = Q+ 1, . . . ,M) . (14)
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Using eq.(7) for γ’s, one finds that eqs.(12-14) reduce to

βg
df b

a

dg
+

P∑
c=1

f c
a[ γ

h,b
c +

L∑
d=P+1

γh,d
c f b

d ]− γh,b
a −

L∑
d=P+1

γh,d
a f b

d = 0 , (15)

(a = P + 1, . . . , L; b = 1, . . . , P ) ,

βg
deβα
dg

+

Q∑
γ=1

eγα[ γ
m2,β
γ +

M∑
δ=Q+1

γm2,δ
γ eβδ ]− γm2,β

α −
M∑

δ=Q+1

γm2,δ
α eβδ = 0 , (16)

(α = Q+ 1, . . . ,M ; β = 1, . . . , Q) ,

βg
dkab

α

dg
+ 2

P∑
c=1

( γh,a
c +

L∑
d=P+1

γh,d
c fa

d )k
cb
α +

Q∑
β=1

eβα[ γ
m2,ab
β +

L∑
c,d=P+1

γm2,cd
β fa

c f
b
d

+2
L∑

c=P+1

γm2,cb
β fa

c +
M∑

δ=Q+1

γm2,δ
β kab

δ ]− [ γm2,ab
α +

L∑
c,d=P+1

γm2,cd
α fa

c f
b
d

+2
L∑

c=P+1

γm2,cb
α fa

c +
M∑

δ=Q+1

γm2,δ
α kab

δ ] = 0 , (17)

(α = Q+ 1, . . . ,M ; a, b = 1, . . . , P ) .

If these equations are satisfied, the irreducible vertex function of the reduced theory

ΓR[ Φ
′s; g;h1, . . . , hP ;m

2
1, . . . , m̂

2
Q;µ ]

≡ Γ[ Φ′s; g, ĝ1(g), . . . , ĝN(g);h1, . . . , hP , ĥP+1(g, h), . . . , ĥL(g, h);

m2
1, . . . , m̂

2
Q, m̂

2
Q+1(g, h,m

2), . . . , m̂2
M(g, h,m2);µ ] (18)

has the same renormalization group flow as the original one.
The requirement for the reduced theory to be perturbative renormalizable means that

the functions ĝi, f
b
a, e

β
α and kab

α , defined in eqs. (9-11), should have a power series expansion
in the primary coupling g:

ĝi = g
∞∑
n=0

ρ
(n)
i gn , f b

a = g
∞∑
n=0

ηb (n)
a gn ,

eβα =
∞∑
n=0

ξβ (n)
α gn , kab

α =
∞∑
n=0

χab (n)
α gn . (19)

To obtain the expansion coefficients, we insert the power series ansatz above into eqs. (12,15–
17) and require that the equations are satisfied at each order in g. Note that the existence
of a unique power series solution is a non-trivial matter: it depends on the theory as well
as on the choice of the set of independent parameters.

2.2 Finiteness in N=1 Supersymmetric Gauge Theories

Let us consider a chiral, anomaly free, N = 1 globally supersymmetric gauge theory based
on a group G with gauge coupling constant g. The superpotential of the theory is given
by

W =
1

2
mij ϕi ϕj +

1

6
Cijk ϕi ϕj ϕk , (20)
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wheremij and Cijk are gauge invariant tensors and the matter field ϕi transforms according
to the irreducible representation Ri of the gauge group G. The renormalization constants
associated with the superpotential (20), assuming that SUSY is preserved, are

ϕ0
i = (Zj

i )
(1/2) ϕj , (21)

m0
ij = Zi′j′

ij mi′j′ , (22)

C0
ijk = Zi′j′k′

ijk Ci′j′k′ . (23)

The N = 1 non-renormalization theorem [37–39] ensures that there are no mass and
cubic-interaction-term infinities and therefore

Zi′j′k′

ijk Z
1/2 i′′

i′ Z
1/2 j′′

j′ Z
1/2 k′′

k′ = δi
′′

(i δ
j′′

j δk
′′

k) ,

Zi′j′

ij Z
1/2 i′′

i′ Z
1/2 j′′

j′ = δi
′′

(i δ
j′′

j) . (24)

As a result the only surviving possible infinities are the wave-function renormalization
constants Zj

i , i.e., one infinity for each field. The one -loop β-function of the gauge
coupling g is given by [40]

β(1)
g =

dg

dt
=

g3

16π2
[
∑
i

l(Ri)− 3C2(G) ] , (25)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of the adjoint
representation of the gauge group G. The β-functions of Cijk, by virtue of the non-
renormalization theorem, are related to the anomalous dimension matrix γij of the matter
fields ϕi as:

βijk =
dCijk

dt
= Cijl γ

l
k + Cikl γ

l
j + Cjkl γ

l
i . (26)

At one-loop level γij is [40]

γ
i(1)
j =

1

32π2
[Cikl Cjkl − 2 g2 C2(Ri)δ

1
j ], (27)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk. Since

dimensional coupling parameters such as masses and couplings of cubic scalar field terms
do not influence the asymptotic properties of a theory on which we are interested here, it is
sufficient to take into account only the dimensionless supersymmetric couplings such as g
and Cijk. So we neglect the existence of dimensional parameters, and assume furthermore
that Cijk are real so that C2

ijk always are positive numbers.
As one can see from Eqs. (25) and (27), all the one-loop β-functions of the theory

vanish if β
(1)
g and γ

(1)
ij vanish, i.e. ∑

i

ℓ(Ri) = 3C2(G) , (28)

C iklCjkl = 2δijg
2C2(Ri) , (29)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry
are discussed in [41], and the analysis of the anomaly-free and no-charge renormalization
requirements for these theories can be found in [42]. A very interesting result is that
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the conditions (28,29) are necessary and sufficient for finiteness at the two-loop level
[40,43–46].

In case SUSY is broken by soft terms, the requirement of finiteness in the one-loop
soft breaking terms imposes further constraints among themselves [47]. In addition, the
same set of conditions that are sufficient for one-loop finiteness of the soft breaking terms
render the soft sector of the theory two-loop finite [48].

The one- and two-loop finiteness conditions (28,29) restrict considerably the possible
choices of the irreps. Ri for a given group G as well as the Yukawa couplings in the
superpotential (20). Note in particular that the finiteness conditions cannot be applied
to the minimal supersymmetric standard model (MSSM), since the presence of a U(1)
gauge group is incompatible with the condition (28), due to C2[U(1)] = 0. This naturally
leads to the expectation that finiteness should be attained at the grand unified level only,
the MSSM being just the corresponding, low-energy, effective theory.

Another important consequence of one- and two-loop finiteness is that SUSY (most
probably) can only be broken due to the soft breaking terms. Indeed, due to the un-
acceptability of gauge singlets, F-type spontaneous symmetry breaking [49] terms are
incompatible with finiteness, as well as D-type [50] spontaneous breaking which requires
the existence of a U(1) gauge group.

A natural question to ask is what happens at higher loop orders. The answer is con-
tained in a theorem [27,51] which states the necessary and sufficient conditions to achieve
finiteness at all orders. Before we discuss the theorem let us make some introductory re-
marks. The finiteness conditions impose relations between gauge and Yukawa couplings.
To require such relations which render the couplings mutually dependent at a given renor-
malization point is trivial. What is not trivial is to guarantee that relations leading to
a reduction of the couplings hold at any renormalization point. As we have seen, the
necessary and also sufficient, condition for this to happen is to require that such relations
are solutions to the REs

βg
dCijk

dg
= βijk (30)

and hold at all orders. Remarkably, the existence of all-order power series solutions to
(30) can be decided at one-loop level, as already mentioned.

Then the all order finiteness theorem states that an N=1 supersymmetric theory [27,
51], states that an N=1 supersymmetric theory can become finite to all orders in the
sense of vanishing β-functions, that is of physical scale invariance. It is based on (a) the
structure of the supercurrent in N = 1 supersymmetric gauge theory [52–54], and on (b)
the non-renormalization properties of N = 1 chiral anomalies [27, 28, 51, 55]. Details on
the proof can be found in refs. [27, 51] and further discussion in Refs. [28, 29,55–57].

2.3 Sum rule for SB terms in N = 1 Supersymmetric and Finite
theories: All-loop results

As we have seen in Sect. 2.1, the method of reducing the dimensionless couplings has
been extended [21], to the soft SUSY breaking (SSB) dimensionful parameters of N = 1
supersymmetric theories. In addition it was found [58] that RGI SSB scalar masses in
Gauge-Yukawa unified models satisfy a universal sum rule. Here we will describe first
how the use of the available two-loop RG functions and the requirement of finiteness of
the SSB parameters up to this order leads to the soft scalar-mass sum rule [59].
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Consider the superpotential given by (20) along with the Lagrangian for SSB terms

−LSB =
1

6
hijk ϕiϕjϕk +

1

2
bij ϕiϕj

+
1

2
(m2)ji ϕ

∗ iϕj +
1

2
M λλ+ h.c., (31)

where the ϕi are the scalar parts of the chiral superfields Φi , λ are the gauginos and M
their unified mass. Since we would like to consider only finite theories here, we assume
that the gauge group is a simple group and the one-loop β-function of the gauge coupling
g vanishes. We also assume that the reduction equations admit power series solutions of
the form

Cijk = g
∑
n

ρijk(n)g
2n . (32)

According to the finiteness theorem of Refs. [27, 51], the theory is then finite to all orders

in perturbation theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish.

The one- and two-loop finiteness for hijk can be achieved by [48]

hijk = −MCijk + · · · = −Mρijk(0) g +O(g5) , (33)

where . . . stand for higher order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the lowest

order coefficients ρijk(0) and also (m2)ij satisfy the diagonality relations

ρipq(0)ρ
jpq
(0) ∝ δji for all p and q and (m2)ij = m2

jδ
i
j , (34)

respectively. Then we find the following soft scalar-mass sum rule [23,59,60]

( m2
i +m2

j +m2
k )/MM † = 1 +

g2

16π2
∆(2) +O(g4) (35)

for i, j, k with ρijk(0) ̸= 0, where ∆(2) is the two-loop correction

∆(2) = −2
∑
l

[(m2
l /MM †)− (1/3)] T (Rl), (36)

which vanishes for the universal choice in accordance with the previous findings of Ref. [48].
If we know higher-loop β-functions explicitly, we can follow the same procedure and

find higher-loop RGI relations among SSB terms. However, the β-functions of the soft
scalar masses are explicitly known only up to two loops. In order to obtain higher-loop
results some relations among β-functions are needed.

Making use of the spurion technique [39, 61–64], it is possible to find the following
all-loop relations among SSB β-functions, [65–70]

βM = 2O
(
βg

g

)
, (37)

βijk
h = γi

lh
ljk + γj

lh
ilk + γk

lh
ijl

−2γi
1lC

ljk − 2γj
1 lC

ilk − 2γk
1 lC

ijl , (38)

(βm2)ij =

[
∆+X

∂

∂g

]
γi

j , (39)

O =

(
Mg2

∂

∂g2
− hlmn ∂

∂C lmn

)
, (40)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
+ C̃lmn

∂

∂Clmn

+ C̃ lmn ∂

∂C lmn
, (41)
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where (γ1)
i
j = Oγi

j, Clmn = (C lmn)∗, and

C̃ijk = (m2)ilC
ljk + (m2)j lC

ilk + (m2)klC
ijl . (42)

It was also found [66] that the relation

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
, (43)

among couplings is all-loop RGI. Furthermore, using the all-loop gauge β-function of
Novikov et al. [71–73] given by

βNSVZ
g =

g3

16π2

[∑
l T (Rl)(1− γl/2)− 3C(G)

1− g2C(G)/8π2

]
, (44)

it was found the all-loop RGI sum rule [74],

m2
i +m2

j +m2
k = |M |2{ 1

1− g2C(G)/(8π2)

d lnCijk

d ln g
+

1

2

d2 lnCijk

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2
d lnC ijk

d ln g
. (45)

In addition the exact-β-function for m2 in the NSVZ scheme has been obtained [74] for
the first time and is given by

βNSVZ
m2

i
=

[
|M |2{ 1

1− g2C(G)/(8π2)

d

d ln g
+

1

2

d2

d(ln g)2
}

+
∑
l

m2
l T (Rl)

C(G)− 8π2/g2
d

d ln g

]
γNSVZ
i . (46)

Surprisingly enough, the all-loop result (45) coincides with the superstring result for the
finite case in a certain class of orbifold models [59] if d lnC ijk/d ln g = 1.

The all-loop results on the SSB β-functions lead to all-loop RGI relations (see e.g. [75]).
If we assume:
(a) the existence of a RGI surfaces on which C = C(g), or equivalently that

dCijk

dg
=

βijk
C

βg

(47)

holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hijk = −M
dC(g)ijk

d ln g
(48)

holds too in all-orders, then one can prove that the following relations are RGI to all-
loops [76, 77] (note that in the above assumptions (a) and (b) we do not rely on specific
solutions to these equations)

M = M0
βg

g
, (49)

hijk = −M0 βijk
C , (50)

bij = −M0 βij
µ , (51)

(m2)ij =
1

2
|M0|2 µ

dγi
j

dµ
, (52)
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where M0 is an arbitrary reference mass scale to be specified shortly.
Finally we would like to emphasize that under the same assumptions (a) and (b)

the sum rule given in Eq.(45) has been proven [74] to be all-loop RGI, which gives us
a generalization of Eq.(52) to be applied in considerations of non-universal soft scalar
masses, which are necessary in many cases including the MSSM.

As it was emphasized in ref [76] the set of the all-loop RGI relations (49)-(52) is
the one obtained in the Anomaly Mediated SB Scenario [78, 79], by fixing the M0 to be
m3/2, which is the natural scale in the supergravity framework. A final remark concerns
the resolution of the fatal problem of the anomaly induced scenario in the supergravity
framework, which is here solved thanks to the sum rule (45). Other solutions have been
provided by introducing Fayet-Iliopoulos terms [80].

3 Applications of the Reduction of Couplings Method

In this section we show how to apply the reduction of couplings method in two scenarios,
the MSSM and Finite Unified Theories (see also Refs. [81,82]). We will apply it only to
the third generation of fermions and in the soft supersymmetry breaking terms. After the
reduction of couplings takes place, we are left with relations at the unification scale for
the Yukawa couplings of the quarks in terms of the gauge coupling according to Eq. (32),
for the trlininear terms in terms of the Yukawa couplings and the unified gaugino mass
Eq. (48), and a sum rule for the soft scalar masses also proportional to the unified gaugino
mass Eq. (45), as applied in each model.

3.1 RE in the MSSM

We will examine here the reduction of couplings method applied to the MSSM, which is
defined by the superpotential,

W = YtH2Qtc + YbH1Qbc + YτH1Lτ
c + µH1H2, (53)

with soft breaking terms,

−LSSB =
∑
ϕ

m2
ϕϕ

∗ϕ+

[
m2

3H1H2 +
3∑

i=1

1

2
Miλiλi + h.c

]
+ [htH2Qtc + hbH1Qbc + hτH1Lτ

c + h.c.] ,

(54)

where the last line refers to the scalar components of the corresponding superfield. In
general Yt,b,τ and ht,b,τ are 3× 3 matrices, but we work throughout in the approximation
that the matrices are diagonal, and neglect the couplings of the first two generations.

Assuming perturbative expansion of all three Yukawa couplings in favour of g3 satisfy-
ing the reduction equations we find that the coefficients of the Yτ coupling turn imaginary.
Therefore, we take Yτ at the GUT scale to be an independent variable. Thus, in the ap-
plication of the reduction of couplings in the MSSM that we examine here, in the first
stage we neglect the Yukawa couplings of the first two generations, while we keep Yτ and
the gauge couplings g2 and g1, which cannot be reduced consistently, as corrections. This
“reduced” system holds at all scales, and thus serve as boundary conditions of the RGEs
of the MSSM at the unification scale, where we assume that the gauge couplings meet [75].
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In that case, the coefficients of the expansions (again at the unification scale)

Y 2
t

4π
= c1

g23
4π

+ c2

(
g23
4π

)2

;
Y 2
b

4π
= p1

g23
4π

+ p2

(
g23
4π

)2

(55)

are given by

c1 =
157

175
+

1

35
Kτ = 0.897 + 0.029Kτ

p1 =
143

175
− 6

35
Kτ = 0.817− 0.171Kτ

c2 =
1

4π

1457.55− 84.491Kτ − 9.66181K2
τ − 0.174927K3

τ

818.943− 89.2143Kτ − 2.14286K2
τ

p2 =
1

4π

1402.52− 223.777Kτ − 13.9475K2
τ − 0.174927K3

τ

818.943− 89.2143Kτ − 2.14286K2
τ

(56)

where
Kτ = Y 2

τ /g
2
3 (57)

The couplings Yt,Yb and g3 are not only reduced, but they provide predictions consistent
with the observed experimental values, as we will show in subsection 4.2. According to
the analysis presented in Section 2 the RGI relations in the SSB sector hold, assuming
the existence of RGI surfaces where Eqs.(47) and (48) are valid.

Since all gauge couplings in the MSSM meet at the unification point, we are led to
the following boundary conditions at the unification scale:

Y 2
t = c1g

2
U + c2g

4
U/(4π) and Y 2

b = p1g
2
U + p2g

4
U/(4π) (58)

ht,b = −MUYt,b, (59)

m2
3 = −MUµ, (60)

where MU is the unification scale, c1,2 and p1,2 are the solutions of the algebraic system
of the two reduction equations taken at the unification scale (while keeping only the first
term1 of the perturbative expansion of the Yukawas in favour of g3 for Eqs.(59) and (60)),
and a set of equations resulting from the application of the sum rule

m2
H2

+m2
Q +m2

tc = M2
U , m2

H1
+m2

Q +m2
bc = M2

U , (61)

noting that the sum rule introduces four free parameters.

3.2 Predictions of the Reduced MSSM

With these boundary conditions we run the MSSM RGEs down to the SUSY scale, which
we take to be the geometrical average of the stop masses, and then run the SM RGEs
down to the electroweak scale (MZ), where we compare with the experimental values of
the third generation quark masses. The RGEs are taken at two-loops for the gauge and
Yukawa couplings and at one-loop for the soft breaking parameters. We let MU and |µ| at
the unification scale to vary between ∼ 1 TeV ∼ 11 TeV, for the two possible signs of µ.
In evaluating the τ and bottom masses we have taken into account the one-loop radiative
corrections that come from the SUSY breaking [83, 84]; in particular for large tan β they
can give sizeable contributions to the bottom quark mass.

1The second term can be determined once the first term is known.
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Recall that Yτ is not reduced and is a free parameter in this analysis. The parameter
Kτ , related to Yτ through Eq. (57) is further constrained by allowing only the values that
are also compatible with the top and bottom quark masses simultaneously within 1 and
2σ of their central experimental value. In the case that sign(µ) = +, there is no value
for Kτ where both the top and the bottom quark masses agree simultaneously with their
experimental value, therefore we only consider the negative sign of µ from now on. We
use the experimental value of the top quark pole mass as [85]2

mexp
t = (173.2± 0.9) GeV . (62)

The bottom mass is calculated at MZ to avoid uncertainties that come from running down
to the pole mass and, as previously mentioned, the SUSY radiative corrections both to
the tau and the bottom quark masses have been taken into account [87]

mb(MZ) = (2.83± 0.10) GeV. (63)

The variation of Kτ is in the range ∼ 0.33 ∼ 0.5 if the agreement with both top and
bottom masses is at the 2σ level.

Finally, assuming the validity of Eq.(48) for the corresponding couplings to those
that have been reduced before, we have calculated the Higgs mass as well as the whole
Higgs and sparticle spectrum using Eqs.(58)-(61). The Higgs mass was calculated using a
“mixed-scale” one-loop RG approach, which is known to approximate the leading two-loop
corrections as evaluated by the full diagrammatic calculation [88,89]. Since this evaluation
further higher-order corrections became available [90], which change the results for larger
values of Kτ . Pending a re-evaluation we only give a rough description of our results.

The spectacular discovery of a Higgs boson at ATLAS and CMS, as announced in
July 2012 [1, 3] can be interpreted as the discovery of the light CP-even Higgs boson of
the MSSM Higgs spectrum, see, e.g., Ref. [91]. Here we take as experimental average for
the (SM) Higgs boson mass the value

M exp
H = 125.6± 0.3 GeV . (64)

Adding a 3 (2) GeV theory uncertainty [92] for the Higgs boson mass calculation in the
MSSM we arrive at

Mh = 125.6± 3.1 (2.1) GeV (65)

as our allowed range.
The prediction in this model for Mh falls naturally into the range of Eq. (65), leading

to restrictions on Kτ and thus on the obtained values for the MSSM spectrum. Without
a dedicated re-evaluation of Mh, see above, one can say that a relatively heavy spectrum
is obtained. Only the lowest mass values of the colored particles could be reachable at
the LHC (even including the HL phase). Similarly, only the lower part of the electroweak
spectrum could be accessible at a future e+e− linear collider (ILC or CLIC), even going
to a center-of-mass energy of

√
s ∼ 3 TeV. The light Higgs boson, being in the range of

Eq. (65) and the CP-odd mass scale above the 1 TeV range result in a light Higgs boson
being in excellent agreement with the experimental results of ATLAS and CMS [1–4].

2We did not include the latest LHC/Tevatron combination, leading tomexp
t = (173.34±0.76) GeV [86],

which would have a negligible impact on our analysis.
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3.3 An SU(5) Finite Unified Theory

We examine an all-loop Finite Unified theory with SU(5) as gauge group, where the
reduction of couplings has been applied to the third generation of quarks and leptons.
The particle content of the model we will study, which we denote FUT consists of the
following supermultiplets: three (5 + 10), needed for each of the three generations of
quarks and leptons, four (5+ 5) and one 24 considered as Higgs supermultiplets. When
the gauge group of the finite GUT is broken the theory is no longer finite, and we will
assume that we are left with the MSSM [15,17–19,22].

A predictive Gauge-Yukawa unified SU(5) model which is finite to all orders, in addi-
tion to the requirements mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δji .

2. Three fermion generations, in the irreducible representations 5i,10i (i = 1, 2, 3),
which obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs
quintet and anti-quintet, which couple to the third generation.

After the reduction of couplings the symmetry is enhanced, leading to the following
superpotential [93]

W =
3∑

i=1

[
1

2
gui 10i10iHi + gdi 10i5iH i ] + gu23 102103H4 (66)

+gd23 10253 H4 + gd32 10352H4 + gf2 H2 24H2 + gf3 H3 24H3 +
gλ

3
(24)3 .

The non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu1 )
2 =

8

5
g2 , (gd1)

2 =
6

5
g2 , (gu2 )

2 = (gu3 )
2 =

4

5
g2 , (67)

(gd2)
2 = (gd3)

2 =
3

5
g2 , (gu23)

2 =
4

5
g2 , (gd23)

2 = (gd32)
2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf2 )

2 = (gf3 )
2 =

1

2
g2 , (gf1 )

2 = 0 , (gf4 )
2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M2

3
, m2

5 + 3m2
10 =

4M2

3
, (68)

i.e., in this case we have only two free parameters m10 and M for the dimensionful sector.
As already mentioned, after the SU(5) gauge symmetry breaking we assume we have

the MSSM, i.e. only two Higgs doublets. This can be achieved by introducing appropriate
mass terms that allow to perform a rotation of the Higgs sector [15–19, 94–96], in such
a way that only one pair of Higgs doublets, coupled mostly to the third family, remains
light and acquire vacuum expectation values. To avoid fast proton decay the usual fine
tuning to achieve doublet-triplet splitting is performed, although the mechanism is not
identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the
MSSM, with the boundary conditions for the third family given by the finiteness condi-
tions, while the other two families are not restricted.
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Figure 1: The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) are shown
as function of M , the unified gaugino mass.

3.4 Predictions of the Finite Model

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions
do not restrict the renormalization properties at low energies, and all it remains are
boundary conditions on the gauge and Yukawa couplings (67), the h = −MC (33) relation,
and the soft scalar-mass sum rule at MGUT. The analysis follows along the same lines as
in the MSSM case.

In Fig.1 we show the FUT predictions for mt and mb(MZ) as a function of the unified
gaugino mass M , for the two cases µ < 0 and µ > 0. The bounds on the mb(MZ) and the
mt mass clearly single out µ < 0, as the solution most compatible with these experimental
constraints [97,98].

We now analyze the impact of further low-energy observables on the model FUT with
µ < 0. As additional constraints we consider the flavour observables BR(b → sγ) and
BR(Bs → µ+µ−).

For the branching ratio BR(b → sγ), we take the value given by the Heavy Flavour
Averaging Group (HFAG) is [99]

BR(b → sγ) = (3.55± 0.24+0.09
−0.10 ± 0.03)× 10−4. (69)

For the branching ratio BR(Bs → µ+µ−), the SM prediction is at the level of 10−9, while
we employ an upper limit of

BR(Bs → µ+µ−) <∼ 4.5× 10−9 (70)

at the 95% C.L. [100]. This is in relatively good agreement with the recent direct mea-
surement of this quantity by CMS and LHCb [101]. As we do not expect a sizable impact
of the new measurement on our results, we stick for our analysis to the simple upper limit.

For the lightest Higgs mass prediction we used the code FeynHiggs [90, 92, 102–104].
The evaluation of Higgs boson masses within FeynHiggs is based on the Feynman-
diagrammatic calculation as discussed above. FeynHiggs has recently been updated to
version 2.10.0, where the principal focus of the improvements has been to attain greater
accuracy for large stop masses. The new version, FeynHiggs 2.10.0 [90] contains a re-
summation of the leading and next-to-leading logarithms of type log(mt̃/mt) in all orders
of perturbation theory, which yields reliable results for mt̃,MA ≫ MZ . To this end the
two-loop Renormalization-Group Equations (RGEs) [105, 106] have been solved, taking
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into account the one-loop threshold corrections to the quartic coupling at the SUSY scale:
see [107] and references therein. In this way at n-loop order the terms

∼ logn(mt̃/mt), ∼ logn−1(mt̃/mt) (71)

are taken into account. As we shall see, FeynHiggs 2.10.0 yields a larger estimate
of Mh for stop masses in the multi-TeV range (as we find in our evaluations), and a
correspondingly improved estimate of the theoretical uncertainty, as discussed in [90,108]
(and indicated in Eq. (65)).

The prediction for Mh of FUT is shown in Fig. 2 [109] as a function of M in the
range 1 TeV <∼ M <∼ 8 TeV. All points fulfill the quark mass requirements, while the blue
points in addition also fulfill the B-physics constraints. The lightest Higgs mass ranges in

Mh ∼ 124− 133 GeV , (72)

where larger masses could reached for larger values of M . The main uncertainty for
fixed M comes from the variation of the other soft scalar masses. As discussed above,
to this value one has to add at least ±2 GeV coming from unkonwn higher order correc-
tions [90, 108]. We have also included a small variation, due to threshold corrections at
the GUT scale, of up to 5% of the FUT boundary conditions. Overall, Mh is found at
somewhat higher values in comparison with our previous analyses [97, 110–114]. This is
clearly due to the newly included resummed logarithmic corrections.

The horizontal lines in Fig. 2 show the central value of the experimental measurement
(solid), the ±2.1 GeV uncertainty (dashed) and the ±3.1 GeV uncertainty (dot-dashed).
The requirement to obtain a light Higgs boson mass value in the correct range yields an
upper limit on M of about 3 (4.5) TeV for Mh = 125.6 ± 2.1 (3.1) GeV. Naturally this
also sets an upper limit on the low-energy SUSY masses as will be reviewed in the next
section.

The full particle spectrum of model FUT, compliant with quark mass constraints and
the B-physics observables is shown in Fig. 3. In the upper (lower) plot we impose Mh =
125.6±3.1 (2.1) GeV. Including the Higgs mass constraints in general favors the lower part
of the SUSY particle mass spectra (as compared to previous evaluations [113–117]). The
“old” uncertainty estimate of ±3.1 GeV permits SUSY masses in the multi-TeV range,
which would remain unobservable at the LHC, the ILC or CLIC. Even the mass of the LSP
(the lightest neutralino) could be above 2 TeV. On the other hand, using the “improved”
theory estimate of ±2.1 GeV3 results in substantially lower upper limits of the SUSY mass
spectrum. In this case the LSP ranges from about 0.6 TeV to about 1.5 TeV, so that it
could be produced at CLIC (with

√
s = 3 TeV) via the process e+e− → χ̃0

1χ̃
0
1α. Also the

second lightest neutralino as well as the two scalar taus could be in a mass range either
accessible at the ILC (depending on the final center-of-mass energy) or at CLIC. The
lightest scalar tau always turns out to be the Lightest Observable SUSY particle (LOSP).
Similarly, the light chargino mass is found between ∼ 1.2 TeV and ∼ 2.6 TeV, with the
second chargino mass slightly higher. The colored spectrum (scalar tops and bottoms,
as well as the gluino) all have masses well above 1.7 TeV and are bounded from above
by about 4 − 6 TeV. Only for the lighter part of the spectrum a discovery at the LHC
might be possible. At the HL-LHC larger parts of the spectrum can be covered, but still
part of the spectrum remains out of reach. The heavy Higgs boson masses range between
∼ 1.2 TeV and ∼ 5 TeV. The lower part could be covered at the LHC (in particular for

3A more precise estimate requires a re-analysis of all sources of missing higher-order corrections.
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Figure 2: The lightest Higgs boson mass, Mh, as a function of M in the model FUT. The blue points
fulfill the B-physics constraints (see text).

the high tan β values found in our analysis) or later at CLIC, whereas the higher part
could escape all current and planned collider experiments. The mass gap found for the
masses of the heavy Higgs bosons stems from the fact that for intermediate values too
low values of BR(Bs → µ+µ−) are found, whereas in the very high-mass regime the SM
value is recovered.

Overall, the discovery of a Higgs boson, interpreted as the lightest MSSM Higgs boson,
together with the refined Mh calculation allows to put substantially improved limits on
the allowed particle spectrum. While in the older evaluations always large parts of the
parameter space where out of reach for the LHC, the ILC and CLIC, the improved analysis
nearly guarantees the discovery of one or more particles at the LHC or future e+e−

colliders.

4 Conclusions

The serious problem of the appearance of many free parameters in the SM of Elementary
Particle Physics, takes dramatic dimensions in the MSSM, where the free parameters are
proliferated by at least hundred more, while it is considered as the best candidate for
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Figure 3: The upper (lower) plot shows the spectrum of FUT (with µ < 0) after imposing the constraint
Mh = 125.6±3.1 (2.1) GeV. The points shown are in agreement with the quark mass constraints and the
B-physics observables. The light (green) points on the left are the various Higgs boson masses. The dark
(blue) points following are the two scalar top and bottom masses, followed by the lighter (gray) gluino
mass. Next come the lighter (beige) scalar tau masses. The darker (red) points to the right are the two
chargino masses followed by the lighter shaded (pink) points indicating the neutralino masses.

Physics Beyond the SM. The idea that the Theory of Particle Physics is more symmetric
at high scales, which is broken but has remnant predictions in the much lower scales of
the SM, found its best realisation in the framework of the MSSM assuming further a GUT
beyond the scale of the unification of couplings. However, the unification idea, although
successful, seems to have exhausted its potential to reduce further the free parameters of
the SM.

A new interesting possibility towards reducing the free parameters of a theory has been
put forward in refs. [25, 26] which consists on a systematic search on the RGI relations
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among couplings. This method might lead to further symmetry, however its scope is
much wider. After several trials it seems that the basic idea found very nice realisations
in a Finite Unified Theory and the MSSM. In the first case one is searching for RGI
relations among couplings holding beyond the unification scale, which morever guarantee
finiteness to all-orders in perturbation theory. In the second, the search of RGI relations
among couplings is concentrated within the MSSM itself and the assumption of GUT
is not necessarily required. The results in both cases are indeed impressive as we have
discussed. Certainly one can add some more comments on the Finite Unified Theories.
These are related to some fundamental developments in Theoretical Particle Physics based
on reconsiderations of the problem of divergencies and serious attempts to solve it. They
include the motivation and construction of string and noncommutative theories, as well
as N = 4 supersymmetric field theories [118, 119], N = 8 supergravity [120–124] and the
AdS/CFT correspondence [125]. It is a thoroughly fascinating fact that many interesting
ideas that have survived various theoretical and phenomenological tests, as well as the
solution to the UV divergencies problem, find a common ground in the framework ofN = 1
Finite Unified Theories, which have been discussed here. From the theoretical side they
solve the problem of UV divergencies in a minimal way. On the phenomenological side
in both cases of reduction of couplings discussed here the celebrated success of predicting
the top-quark mass [15, 17] is now extended to the predictions of the Higgs masses and
the supersymmetric spectrum of the MSSM, which so far have been confronted very
successfully with the findings and bounds at the LHC.

The various scenarios will be refined/scrutinized in various ways in the upcoming years.
Important improvements in the analysis are expected from progress on the theory side,
in particular in an improved calculation of the light Higgs boson mass. The corrections
introduced in [90] not only introduce a shift inMh (which should to some extent be covered
by the estimate of theory uncertainties). They will also reduce the theory uncertainties, see
[90,108], and in this way refine the selected model points, leading to a sharper prediction
of the allowed spectrum. One can hope that with even more higher-order corrections
included in the Mh calculation an uncertainty below the 0.5 GeV level can be reached.

The other important improvements in the future will be the continuing searches for
SUSY particles at collider experiments. The LHC will re-start in 2015 with an increased
center-of-mass enery of

√
s ∼ 13 TeV, largely extending its SUSY search reach. The

lower parts of the currently allowed/predicted colored SUSY spectra will be tested in this
way. For the electroweak particles, on the other hand, e+e− colliders might be the better
option. The ILC, operating at

√
s <∼ 1 TeV, has only a limited potential for our model

spectra. Going to higher energies,
√
s <∼ 3 TeV, that might be realized at CLIC, large

parts of the predicted electroweak model spectra can be covered.
All spectra, however, (at least with the current calculation ofMh and its corresponding

uncertainty), contain parameter regions that will escape the searches at the LHC, the ILC
and CLIC. In this case we would remain with a light Higgs boson in the decoupling limit,
i.e. would be undistinguishable from a SM Higgs boson. The only hope to overcome this
situation is that an improved Mh calculation would cut away such high spectra.
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