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Abstract

In the context of constructing consistent cross-couplings in D = 8 between a
topological BF model with a maximal field spectrum and a massless tensor field
with the mixed symmetry (5, 1) by means of the deformation of the solution to
the classical master equation it is shown that all the terms from the first-order
deformation depending on the ghost with maximum pure ghost number from the
(5, 1) sector can be eliminated for inconsistency reasons.

PACS: 11.10.Ef

1 Introduction

Topological BF field theories [1] are important in view of the fact that pure three-
dimensional gravity is just a BF theory and, moreover, in higher dimensions general
relativity and supergravity in Ashtekar formalism may also be formulated as topological
BF theories with some extra constraints. On the other hand, tensor fields in “exotic” rep-
resentations of the Lorentz group, characterized by a mixed Young symmetry type [2]–[5],
held the attention lately on some important issues, like the dual formulation of field the-
ories of spin two or higher [6]–[9], the impossibility of consistent cross-interactions in the
dual formulation of linearized gravity [10], or the derivation of some exotic gravitational
interactions [11, 12].

In this context the couplings between topological BF theories and certain dual formu-
lations of linearized gravity is a topic of real interest [13]–[17]. One of the most efficient
approaches to the problem of constructing interacting gauge field theories is based on
the deformation of the solution to the classical master equation in the antifield-BRST
setting [18, 19] by means of the local BRST cohomology [20]–[22]. The purpose of this
paper is related to the construction of consistent cross-couplings in D = 8 between a
topological BF model with a maximal field spectrum and a massless tensor field with
the mixed symmetry (5, 1). The free model describing a massless tensor field with the
mixed symmetry (5, 1) is known to be dual to linearized gravity exactly in D = 8. More
precisely, under some standard hypotheses from field theory (such as spacetime locality),
it is shown that a special class of terms from the first-order deformation involving the
ghost of maximum pure ghost number belonging to the (5, 1) sector can be eliminated via
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inconsistency arguments. This result is important in view of studying new interactions in
gravity and supergravity theories whose field spectrum includes these two types of fields.

2 The free theory

The starting point is a free theory in D = 8, with the Lagrangian action written as the
sum between the action of a topological BF model with a maximal field spectrum [two

sorts of forms (
[m]

A,
[m+1]

B )m=0,3] and that of a massless tensor field with the mixed symmetry
(5, 1) tµ1...µ5|α [antisymmetric in its first 5 indices and fulfilling the identity t[µ1...µ5|α] ≡ 0]

SL [Φα0 ] =

∫
d8x

[ 3∑
m=0

1
m+1

[m+1]

B

µ1...µm+1

∂[µ1

[m]

A µ2...µm+1]

− 1
2·6!

(
Fµ1...µ6|αF

µ1...µ6|α − 6Fµ1...µ5F
µ1...µ5

) ]
(1)

≡ SL,BF
0,D=8

[[m]

A µ1...µm ,
[m+1]

B

µ1...µm+1]
+ SL,t

0,D=8[tµ1...µ5|α].

The overscript between brackets signifies the form degree [
[m]

A is a m-form and
[m+1]

B a
(m + 1)-form]. The notation [µ1µ2 . . . µn] means complete antisymmetry with respect to
the indices between brackets, with the convention that the minimum number of terms is
always used and the result is never divided by the number of terms. In this paper we work
with the Minkowski metric of ‘mostly plus’ signature σµν = σµν = diag (−+ · · ·+) and
with the Levi–Civita symbol εµ1...µ8 defined according to the convention ε01...7 = −ε01...7 =
−1. The tensor Fµ1...µ6|α from (1) displays the mixed symmetry (6, 1) and reads as

Fµ1...µ6|α = ∂[µ1tµ2...µ6]|α, Fµ1...µ5 = σµ6αFµ1...µ5µ6|α. (2)

The overall field spectrum, denoted by Φα0 , contains the two types of form fields from the
BF sector together with the tensor field with the mixed symmetry (5, 1)

Φα0 =

{(
[m]

A µ1...µm ,
[m+1]

B

µ1...µm+1)
m=0,3

, tµ1...µ5|α

}
. (3)

Action (1) is invariant under a generating set of gauge symmetries of the form

δΩα1

[0]

A = 0, δΩα1

[m]

A µ1...µm = ∂[µ1

[m−1]
ϵ (m,0)µ2...µm], m = 1, 3, (4)

δΩα1

[m+1]

B

µ1...µm+1

= − (m+ 2) ∂ρ
[m+2]

ξ

ρµ1...µm+1

(m+1,0) , m = 0, 3, (5)

δΩα1 tµ1...µ5|α = ∂[µ1χµ2...µ5]|α + ∂[µ1θµ2...µ5]α + 5∂αθµ1...µ5 . (6)

The gauge parameters were collectively denoted by Ωα1 , with ϵ’s and ξ’s from the BF
sector and χ together with θ from the (5, 1) sector. All these parameters are bosonic
and completely antisymmetric [where applicable], excepting χµ1...µ4|α, which displays the
mixed symmetry (4, 1). Related to the BF gauge parameters, the overscript represents the
form degree, while the other two lower indices between parentheses signify the form field
to which a certain gauge parameter is associated with and respectively the reducibility
level. The above gauge transformations are Abelian and off-shell, 6-order reducible. The
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free theory under study is a usual linear gauge theory [its field equations are linear in the
fields], whose generating set of gauge transformations is 6-order reducible, such that we
can define in a consistent manner its Cauchy order, which is found to be equal to 8.

According to the BRST method, we introduce the field/ghost and antifield spectra

ΠA ≡
{
Φα0 , {ηαl+1}l=0,6, {η̄αl+1}l=0,5

}
, Π∗

A ≡
{
Φ∗

α0
, {ηαl+1}l=0,6,

{
η̄∗αl+1

}
l=0,5

}
, (7)

where Φ∗
α0

are the antifields corresponding to the original fields (3)

Φ∗
α0

=

{(
[m]

A

∗µ1...µm

,
[m+1]

B

∗

µ1...µm+1

)
m=0,3

, t∗µ1...µ5|α
}
. (8)

The ghosts and antifields associated with the gauge/reducibility parameters from the BF
sector, {ηαl+1}l=0,6 and {ηαl+1}l=0,6, are organized as

{ηαl+1}l=0,2 ≡
{{

[m′−l−1]
η (m′,l)

}
m′=l+1,3

,
{[m+l+2]

C (m+1,l)

}
m=0,3

}
l=0,2

, (9)

{ηαl+1}l=3,6 ≡
{{[m′′+l+2]

C (m′′+1,l)

}
m′′=0,6−l

}
l=3,6

, (10)

{η∗αl+1
}l=0,2 ≡

{{
[m′−l−1]

η
∗

(m′,l)

}
m′=l+1,3

,
{[m+l+2]

C

∗

(m+1,l)

}
m=0,3

}
l=0,2

, (11)

{η∗αl+1
}l=3,6 ≡

{{[m′′+l+2]

C

∗

(m′′+1,l)

}
m′′=0,6−l

}
l=3,6

, (12)

while those from the (5, 1) sector [{η̄αl+1}l=0,5 and
{
η̄∗αl+1

}
l=0,5

] are structured like

{η̄αl+1}l=0,3 ≡
{
G(l)µ1...µ4−l|α, C(l)µ1...µ5−l

}
l=0,3

, η̄α5 ≡ C(4)µ1 , (13){
η̄∗αl+1

}
l=0,3

≡
{
G∗µ1...µ4−l|α
(l) , C∗µ1...µ5−l

(l)

}
l=0,3

, η̄∗α5
≡ C∗µ1

(4) . (14)

The tensor fields G(l)µ1...µ4−l|α and G∗µ1...µ4−l|α
(l) display the mixed symmetry (4− l, 1), while

C(l)µ1...µ5−l
and C∗µ1...µ5−l

(l) are completely antisymmetric. In addition, G(3)µ1|α and G∗µ1|α
(3)

represent some symmetric tensors [G(3)[µ1|α] = G(3)µ1|α − G(3)α|µ1 ≡ 0].
Since both the gauge generators and the reducibility functions are field-independent,

it follows that the BRST differential, s, reduces to

s = δ + γ, (15)

where δ is the Koszul–Tate differential and γ the exterior longitudinal derivative. The
Koszul–Tate differential is graded in terms of the antighost number [agh, agh(δ) = −1,
agh(γ) = 0] and enforces a resolution of the algebra of smooth functions defined on the
stationary surface of action (1), C∞ (Σ), Σ : δSL/δΦα0 = 0. The exterior longitudinal
derivative is in this case a true differential, graded in terms of the pure ghost number [pgh,
pgh(γ) = 1, pgh(δ) = 0] and correlated with the original gauge symmetries of the action
via its cohomology in pure ghost number zero computed in C∞ (Σ), which is isomorphic
to the algebra of physical observables for this free theory. The overall degree that grades
the BRST complex is named ghost number (gh) and is defined like the difference between
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the pure ghost number and the antighost number, such that gh (δ) = gh (γ) = gh (s) = 1.
These two degrees of the BRST generators from (7) are valued like

pgh (Φα0) = 0, agh
(
Φ∗

α0

)
= 1, (16)

pgh (ηαl+1) = l + 1 = pgh (η̄αl+1) , agh
(
η∗αl+1

)
= l + 2 = agh

(
η̄∗αl+1

)
, (17)

pgh(Π∗
A) = 0, agh

(
ΠA
)
= 0, (18)

while their Grassmann parities are given by

ε
(
ηαl+1

)
= (l + 1) mod 2 = ε

(
η̄αl+1

)
, (19)

ε(Π∗
A) = (ε(ΠA) + 1) mod 2. (20)

The actions of the differential δ on the above generators read as

δΠA = 0 ⇔ (δΦα0 = 0, δηαl+1 = 0 = δη̄αl+1 , l ≥ 0), (21)

δ
[m]

A

∗µ1...µm

= ∂ρ
[m+1]

B

ρµ1...µm

, m = 0, 3, (22)

δ
[m−1]
η

∗µ1...µm−1

(m,0) = −m∂λ
[m]

A

∗λµ1...µm−1

, m = 1, 3, (23)

δ
[m−i−2]

η
∗µ1...µm−i−2

(m,i+1) = (−)i(m− i− 1)∂λ
[m−i−1]

η
∗λµ1...µm−i−2

(m,i) , m = 2, 3, (24)

δ
[m+1]

C

∗

(m+1,−1)µ1...µm+1
= − 1

m+1
∂[µ1

[m]

A µ2...µm+1], m = 0, 3, (25)

δ
[m+l+2]

C

∗

(m+1,l)µ1...µm+l+2
= (−)l ∂[µ1

[m+l+1]

C

∗

(m+1,l−1)µ2...µm+l+2]
, m = 0, 3, (26)

[with i = 0,m− 2 in (24) and respectively l = 0, 6−m in (26)] and

δt∗µ1...µ5|α = −
δSL,t

0,D=8

δtµ1...µ5|α
≡ − 1

5!
T µ1...µ5|α, (27)

δG∗µ1...µ4|α
(0) = −∂λ

(
5t∗λµ1...µ4|α − t∗µ1...µ4α|λ

)
, δC∗µ1...µ5

(0) = −6∂αt
∗µ1...µ5|α, (28)

δG∗µ1...µ4−l|α
(l) = (−)l+1∂λ

(
(5− l)G∗λµ1...µ4−l|α

(l−1) + (−)5−lG∗µ1...µ4−lα|λ
(l−1)

)
, l = 1, 3, (29)

δC∗µ1...µ5−l

(l) = −(6− l)∂α

(
G∗µ1...µ5−l|α
(l−1) + (−)6−l 5−l

7−l
C∗αµ1...µ5−l

(l−1)

)
, l = 1, 4. (30)

The tensor T µ1...µ5|α from (27) is involved in the field equations from the (5, 1) sector

δSL,t
0,D=8

δtµ1...µ5|α
=

1

5!
T µ1...µ5|α, (31)

displays the mixed symmetry (5, 1), and can be expressed in terms of F ν1...ν6|α from (2)

T ν1...ν5|α = ∂µF
µν1...ν5|α + ∂αF ν1...ν5 − σα[ν1∂µF

ν2...ν5]µ

= ∂µF
µν1...ν5|α − σα[ν1∂µF

ν2...ν5µ]. (32)

The actions of the differential γ on the above generators read as

γΠ∗
A = 0 ⇔ (γΦ∗

α0
= γη∗αl+1

= 0 = γη̄∗αl+1
, l ≥ 0), (33)
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γ
[0]

A = 0, γ
[m]

A µ1...µm = ∂[µ1

[m−1]
η (m,0)µ2...µm], γ

[0]
η (m,m−1) = 0, m = 1, 3, (34)

γ
[m−i−1]

η (m,i)µ1...µm−i−1
= ∂[µ1

[m−i]
η (m,i+1)µ2...µm−i−1]

, m = 2, 3, i = 0,m− 2, (35)

γ
[D]

C

µ1...µ8

(m+1,6−m) = 0, γ
[m+l+1]

C

µ1...µm+l+1

(m+1,l−1) = − (m+ l + 2) ∂ρ
[m+l+2]

C

ρµ1...µm+l+1

(m+1,l) , (36)

[with m = 0, 3 and l = 0, 6−m in (36)] and

γtµ1...µ5|α = ∂[µ1G(0)µ2...µ5]|α + ∂[µ1C(0)µ2...µ5]α + 5∂αC(0)µ1...µ5 , (37)

γG(l)µ1...µ4−l|α = ∂[µ1G(l+1)µ2...µ4−l]|α

+∂[µ1C(l+1)µ2...µ4−l]α + (−)l+1(4− l)∂αC(l+1)µ1...µ4−l
, (38)

γC(l)µ1...µ5−l
= 4−l

6−l
∂[µ1C(l+1)µ2...µ5−l], γG(3)µ1|α = ∂(µ1C(4)α), (39)

γC(3)µ1µ2 =
1
3
∂[µ1C(4)µ2], γC(4)µ1 = 0, (40)

where l = 0, 2 in (38) and also in the first relation from (39). Moreover, in (25) and (36)
we used the supplementary conventions

[m+1]

B

µ1...µm+1

=
[m+1]

C

µ1...µm+1

(m+1,−1), m = 0, 3, (41)

[m+1]

B

∗

µ1...µm+1
=

[m+1]

C

∗

(m+1,−1)µ1...µm+1
, m = 0, 3. (42)

Without entering further technical details, in what follows we briefly address the gen-
eral expression of the nontrivial representatives of H(γ) [the cohomology of the exterior
longitudinal derivative γ computed in the space of local functions]. An element a from
H(γ) simultaneously homogeneous with respect to the pure ghost and antighost numbers
satisfies the conditions and the equation

γa = 0, pgh(a) = l ≥ 0, agh(a) = j ≥ 0. (43)

From the actions of γ on the BRST generators, given by definitions (33)–(40), it can be
shown that H(γ) in the space of local functions is generated by the antifields Π∗

A and
their spacetime derivatives, by the quantities

F̄∆̄ =
{[0]

A ≡ φ, ∂[µ1

[1]

Aµ2], ∂[µ1

[2]

Aµ2µ3], ∂[µ1

[3]

Aµ2µ3µ4], ∂µ1

[1]

B

µ1

, ∂µ1

[2]

B

µ1µ2

,

∂µ1

[3]

B

µ1µ2µ3

, ∂µ1

[4]

B

µ1...µ4

, Kµ1...µ6|αβ

}
(44)

together with their spacetime derivatives, and also by the undifferentiated objects [all
their spacetime derivatives are trivial in H(γ)]

η̄γ̄ =
{

[0]
η (1,0),

[0]
η (2,1),

[0]
η (3,2),

[0]

C̃(4,3),
[0]

C̃(3,4),
[0]

C̃(2,5),
[0]

C̃(1,6), Fµ1...µ6 , Cα
(4)

}
. (45)

In (44) the tensor Kµ1...µ6|αβ defines the curvature tensor of the (5, 1) sector, given by

Kµ1...µ6|αβ = ∂[µ1tµ2...µ6]|[β,α] ≡ ∂α∂[µ1tµ2...µ6]|β − ∂β∂[µ1tµ2...µ6]|α, (46)

with f,µ = ∂µf . This tensor displays the mixed symmetry (6, 2), so it is separately
antisymmetric in its first six indices and respectively last two indices and satisfies the
Bianchi identities

K[µ1...µ6|α]β ≡ 0, ∂[µ1Kµ2...µ7]|αβ ≡ 0, Kµ1...µ6|[αβ,γ] ≡ 0. (47)

38



We can also express (46) in terms of Fµ1...µ6|β as

Kµ1...µ6|αβ = ∂αFµ1...µ6|β − ∂βFµ1...µ6|α. (48)

The object Fµ1...µ6 from (45) is endowed with the pure ghost number equal to one and is
constructed from the first-order derivatives of the ghost C(0) belonging to the (5, 1) sector

Fµ1...µ6 ≡ ∂[µ1C(0)µ2...µ6]. (49)

In order to simplify the computations, it is more convenient to work with the Hodge duals
of the various ghost fields associated with the BF sector [denoted by C], defined like

[8−p]

ω̃

ν1...ν8−p

≡ 1

p!
εν1...ν8−pµ1...µp

[p]
ωµ1...µp , p = 0, 8. (50)

According to (50), the objects
{[0]

C̃(m+1,6−m)

}
m=0,3

present in (45) are dual to the ghosts{[8]

C

µ1...µ8

(m+1,6−m)

}
m=0,3

.

In what follows we are mainly focused on the general representatives of H(γ) of ghost
number 0. Putting together the information exposed so far, we conclude that the expres-
sion of the most general, nontrivial element from H(γ) of gh = 0 takes the form

a =
∑

αJ

(
[Π∗

A], [F̄∆̄]
)
eJ(η̄γ̄), (51)

with agh(αJ) = J and pgh(eJ) = J . By eJ(η̄γ̄) we denoted the elements with pure ghost
number equal to J of a basis in the space of polynomials in the objects (45). The notation
f([q]) means that f depends on q and its spacetime derivatives up to a finite order. The
quantities αJ

(
[Π∗

A], [F̄∆̄]
)
stand for the most general representatives of the cohomology

H(γ) in pgh = 0 [denoted by H0(γ)]. They are called invariant ‘polynomials’ and are true
polynomials in all the arguments excepting the undifferentiated scalar field φ, in terms
of which they may be series. The cohomology H0(γ) is an algebra also known as the
algebra of invariant ‘polynomials’. A generic invariant polynomial decomposes along the
antighost number into a finite number of (homogeneous) terms.

In the sequel we address the local cohomology of the Koszul–Tate differential in
antighost number J , HJ (δ|d), and also the local cohomology of Koszul–Tate differen-
tial in antighost number J computed in the algebra of invariant ‘polynomials’, H inv

J (δ|d)
[both in pure ghost number zero]. The model under study is a linear gauge theory of
Cauchy order 8, so the general results from the literature [20]–[22] allow us to state that

HJ (δ|d) = 0, J > 8. (52)

Moreover, it can be shown that if an invariant ‘polynomial’ αJ , with agh (αJ) = J ≥ 8,
is trivial in HJ (δ|d), then it can be taken to be trivial also in H inv

J (δ|d). This result
together with (52) ensures that

H inv
J (δ|d) = 0, J > 8. (53)

Using definitions (22)–(30), we can show that H inv
J (δ|d) and HJ (δ|d) are spanned by

H inv
8 (δ|d) : {Pµ1...µ8}, (54)
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H inv
7 (δ|d) :

{
Pµ1...µ7 ,

[8]

C

∗

(2,5)µ1...µ8

}
, (55)

H inv
6 (δ|d) :

{
Pµ1...µ6 ,

[7]

C

∗

(2,4)µ1...µ7
,

[8]

C

∗

(3,4)µ1...µ8
, C∗

(4)α

}
, (56)

H inv
5 (δ|d) :

{
Pµ1...µ5 ,

[6]

C

∗

(2,3)µ1...µ6
,

[7]

C

∗

(3,3)µ1...µ7
,

[8]

C

∗

(4,3)µ1...µ8
, G ′∗µ1||α

(3)

}
, (57)

H inv
4 (δ|d) :

{
Pµ1...µ4 ,

[0]
η
∗

(3,2),
[5]

C

∗

(2,2)µ1...µ5
,

[6]

C

∗

(3,2)µ1...µ6
,

[7]

C

∗

(4,2)µ1...µ7
, G ′∗µ1µ2||α

(2)

}
, (58)

H inv
3 (δ|d) :

{
Pµ1µ2µ3 ,

[0]
η
∗

(2,1),
[1]
η
∗µ1

(3,1),
[4]

C

∗

(2,1)µ1...µ4
,

[5]

C

∗

(3,1)µ1...µ5
,

[6]

C

∗

(4,1)µ1...µ6
, G ′∗µ1µ2µ3||α

(1)

}
, (59)

H inv
2 (δ|d) :

{
Pµ1µ2 ,

[0]
η
∗

(1,0),
[1]
η
∗µ1

(2,0),
[2]
η
∗µ1µ2

(3,2) ,
[3]

C

∗

(2,0)µ1µ2µ3
,

[4]

C

∗

(3,0)µ1...µ4
,

[5]

C

∗

(4,0)µ1...µ5
, G ′∗µ1...µ4||α

(0)

}
. (60)

The objects
(
Pµ1...µj

)
j=2,8

from (54)–(60) are invariant ‘polynomials’ in the antifields cor-

responding to the 1-form
[1]

B

µ1

from the BF sector with the expression

Pµ1...µj
=

dP

dφ

[j]

C

∗

(1,j−2)µ1...µj
+

djP

dφj

[1]

C

∗

(1,−1)µ1
· · ·

[1]

C

∗

(1,−1)µj

+

j−1∑
l=2

dlP

dφl

( ∑
1≤i1≤i2≤...≤il≤j−l+1

i1+i2+···+il=j

[i1]

C

∗

(1,i1−2)[µ1...µi1
×

×
[i2]

C

∗

(1,i2−2)µi1+1...µi1+i2
· · ·

[il]

C

∗

(1,il−2)µi1+i2+···+il−1+1...µi1+i2+···+il
]

)
, (61)

where P = P (φ) is an arbitrary, smooth function depending only on the undifferentiated
scalar field φ. The notation (42) for m = 0 was also employed. The ‘polynomials’ defined
in (61) satisfy the properties

δPµ1...µj
= (−)j∂[µ1Pµ2...µj ], j = 1, 8, (62)

Pµ1 ≡
dP

dφ

[1]

C

∗

(1,−1)µ1
(63)

and can be written in dual notations like

δP̃ µ1...µ8−j = (−)j∂µ9−j
P̃ µ1...µ9−j , j = 2, 8, (64)

P̃ µ1...µ7 = εµ1...µ7ρ
dP

dφ

[1]

C

∗

(1,−1)ρ. (65)

The representatives denoted by G ′∗
(l) from H(δ|d) and H inv

J (δ|d), which appear starting

with antighost number 5 [see (57)–(60)], are due to the (5, 1) sector and contain both
kinds of antifields specific to this sector

G ′∗µ1...µ4−l||α
(l) ≡ G∗µ1...µ4−l|α

(l) +
1

6− l
C∗µ1...µ4−lα

(l) , l = 0, 3. (66)
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They correspond [are canonically conjugated with respect to the antibracket] to the ghosts

G ′
(l)µ1...µ4−l||α ≡ G(l)µ1...µ4−l|α + (6− l) C(l)µ1...µ4−lα, l = 0, 3.

The double bar present in the expression of the primed ghosts/antifields signifies that
these BRST generators are only antisymmetric with respect to the Lorentz indices placed
before, but do not exhibit the mixed symmetry (4− l, 1) of the non-primed generators.

3 ‘Homogeneous’ solutions

Next, we work in the context of investigating consistent cross-couplings in D = 8 between
a topological BF model with a maximal field spectrum and a massless tensor field with the
mixed symmetry (5, 1) as a deformation problem of the solution to the classical master
equation [18, 19] with the help of the local BRST cohomology [20]–[22]. We assume that
the deformed solutions to the classical master equation satisfy some general hypotheses
from field theory: analyticity in the coupling constant, spacetime locality, Lorentz covari-
ance, and Poincaré invariance, combined with the preservation of the number of derivatives
on each field. We strengthen the last hypothesis by requiring that the emerging cross-
couplings are described at the Lagrangian level by interaction vertices containing at most
one spacetime derivative of the fields at all orders in the coupling constant. Let S̄ be the
fully deformed solution to the master equation expanded according to a coupling constant
g, S̄ = S+gS1+g2S2+ · · · , so it is compelled to satisfy the equation (S̄, S̄) = 0, where (, )
denotes the antibracket structure. In the above S, known as the zeroth order deformation,
signifies the solution to the master equation for the free model under study, described by
action (1) with the gauge symmetries (4)–(6), i.e. the solution to the equation (S, S) = 0.
We do not discuss here on either the antibracket structure of this model or the concrete
form of S, which can be found in [13, 14], since they will not be needed in what follows.
We only stress that in dual local notations, S1 =

∫
a d8x, the equation for the first-order

deformation, (S1, S) ≡ sS1 = 0, is equivalently written as sa = ∂µj
µ, with jµ a local

current. Despite of satisfying all the working hypotheses, the non-integrated density of
the first-order deformation, a, exhibits the supplementary properties of being bosonic and
displaying the ghost number equal to zero. The previous equation shows that a defines a
bosonic element of the local cohomology of the BRST differential s in ghost number zero,
H0(s|d). Decomposing a as a sum between three components, a = aBF

D=8 + atD=8 + aintD=8,
where the first is responsible for the self-interactions among the BF fields, the second
for those of the tensor field with the mixed symmetry (5, 1), and the third describes
the cross-couplings between the two sectors, it follows that the first-order deformation
equation becomes equivalent with three independent equations, one for each component,
saBF

D=8 = ∂µw
µ, satD=8 = ∂µz

µ, and saintD=8 = ∂µm
µ.

In what follows we investigate some particular solutions of the first-order deformation
equation responsible for the cross-couplings between the BF fields and the (5, 1) tensor.
In view of this we start from the equation

saintD=8 = ∂µm
µ, (67)

that has been shown in [14] to allow the decomposition [according to the antighost number]

aintD=8 =
8∑

i=0

ainti,D=8, agh(ainti,D=8) = i = pgh(ainti,D=8), ε(ainti,D=8) = 0. (68)
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In order to describe cross-couplings, every term from aintD=8 has to contain al least one
BRST generator from each sector and moreover to satisfy all the working hypotheses.
Using decomposition (15), result (53), and expansion (68), it can be shown in a standard
manner that equation (67) is equivalent to a tower of equations, ordered according to the
decreasing values of the antighost number into

γaint8,D=8 = 0, (69)

δainti,D=8 + γainti−1,D=8 = ∂µm
µ
i−1, i = 1, 8. (70)

Equation (69) states that the piece of maximum antighost number from the first-order
deformation responsible for cross-couplings, aint8,D=8, is γ-invariant. Since we are interested
in nontrivial interactions, we consider only nontrivial, bosonic elements of the cohomology
H(γ) with pgh = 8 and agh = 8. Following a standard procedure [for instance, see [14]
and [15]–[17]] and taking into account formula (51), we obtain that the component of high-
est antighost number necessarily involves elements from the invariant local cohomology
of the Koszul–Tate differential and takes the general expression

aint8,D=8 = α8e
8(η̄γ̄), α8 ∈ H inv

8 (δ|d). (71)

The other components, with lower, but strictly positive values of the antighost number,
{ainti,D=8}i=1,7, can be decomposed into

ainti,D=8 = a′inti,D=8 + âinti,D=8 + ăinti,D=8, i = 1, 8, γa′inti,D=8 ̸= 0, γâinti,D=8 = 0 = γăinti,D=8. (72)

We collectively denoted by a′inti,D=8 all the terms of antighost number i from the first-order
deformation responsible for cross-couplings that are not γ-invariant and by âinti,D=8 and
respectively ăinti,D=8 the two distinct classes of possible γ-invariant terms. By abuse of ter-
minology in what follows we call both these classes of γ-invariant elements ‘homogeneous’
solutions. The ‘homogeneous’ solutions âinti,D=8 ensure the consistency of ainti,D=8 in antighost
number (i−1) [more precisely, are required by the existence of ainti−1,D=8 as solution to the

equation δainti,D=8+γainti−1,D=8 = ∂µm
µ
i−1 for i = 1, 7]. The γ-closed pieces denoted by ăinti,D=8

contain only the so-called “potentially independently consistent” ‘homogeneous’ solutions
with antighost number i, introduced by having an imposed expression, of the type

ăinti,D=8 = αie
i(η̄γ̄), αi ∈ H inv

i (δ|d), i = 2, 7, (73)

ăint1,D=8 = α1

(
[Φ∗

α0
], [F̄∆̄]

)
e1 (η̄γ̄) , agh(α1) = 1, (74)

where Φ∗
α0

are the antifields corresponding to the original fields (8). The attribute “po-
tentially independently consistent” accredited to the γ-closed contributions of the above
form is due to the fact that independent (ăinti,D=8)i=1,7’s may generate in principle inde-
pendent components of the first-order deformation describing cross-couplings, aintD=8. We
remark that expression (71) qualifies aint8,D=8 also as a “potentially independently consis-
tent” ‘homogeneous’ solution in antighost number equal to 8.

The declared purpose of this work is to construct all the “potentially independently
consistent” ‘homogeneous’ solutions [in antighost numbers i = 1, 8] and prove that certain
classes are not consistent at the level of the first-order deformation and therefore can be
safely eliminated. In view of this, we need to couple the representatives of H inv

i (δ|d) given
in (54)–(60) to the basis elements ei(η̄γ̄) constructed from (45) [taking into account that
each term has to effectively mix the two sectors and satisfy all the working hypotheses].
We recall that the pure ghost number of the γ-closed objects (45) are valued like

pgh(
[0]
η (1,0)) = pgh(Fµ1...µ6) = 1, pgh(

[0]
η (2,1)) = 2, (75)
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pgh(
[0]
η (3,2)) = 3, pgh(

[0]

C̃(4,3)) = 4, pgh(
[0]

C̃(3,4)) = 5 = pgh(Cα
(4)), (76)

pgh(
[0]

C̃(2,5)) = 6, pgh(
[0]

C̃(1,6)) = 7, (77)

while their Grassmann parities read as

ε(
[0]
η (2,1)) = ε(

[0]

C̃(2,5)) = ε(
[0]

C̃(4,3)) = 0, (78)

ε(
[0]
η (1,0)) = ε(

[0]
η (3,2)) = ε(

[0]

C̃(3,4)) = ε(
[0]

C̃(1,6)) = ε(Fµ1...µ6) = ε(Cν1
(4)) = 1. (79)

In antighost number 8, we start from the general expression (71) and observe that
formula (54) restricts H inv

8 (δ|d) to involve only generators from the BF sector. Thus, in
order to construct cross-couplings from aint8,D=8 one should retain from the basis elements
e8(η̄γ̄) only those objects containing at least one ghost from the (5, 1) sector, namely
Cα
(4) or Fν1...ν6 [the latter defined in (49)]. Moreover, the hypothesis on the maximum

derivative order of the interacting Lagrangian density to be equal to one limits the basis
elements to contain at most one object of the type Fν1...ν6 . In view of these observations,
we remain with the following eligible basis elements in pure ghost number equal to 8:

e8eligible(η̄
γ̄) =

{
e2(BF)Cα

(4)Fν1...ν6 , e3(BF)Cα
(4), e7(BF)Fν1...ν6

}
. (80)

The notation ei(BF) from the above formula signifies the elements with pure ghost num-
ber i [where i takes here the values 2, 3, and respectively 7] of a basis in the space of
polynomials in the objects from (45) pertaining only to the BF sector [the first seven
ghosts]. Since all the elements ei(BF) are 0-forms, it follows that none of the terms from
the right-hand side of (80) can be coupled in a covariant manner in D = 8 to the generic
representative from H inv

8 (δ|d), given in (54), such that we are compelled to set

aint8,D=8 = 0. (81)

This is a very important result since it shows that expansion (68) of the cross-coupling
first-order deformation can be safely replaced by one that stops in antighost number 7.

In antighost number 7, we start from the “potentially independently consistent” ‘ho-
mogeneous’ solution (73) particularized to i = 7. With the help of result (55) we notice
that the general representatives of H inv

7 (δ|d) entirely belong to the BF sector. Reprising
exactly the same arguments as before, we determine the eligible basis elements as

e7eligible(η̄
γ̄) =

{
e1(BF)Cα

(4)Fν1...ν6 , e2(BF)Cα
(4), e6(BF)Fν1...ν6

}
, (82)

e1(BF) = {
[0]
η (1,0)}, e2(BF) = {

[0]
η (2,1)}. (83)

Analyzing the structure of (55), it follows by covariance arguments that only the first two
elements from (82) may be ‘glued’ to the former representative in H inv

7 (δ|d)

ăint7,D=8 = −P1µ1...µ7C
[µ1

(4)F
µ2...µ7]

[0]
η (1,0) + εµ1...µ8P2[µ1...µ7

[0]
η (2,1)C(4)µ8]. (84)

In the above P1µ1...µ7 and P2µ1...µ7 read as in (61) for j = 7, but they are constructed by
means of two distinct smooth functions of φ, denoted by P1 and respectively P2.
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Related to the “potentially independently consistent” ‘homogeneous’ solution (73) in
agh = 6, we remark from (56) that H inv

6 (δ|d) contains for the first time a representative
specific to the (5, 1) sector, namely the antifield C∗

(4)µ1
. Accordingly, the eligible basis in

pure ghost number 6 will contain also elements strictly belonging to the BF sector

e6eligible(η̄
γ̄) =

{
Cα
(4)Fν1...ν6 , e1(BF)Cα

(4), e5(BF)Fν1...ν6 , e6(BF)
}
. (85)

On the one hand, the cross-coupling requirement restricts the first three representatives
from (56) to be connected only to the first three classes of elements from (85) and the last
antifield from (56) to be linked just to the last three elements from (85). On the other
hand, the derivative-order assumption forbids the coupling of C∗

(4)µ1
to the elements form

(85) depending on Fν1...ν6 . [Indeed, using the actions of δ and γ on the BRST generators,
it can be shown that, if consistent, such a term would generate in aint1,D=8, via equations
(70), a term that is simultaneously linear in t∗µ1...µ5|α and Fν1...ν6 (and also depends on the

undifferentiated BF fields in a way that is not important here). Further assuming that
equation (70) is also consistent in agh = 0 (for i = 1), the previously mentioned term
would induce in the Lagrangian density aint0,D=8 an interaction vertex generically written
as (∂t)(BF fields)∂t, which clearly exceeds the maximum derivative order imposed (one).]
Finally mixing in the Lorentz covariance, we remain with the following classes of possible
terms in ăint6,D=8:

ăint6,D=8 =
{
Pµ1...µ6 ↔ e5(BF)Fν1...ν6 ,

[7]

C

∗

(2,4)µ1...µ7
↔ Cα

(4)Fν1...ν6 ,

[7]

C

∗

(2,4)µ1...µ7
↔ e1(BF)Cα

(4), C∗
(4)µ1

↔ e1(BF)Cα
(4)

}
. (86)

The former expression in (83) together with

e5(BF) =
{[0]

C̃(3,4),
[0]
η (1,0)

[0]

C̃(4,3),
[0]
η (2,1)

[0]
η (3,2),

[0]
η (1,0)

(
[0]
η (2,1)

)2}
, (87)

plus the Poincaré invariance requirement yield in the end

ăint6,D=8 =
5

6

(
− 8!Vµ1...µ6

[0]

C̃(3,4) +
8!

4
V1µ1...µ6

[0]
η (1,0)

[0]

C̃(4,3) − U3µ1...µ6

[0]
η (2,1)

[0]
η (3,2)

− 1

2
U4µ1...µ6

[0]
η (1,0)

[0]
η (2,1)

[0]
η (2,1)

)
Fµ1...µ6 + qεµ1...µ8

[7]

C

∗

(2,4)[µ1...µ7
C(4)µ8]

[0]
η (1,0)

− q1
[7]

C

∗

(2,4)µ1...µ7
C[µ1

(4)F
µ2...µ7] +

7!

20
q′1C∗α

(4)C(4)α
[0]
η (1,0). (88)

The objects Vµ1...µ6 , V1µ1...µ6 , U3µ1...µ6 , and U4µ1...µ6 read as in (61) with j = 6 and are
constructed with the aid of the smooth functions V (φ), V1(φ), U3(φ), and respectively
U4(φ). By q, q1, and q′1 we denoted three arbitrary real constants.

Regarding (73) in i = 5, we start from the eligible basis elements

e5eligible(η̄
γ̄) =

{
Cα
(4), e4(BF)Fν1...ν6 , e5(BF)

}
(89)

and also from the general representatives of H inv
5 (δ|d), established in (57). Invoking the

cross-coupling and derivative-order hypotheses we are led to the observations that the first
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four representatives from (57) may be coupled only to the first two elements in (89) and
the antifield G ′∗

(3)µ1||β may be related exclusively to the last object from (89). Moreover,

noticing that the components of the antifield G ′∗
(3)µ1||β [defined by formula (66) for j = 5]

can be combined into a symmetric tensor and respectively a 0-form

G ′∗
(3)µ1||β →

{
G ′∗
(3)[µ1||β] ∼ C∗

(3)µ1β
, G ′∗

(3) ≡ G ′∗
(3)µ1||βσ

µ1β = G∗
(3)

}
(90)

and taking into account the Lorentz covariance, we are led to three classes of terms

ăint5,D=8 =
{[6]

C

∗

(2,3)µ1...µ6
↔ e4(BF)Fν1...ν6 ,

[7]

C

∗

(3,3)µ1...µ7
↔ Cα

(4), G∗
(3) ↔ e5(BF)

}
. (91)

By means of expression (87) and

e4(BF) =
{[0]

C̃(4,3),
[0]
η (1,0)

[0]
η (3,2),

(
[0]
η (2,1)

)2}
(92)

and requiring the Poincaré invariance of the first-order deformation, we eventually obtain

ăint5,D=8 =
5

6

[6]

C

∗

(2,3)µ1...µ6

(8!
2
v1

[0]

C̃(4,3) + q̄
[0]
η (1,0)

[0]
η (3,2) − u4

[0]
η (2,1)

[0]
η (2,1)

)
Fµ1...µ6

− 3q2ε
µ1...µ8

[7]

C

∗

(3,3)[µ1...µ7
C(4)µ8] + 5!G∗

(3)

(
− 8!

2
v
[0]

C̃(3,4) + 7!v′1
[0]
η (1,0)

[0]

C̃(4,3)

− 1

2
u3

[0]
η (2,1)

[0]
η (3,2) −

1

4
u′
4

[0]
η (1,0)

[0]
η (2,1)

[0]
η (2,1)

)
, (93)

with v, v1, v
′
1, u3, u4, u

′
4, q̄, and q2 some arbitrary real constants.

We pass to constructing the “potentially independently consistent” ‘homogeneous’
solutions in antighost number 4, of the form (73) with i = 4. This is the first time when
the basis elements cannot contain the ghost Cα

(4) from the (5, 1) sector since its pure ghost
number is equal to 5; otherwise they are spanned by two types of objects, namely

e4eligible(η̄
γ̄) =

{
e3(BF)Fν1...ν6 , e4(BF)

}
. (94)

Inspecting the structure of H inv
4 (δ|d) [see formula (58)], it follows that its first five rep-

resentatives may be correlated only to the former class of elements from (94), while the
antifield G ′∗

(2)µ1µ2||β solely to the latter class. In addition, the manipulation of the compo-

nents of the antifield G ′∗
(2)µ1µ2||β, defined in (66) for j = 4, yields two tensors

G ′∗
(2)µ1µ2||β →

{
G ′∗
(2)[µ1µ2||β] ∼ C∗

(2)µ1µ2β
, G ′∗

(2)µ1
≡ G ′∗

(2)µ1µ2||βσ
µ2β = G∗

(2)µ1

}
. (95)

Invoking the Lorentz covariance, we find that ăint4,D=8 reduces to a single object

ăint4,D=8 =
{[6]

C

∗

(3,2)µ1...µ6
↔ e3(BF)Fν1...ν6

}
, (96)

e3(BF) =
{

[0]
η (3,2),

[0]
η (1,0)

[0]
η (2,1)

}
. (97)

With the help of results (96) and (97) and under the assumption of Poincaré invariance
we reach the final expression of the “potentially independently consistent” ‘homogeneous’
solution in antighost number 4

ăint4,D=8 =
5

2

[6]

C

∗

(3,2)µ1...µ6

(
u′
3

[0]
η (3,2) + u′′

4

[0]
η (1,0)

[0]
η (2,1)

)
Fµ1...µ6 , (98)
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with u′
3 and u′′

4 some arbitrary real constants.
In antighost number 3 we start from the eligible basis elements with pgh = 3

e3eligible(η̄
γ̄) =

{
e2(BF)Fν1...ν6 , e3(BF)

}
, (99)

together with the representatives (59) of H inv
3 (δ|d). Using exactly the same arguments

like before, we deduce that ăint3,D=8 includes only one class of terms

ăint3,D=8 =
{[6]

C

∗

(4,1)µ1...µ6
↔ e2(BF)Fν1...ν6

}
. (100)

Inserting the concrete expression of e2(BF) from (83) in (100) we arrive at

ăint3,D=8 =
10

3
u′′
3

[6]

C

∗

(4,1)µ1...µ6

[0]
η (2,1)Fµ1...µ6 , (101)

with u′′
3 an arbitrary real constant.

At antighost number 2, the corresponding eligible basis elements reduce to

e2eligible(η̄
γ̄) =

{
e1(BF)Fν1...ν6 , e2(BF)

}
, (102)

while the general representatives spanning H inv
2 (δ|d) can be found in (60). In principle,

the BF-sector antifields from (60) may be related only to the former element in (102),
while G ′∗

(0)µ1...µ4||β solely to the latter, but covariance arguments provide two possibilities

ăint2,D=8 =
{

[2]
η
∗

(3,0)µ1µ2
↔ e1(BF)Fν1...ν6 , Pµ1µ2 ↔ e1(BF)Fν1...ν6

}
. (103)

Taking into account the expression of e1(BF) present in (83) we conclude that

ăint2,D=8 = −5

3
v′′1

[6]

η̃

∗

(3,0)µ1...µ6

[0]
η (1,0)Fµ1...µ6 + εµ1...µ8P3[µ1µ2Fµ3...µ8], (104)

where v′′1 is an arbitrary real constant and P3µ1µ2 follows from (61) with j = 2 and P → P3,

while
[6]

η̃

∗

(3,0) denotes the Hodge dual of the antifield
[2]
η
∗

(3,0), defined according to (50).
At this point we are left only with the “potentially independently consistent” ‘homo-

geneous’ solution in antighost number equal to 1, of the form (74). Since the antighost
number of all the antifields corresponding to the original fields, Φ∗

α0
, and of their space-

time derivatives is equal to one, it follows that ăint1,D=8 will be written as a monomial of
degree one in the antifields (8) and their spacetime derivatives. Moreover, using the same
line employed in [15]–[17], it can be shown that the entire dependence of ăint1,D=8 on the
quantities from (44) pertaining to the BF sector and on their derivatives, excepting that
on the undifferentiated scalar field, can be eliminated based on the observation that these
objects are δ-exact and thus, even consistent, they would generate only trivial first-order
cross-couplings. At the same time, the dependence of ăint1,D=8 on the curvature tensor
and its spacetime derivatives, [K], is forbidden since it would break the derivative-order
hypothesis [if the corresponding aint0,D=8 exists, then it will contain at least two spacetime
derivatives]. Putting together all these considerations, we can write that

ăint1,D=8 = α1

(
[Φ∗

α0
], φ
)
e1(η̄γ̄), (105)
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with

e1(η̄γ̄) =
{

[0]
η (1,0), Fν1...ν6

}
, (106)

where the invariant polynomial α1 is linear in the antifields from (8) together with their
spacetime derivatives. The antifields [t∗] cannot be satisfactorily coupled to Fν1...ν6 [via
a function of φ] since, if consistent, such terms would generate minimum two spacetime
derivatives in the associated Lagrangian density. Consequently, we are left with two
generic cross-coupling terms

ăint1,D=8 =
{
[Φ∗

BF]f(φ) ↔ Fν1...ν6 , [t∗]f(φ) ↔
[0]
η (1,0)

}
. (107)

Invoking the actions of the operator δ on the BF antifields Φ∗
BF, which are linear in the

first-order derivatives of BF fields [see formulas (22) and (25) and also notation (42)],

accompanied by the result ∂F ∼ γ(∂t) together with the actions δt∗ ∼ ∂∂t and ∂λ
[0]
η (1,0) =

γ
[1]

Aλ, it follows that the Lagrangian density ãint0,D=8 as solution to the equation δăint1,D=8 +
γãint0,D=8 = ∂µm̃

µ
0 satisfies the derivative-order hypothesis if and only if the dependence on

[Φ∗
BF] and respectively on [t∗] of (107) is linear in the undifferentiated antifields

ăint1,D=8 =
{
Φ∗

BFf(φ) ↔ Fν1...ν6 , t∗ν1...ν5|βf(φ) ↔
[0]
η (1,0)

}
. (108)

Lorentz covariance finally selects only two possible terms, both belonging to the former
class displayed in (108)

ăint1,D=8 =
(
P4(φ)

[6]

Ã

∗

(2)µ1...µ6
+ P5(φ)

[6]

B̃

∗

(2)µ1...µ6

)
Fµ1...µ6 , (109)

where
[6]

Ã

∗

(2) and
[6]

B̃

∗

(2) represent the Hodge duals of the antifields
[2]

A

∗

and respectively
[2]

B

∗

and P4 together with P5 denote two arbitrary, smooth functions of φ.
So far, we managed to construct all “potentially independently consistent” ’homoge-

neous’ solutions with the antighost number ranging from 8 to 1 and found that only those
with agh = i and i = 1, 7 are non-vanishing. Their expressions are listed in formulas (84),
(88), (93), (98), (101), (104), and (109) [according to the decreasing values of i]. The
various pieces composing these solutions can be classified into two broad distinct classes,
according to the generic form of their corresponding cross-couplings, of course assuming
they are consistent at the level of the first-order deformation:

I. terms linear in either F or a single antifield from the (5, 1) sector and with no other
dependence on this sector [the four components from (88) involving the functions V ,
V1, U3, and respectively U4, the seven pieces from (93) depending on the constants
v1, q̄, u4, v, v

′
1, u3, and respectively u′

4, together with all the terms from (98), (101),
(104), and (109)];

II. terms containing the ghost C(4) and possibly other ghosts or antifields from the (5, 1)
sector [both components of (84), the three pieces from (88) proportional with the
constants q, q1, and respectively q′1, and also the term from (93) involving q2].

In other words, if consistent at order one in the coupling constant, then these two classes
of ‘homogeneous’ solutions are independently consistent. In the next section we will show
that all the terms from class II are inconsistent and can be removed from aintD=8.
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4 Elimination of the terms containing C(4)
Analyzing the structure of the ‘homogeneous’ solutions from class II [containing the ghost
C(4) from the (5, 1) sector] discussed in the previous section, we observe that they can be
again classified into three subclasses according to their potential of generating independent
cross-couplings: II.1. the term involving the function P1 from (84) as well as the pieces
depending on the constants q1 and respectively q′1 from (88), II.2. the component built
with the help of the function P2 from (84) together with the term linear in the constant q2
and present in (93), and II.3. the piece proportional with q appearing in (88). Due to the
fact that the representatives of the first two subclasses display the same maximum value
of the antighost number, namely 7, we will treat them together and approach separately
only the third subclass.

In order to show that the first two subclasses cause inconsistencies at the level of the
cross-coupling first-order deformation we prove that there is no density aII.1+2

D=8 complying
with all the working hypotheses and endowed with the properties

aII.1+2
D=8 =

7∑
i=0

aII.1+2
i,D=8 , ε(aII.1+2

i,D=8 ) = 0, agh(aII.1+2
i,D=8 ) = i = pgh(aII.1+2

i,D=8 ), (110)

aII.1+2
7,D=8 =− P1µ1...µ7C

[µ1

(4)F
µ2...µ7]

[0]
η (1,0) + εµ1...µ8P2[µ1...µ7

[0]
η (2,1)C(4)µ8], (111)

aII.1+2
6,D=8 =− q1

[7]

C

∗

(2,4)µ1...µ7
C[µ1

(4)F
µ2...µ7] +

7!

20
q′1C∗α

(4)C(4)α
[0]
η (1,0) + · · · , (112)

aII.1+2
5,D=8 =− 3q2ε

µ1...µ8

[7]

C

∗

(3,3)[µ1...µ7
C(4)µ8] + · · · , (113)

that satisfies the equation specific to the first-order deformation of the solution to the
classical master equation, saII.1+2

D=8 = ∂µm
′µ, equivalent to the tower of equations

γaII.1+2
7,D=8 = 0, (114)

δaII.1+2
i,D=8 + γaII.1+2

i−1,D=8 = ∂µm
′µ
i−1, i = 1, 7. (115)

We notice that at this stage aII.1+2
D=8 is parameterized by two arbitrary, real, smooth func-

tions of φ (P1 and P2) and three arbitrary, real constants (q1, q2, and q′1).
Equation (114) is satisfied by construction [see (84)]. Inserting (111) in equation (115)

for i = 7, using the actions of δ and γ on the BRST generators [formulas (21)–(30) and
(33)–(40)], and taking into account condition (112), we obtain the partial expression of
aII.1+2
6,D=8

aII.1+2
6,D=8 = −P1[µ1...µ6

(1
2
G ′ [µ1

(3)µ7]|| Fµ2...µ7]
[0]
η (1,0) +

[1]

Aµ7]C
[µ1

(4) Fµ2...µ7]
)

+
1

5
δ[βa F

µ1...µ6]|
[βP1µ1...µ6]Cα

(4)

[0]
η (1,0) + εµ1...µ8P2[µ1...µ6

(
−

[1]
η (2,0)µ7

C(4)µ8] + 3
[0]
η (2,1)C(3)µ7µ8]

)
− q1

[7]

C

∗

(2,4)µ1...µ7
C[µ1

(4)F
µ2...µ7] +

7!

20
q′1C∗α

(4)C(4)α
[0]
η (1,0) + âII.1+2

6,D=8 . (116)

In the above P1µ1...µ6 and P2µ1...µ6 are of the form (61) with j = 6 and P (φ) → P1(φ),
respectively P (φ) → P2(φ). The ‘homogeneous’ solution âII.1+2

6,D=8 [γâII.1+2
6,D=8 = 0] has the

same meaning with âinti,D=8 from (72), namely, it is a nontrivial, bosonic element of H(γ)
of both pure ghost number and antighost number equal to 6 that ensures the consistency
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of aII.1+2
D=8 in antighost number 5. Its concrete expression will be determined during the

next step.
Related to equation (115) for i = 6, initially we act with δ on (116) and infer the

expression of the ‘homogeneous’ solution of antighost number 6, âII.1+2
6,D=8

âII.1+2
6,D=8 = −2

(
P1[µ1...µ5

[2]

B

∗

µ6µ7]
+ P1[µ1...µ4

[3]

C

∗

(2,0)µ5µ6µ7]
+ P1[µ1µ2µ3

[4]

C

∗

(2,1)µ4...µ7]

+ P1[µ1µ2

[5]

C

∗

(2,2)µ3...µ7]
+ P1[µ1

[6]

C

∗

(2,3)µ2...µ7]
+ P1

[7]

C

∗

(2,4)µ1...µ7

)
C [µ1

(4) Fµ2...µ7]

+
7!

5

(
t∗µ1...µ5|

αP1µ1...µ5 + G ′∗µ1...µ4||
(0) αP1µ1...µ4 − G ′∗µ1µ2µ3||

(1) αP1µ1µ2µ3

− G ′∗µ1µ2||
(2) αP1µ1µ2 + G ′∗µ1||

(3) αP1µ1 +
1

2
C∗
(4)αP1

)
Cα
(4)

[0]
η (1,0), (117)

which substituted in (116) provides the complete expression of aII.1+2
6,D=8 . Then, we employ

this final expression, compute δaII.1+2
6,D=8 , take into account condition (113), and by means

of equation (115) for i = 6 we partially identify the piece of antighost number 5 of the
first-order deformation aII.1+2

D=8

aII.1+2
5,D=8 =

1

2
P1[µ1...µ5G

′ [µ1

(2)µ6µ7]|| Fµ2...µ7]
[0]
η (1,0) +

1

2

[
P1[µ1...µ5

[1]

Aµ6

+ 2
(
P1[µ1...µ4

[2]

B

∗

µ5µ6
+ P1[µ1µ2µ3

[3]

C

∗

(2,0)µ4µ5µ6
+ P1[µ1µ2

[4]

C

∗

(2,1)µ3...µ6
+ P1[µ1

[5]

C

∗

(2,2)µ2...µ6]

+ P1

[6]

C

∗

(2,3)[µ1...µ6

)]
G ′ [µ1

(3)µ7]|| Fµ2...µ7] +
1

10

[
δ[βa F

µ1...µ5ν1]|
[βP1µ1...µ5 + 7!

(
t∗µ1...µ4ν1|

αP1[µ1...µ4

+ G ′∗µ1µ2µ3ν1||
(0) αP1[µ1µ2µ3 − G ′∗µ1µ2ν1||

(1) αP1[µ1µ2 − G ′∗µ1ν1||
(2) αP1[µ1

)]
G ′ α
(3)ν1||

[0]
η (1,0)

+
7!

10
G ′∗ν1||
(3) αP1G ′ α

(3)ν1||
[0]
η (1,0) −

1

5

{
δ[βa F

µ1...µ6]|
[β

[
P1µ1...µ5

[1]

Aµ6] + 2
(
P1µ1...µ4

[2]

B

∗

µ5µ6]

+ P1µ1µ2µ3

[3]

C

∗

(2,0)µ4µ5µ6]
+ P1µ1µ2

[4]

C

∗

(2,1)µ3...µ6]
+ P1µ1

[5]

C

∗

(2,2)µ2...µ6]
+ P1

[6]

C

∗

(2,3)µ1...µ6]

)]
+ 7!

(
t∗µ1...µ5|

αP1[µ1...µ4

[1]

Aµ5] + G ′∗µ1...µ4||
(0) αP1[µ1µ2µ3

[1]

Aµ4] − G ′∗µ1µ2µ3||
(1) αP1[µ1µ2

[1]

Aµ3]

− G ′∗µ1µ2||
(2) αP1[µ1

[1]

Aµ2] + G ′∗µ1||
(3) αP1

[1]

Aµ1

)}
Cα
(4) − εµ1...µ8P2[µ1...µ5

([2]
Aµ6µ7C(4)µ8]

+ 3
[1]
η (2,0)µ6

C(3)µ7µ8] + 6
[0]
η (2,1)C(2)µ6µ7µ8]

)
− q1

[6]

C

∗

(2,3)[µ1...µ6

(1
5
F

[µ1...µ6|
α]C

α]
(4)

− 1

2
G ′ [µ1

(3)µ7]|| Fµ2...µ7]
)
+

7!

10
q′1G

′∗µ1||
(3) α

(1
2
G ′ α
(3)µ1||

[0]
η (1,0) −

[1]

Aµ1C α
(4)

)
− 3q2ε

µ1...µ8

[7]

C

∗

(3,3)[µ1...µ7
C(4)µ8] + âII.1+2

5,D=8 , (118)

where we used formula (61) for various values of j together with (63) in which we replaced
the function P by P1 or P2 and included the γ-closed component âII.1+2

5,D=8 necessary at the

consistency of aII.1+2
D=8 in antighost number 4.

Regarding equation (115) for i = 5, first we act with δ on (118) and identify the
concrete expression of âII.1+2

5,D=8

âII.1+2
5,D=8 = −2

5
7!
[
t∗µ1...µ5|

α

(
P1[µ1µ2µ3

[2]

B

∗

µ4µ5]
+ P1[µ1µ2

[3]

C

∗

(2,0)µ3µ4µ5]
+ P1[µ1

[4]

C

∗

(2,1)µ2...µ5]
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+ P1

[5]

C

∗

(2,2)µ1...µ5

)
+ G ′∗µ1...µ4||

(0) α

(
P1[µ1µ2

[2]

B

∗

µ3µ4]
+ P1[µ1

[3]

C

∗

(2,0)µ2µ3µ4]
+ P1

[4]

C

∗

(2,1)µ1...µ4

)
− G ′∗µ1µ2µ3||

(1) α

(
P1[µ1

[2]

B

∗

µ2µ3]
+ P1

[3]

C

∗

(2,0)µ1µ2µ3

)
− G ′∗µ1µ2||

(2) αP1

[2]

B

∗

µ1µ2

]
Cα
(4)

− 3εµ1...µ8

(
P2[µ1...µ4

[3]

B

∗

µ5µ6µ7
+ P2[µ1µ2µ3

[4]

C

∗

(3,0)µ4...µ7
+ P2[µ1µ2

[5]

C

∗

(3,1)µ3...µ7

+ P2[µ1

[6]

C

∗

(3,2)µ2...µ7
+ P2

[7]

C

∗

(3,3)[µ1...µ7

)
C(4)µ8] −

7!

5
q1

(
t∗µ1...µ5|

α

[5]

C

∗

(2,2)µ1...µ5

+ G ′∗µ1...µ4||
(0) α

[4]

C

∗

(2,1)µ1...µ4
− G ′∗µ1µ2µ3||

(1) α

[3]

C

∗

(2,0)µ1µ2µ3
− G ′∗µ1µ2||

(2) α

[2]

B

∗

µ1µ2

)
C α
(4). (119)

Second, by inserting (119) in (118) we get the full expression of aII.1+2
5,D=8 . Computing now

δaII.1+2
5,D=8 and comparing the emerging result with equation (115) for i = 5, we observe that

the existence of aII.1+2
4,D=8 requires the following condition

7!

20
q′1G

′∗µ1µ2||
(2) α

(
γ
[1]

A[µ1

)
G ′ α
(3)µ2]|| − 7!

5

[
q′1G

′∗µ1µ2||
(2) α

(
∂µ1

[1]

Aµ2

)
+ q1

(
∂µ1G

′∗µ1µ2||
(2) α

)[1]
Aµ2

]
C α
(4)

= ∂µm
′′µ(q1, q

′
1)− γaII.1+2

4,D=8 (q1, q
′
1). (120)

The last equation is satisfied if and only if the constants q′1 and q1 are related by

q′1 = q1, (121)

which furnishes the solution aII.1+2
4,D=8 (q1, q

′
1) to equation (120) in the form

aII.1+2
4,D=8 (q1, q

′
1 = q1) ≡ a′′II.1+2

4,D=8 (q1) = − 7!

20
q1G ′∗µ1µ2||

(2) α

[1]

A[µ1G ′ α
(3)µ2]|| . (122)

Substituting (119) and (121) in (118), we determine the final expression of aII.1+2
5,D=8 . Third,

we use this expression, compute δaII.1+2
5,D=8 , take into account relations (121)–(122), and

consequently find the partial solution aII.1+2
4,D=8 to equation (115) for i = 5

aII.1+2
4,D=8 =

1

2
P1[µ1...µ4G

′ [µ1

(1)µ5µ6µ7]|| F
µ2...µ7]

[0]
η (1,0) +

1

2

[
P1[µ1...µ4

[1]

Aµ5 + 2
(
P1[µ1µ2µ3

[2]

B

∗

µ4µ5

+ P1[µ1µ2

[3]

C

∗

(2,0)µ3µ4µ5
+ P1[µ1

[4]

C

∗

(2,1)µ2...µ5
+ P1

[5]

C

∗

(2,2)µ1...µ5

)]
G ′ [µ1

(2)µ6µ7]|| Fµ2...µ7]

− 1

10

[
δ[βa F

µ1...µ4ν1ν2]|
[βP1µ1...µ4 + 7!

(
t∗µ1µ2µ3ν1ν2|

αP1[µ1µ2µ3 + G ′∗µ1µ2ν1ν2||
(0) αP1[µ1µ2

− G ′∗µ1ν1ν2||
(1) αP1[µ1

)]
G ′ α
(2)ν1ν2||

[0]
η (1,0) +

7!

10
G ′∗ν1ν2||
(2) αP1G ′ α

(2)ν1ν2||
[0]
η (1,0)

+
1

10

{
δ[βa F

µ1...µ5ν1]|
[β

[
P1µ1...µ4

[1]

Aµ5 + 2
(
P1µ1µ2µ3

[2]

B

∗

µ4µ5
+ P1µ1µ2

[3]

C

∗

(2,0)µ3µ4µ5

+ P1µ1

[4]

C

∗

(2,1)µ2...µ5
+ P1

[5]

C

∗

(2,2)µ1...µ5

)]
+ 7!

{
t∗µ1...µ4ν1|

α

[
P1[µ1µ2µ3

[1]

Aµ4

+ 2
(
P1[µ1µ2

[2]

B

∗

µ3µ4
+ P1[µ1

[3]

C

∗

(2,0)µ2µ3µ4
+ P1

[3]

C

∗

(2,0)µ1µ2µ3

)]
+ G ′∗µ1µ2µ3ν1||

(0) α

[
P1[µ1µ2

[1]

Aµ3 + 2
(
P1[µ1

[2]

B

∗

µ2µ3
+ P1

[3]

C

∗

(2,0)[µ1µ2µ3

)]
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− G ′∗µ1µ2ν1||
(1) α

(
P1[µ1

[1]

Aµ2 + 2P1

[2]

B

∗

[µ1µ2

)
− G ′∗µ1ν1||

(2) αP1

[1]

A[µ1

}}
G ′ α
(3)ν1]||

+ εµ1...µ8

{
− 3
[
P2[µ1...µ4

[2]

Aµ5µ6 + 3
(
P2[µ1µ2µ3

[3]

B

∗

µ4µ5µ6
+ P2[µ1µ2

[4]

C

∗

(3,0)µ3...µ6

+ P2[µ1

[5]

C

∗

(3,1)µ2...µ6
+ P2

[6]

C

∗

(3,2)[µ1...µ6

)]
C(3)µ7µ8] + 6P2[µ1...µ4

[1]
η (2,0)µ5

C(2)µ6µ7µ8]

− 10P2[µ1...µ4C(1)µ5...µ8]

[0]
η (2,1)

}
− q1

2

[5]

C

∗

(2,2)[µ1...µ5
G ′ [µ1

(2)µ6µ7]|| Fµ2...µ7]

+
7!

20
q1G ′∗µ1µ2||

(2) αG
′ α
(2)µ1µ2||

[0]
η (1,0) +

q1
10

[
δ[βa F

µ1...µ6]|
[β

[5]

C

∗

(2,2)µ1...µ5

+ 7!
(
t∗µ2...µ6|

α

[4]

C

∗

(2,1)[µ2...µ5
+ G ′∗µ3...µ6||

(0) α

[3]

C

∗

(2,0)[µ3...µ5
− G ′∗µ4...µ6||

(1) α

[2]

B

∗

[µ4µ5

− 1

2
G ′∗µ5µ6||
(2) α

[1]

A[µ5

)]
G ′ α
(3)µ6]|| − 9q2ε

µ1...µ8

[6]

C

∗

(3,2)[µ1...µ6
C(3)µ7µ8] + âII.1+2

4,D=8 . (123)

We remark that at this point aII.1+2
D=8 is parameterized again by the functions P1 and P2,

but only by two arbitrary, real constants [q1 and q2] instead of the initial three ones.
Next, we approach equation (115) for i = 4. In this respect we act with δ on (123)

and on the one hand we observe that we can safely take

âII.1+2
4,D=8 = 0 (124)

in (123), which completes the form aII.1+2
4,D=8 . On the other hand, we identify the partial

solution to (115) for i = 4

aII.1+2
3,D=8 = −1

2
P1[µ1µ2µ3G

′ [µ1

(0)µ4...µ7]|| Fµ2...µ7]
[0]
η (1,0) −

1

2

[
P1[µ1µ2µ3

[1]

Aµ4 + 2
(
P1[µ1µ2

[2]

B

∗

µ3µ4

+ P1[µ1

[3]

C

∗

(2,0)µ2µ3µ4
+ P1

[4]

C

∗

(2,1)[µ1...µ4

)]
G ′ [µ1

(1)µ5µ6µ7]|| Fµ2...µ7] − 1

10

[
δ[βa F

µ1µ2µ3ν1ν2ν3]|
[βP1µ1µ2µ3

+ 7!
(
t∗µ1µ2ν1ν2ν3|

αP1[µ1µ2 + G ′∗µ1ν1ν2ν3||
(0) αP1[µ1

)]
G ′ α
(1)ν1ν2ν3]||

[0]
η (1,0)

+
7!

10
G ′∗ν1ν2ν3||
(1) αP1G ′ α

(1)ν1ν2ν3]||
[0]
η (1,0) +

1

10

{
δ[βa F

µ1...µ4ν1ν2]|
[β

[
P1µ1µ2µ3

[1]

Aµ4 + 2
(
P1µ1µ2

[2]

B

∗

µ3µ4

+ P1µ1

[3]

C

∗

(2,0)µ2µ3µ4
+ P1

[4]

C

∗

(2,1)µ1...µ4

)]
+ 7!

{
t∗µ1µ2µ3ν1ν2|

α

[
P1[µ1µ2

[1]

Aµ3 + 2
(
P1[µ1

[2]

B

∗

µ2µ3

+ P1

[3]

C

∗

(2,0)[µ1µ2µ3

)]
+ G ′∗µ1µ2ν1ν2||

(0) α

(
P1[µ1

[1]

Aµ2 + 2P1

[2]

B

∗

[µ1µ2

)
− G ′∗µ1ν1ν2||

(1) αP1

[1]

A[µ1

}}
G ′ α
(2)ν1ν2]|| + εµ1...µ8

{
6
[
P2[µ1µ2µ3

[2]

Aµ4µ5 + 3
(
P2[µ1µ2

[3]

B

∗

µ3µ4µ5

+ P2[µ1

[4]

C

∗

(3,0)µ2...µ5
+ P2

[5]

C

∗

(3,1)[µ1...µ5

)]
C(2)µ6µ7µ8] + 10P2[µ1µ2µ3

[1]
η (2,0)µ4

C(1)µ5...µ8]

+ 15P2[µ1µ2µ3

[0]
η (2,1)C(0)µ4...µ8]

}
− q1

2

[4]

C

∗

(2,1)[µ1...µ4
G ′ [µ1

(1)µ5µ6µ7]|| Fµ2...µ7]

+
7!

20
q1G ′∗µ1µ2µ3||

(1) αG
′ α
(1)µ1µ2µ3||

[0]
η (1,0) +

q1
10

[
δ[βa F

µ1...µ4ν1ν2]|
[β

[4]

C

∗

(2,1)µ1...µ4

+ 7!
(
t∗µ1µ2µ3ν1ν2|

α

[3]

C

∗

(2,0)[µ1µ2µ3
+ G ′∗µ1µ2ν1ν2||

(0) α

[2]

B

∗

[µ1µ2
− 1

2
G ′∗µ1ν1ν2||
(1) α

[1]

A[µ1

)]
G ′ α
(2)ν1ν2]||
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+ 18q2ε
µ1...µ8

[5]

C

∗

(3,1)[µ1...µ5
C(2)µ6µ7µ8] + âII.1+2

3,D=8 . (125)

In the next step we employ (125) in equation (115) for i = 3 and, after some tedious
computations, we find three types of results. Firstly, it follows that we can take

âII.1+2
3,D=8 = 0 (126)

in (125) without affecting the generality of our approach. With this finding in mind,
secondly we show that the existence of aII.1+2

2,D=8 as solution to (115) for i = 3 implies the
following condition

− 105P1µ1µ2Fµ1λ1...λ4Fµ2

λ1...λ4

[0]
η (1,0) − 15εµ1...µ8P2[µ1µ2Fµ3...µ8]

[0]
η (2,1)

= ∂µm
′′µ(P1, P2)− γaII.1+2

2,D=8 (P1)− γaII.1+2
2,D=8 (P2). (127)

Since the two terms from the left-hand side of (127) are independent, they must be
separately written as γ-exact modulo d objects. Each of them is a nontrivial element of
H(γ) in pure ghost number 3 that does not reduce to a divergence, so the existence of
aII.1+2
2,D=8 requires the vanishing of both terms, which takes place if and only if

Pkµ1µ2 ≡
dPk

dφ

[2]

C

∗

(1,0)µ1µ2
+

d2Pk

dφ2

[1]

B

∗

µ1

[1]

B

∗

µ2
= 0, k = 1, 2. (128)

From (128) we obtain that (127) is satisfied if and only if the functions P1(φ) and P2(φ)
reduce to some arbitrary real constants

P1(φ) = p1, P2(φ) = p2, p1, p2 ∈ R. (129)

Inserting (129) in (111), we notice that the component of highest antighost number (7)
from aII.1+2

D=8 [see expansion (110)] vanishes

aII.1+2
7,D=8 = 0. (130)

Consequently, aII.1+2
D=8 exhibit non-vanishing terms of maximum antighost number 6 and

is parameterized now by four arbitrary, real constants (q1, q2, p1, and p2). Moreover,
replacing (129) as well as (121) in the concrete expressions of the components of aII.1+2

D=8

determined so far [formulas (116)–(119) and (123)–(126)], we find that all the terms
depending on the constants p1 and respectively p2 exhibit exactly the same structure like
those involving q1 and respectively q2. In order to avoid term duplication and introduction
of unnecessary constants we make the notations

q1 + 2p1 ≡ q1, q2 + p2 ≡ q2 (131)

and parameterize aII.1+2
D=8 in terms of two distinct real constants only. Introducing (126),

(129), and (131) in (125), the full expression of aII.1+2
3,D=8 becomes

aII.1+2
3,D=8 = −q1

2

[4]

C

∗

(2,1)[µ1...µ4
G ′ [µ1

(1)µ5µ6µ7]|| Fµ2...µ7] +
7!

20
q1G ′∗µ1µ2µ3||

(1) αG
′ α
(1)µ1µ2µ3||

[0]
η (1,0)

+
q1
10

[
δ[βa F

µ1...µ4ν1ν2]|
[β

[4]

C

∗

(2,1)µ1...µ4
+ 7!

(
t∗µ1µ2µ3ν1ν2|

α

[3]

C

∗

(2,0)[µ1µ2µ3
+ G ′∗µ1µ2ν1ν2||

(0) α

[2]

B

∗

[µ1µ2

− 1

2
G ′∗µ1ν1ν2||
(1) α

[1]

A[µ1

)]
G ′ α
(2)ν1ν2]|| + 18q2ε

µ1...µ8

[5]

C

∗

(3,1)[µ1...µ5
C(2)µ6µ7µ8]. (132)
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Thirdly, acting with δ on (132) we deduce the partial solution to (115) for i = 3

aII.1+2
2,D=8 = −q1

2

[3]

C

∗

(2,0)[µ1µ2µ3
G ′ [µ1

(0)µ4...µ7]|| Fµ2...µ7] +
7!

20
q1G ′∗µ1...µ4||

(0) αG
′ α
(0)µ1...µ4||

[0]
η (1,0)

− q1
10

[
δ[βa F

µ1µ2µ3ν1ν2ν3]|
[β

[3]

C

∗

(2,1)µ1µ2µ3
+ 7!

(
t∗µ1µ2ν1ν2ν3|

α

[2]

B

∗

[µ1µ2

+
1

2
G ′∗µ1ν1ν2ν3||
(0) α

[1]

A[µ1

)]
G ′ α
(1)ν1ν2ν3]|| + 30q2ε

µ1...µ8

[4]

C

∗

(3,0)[µ1...µ4
C(1)µ5...µ8] + âII.1+2

2,D=8 . (133)

Now, we analyze equation (115) for i = 2. To this aim, we evaluate δaII.1+2
2,D=8 . From

the resulting expression on the one hand we conclude that we can set

âII.1+2
2,D=8 = 0 (134)

in (133) and on the other hand we obtain that the existence of aII.1+2
1,D=8 as solution to

equation (115) for i = 2 induces the condition

−105q1
[2]

B

∗

µ1µ2
Fµ1λ1...λ5Fµ2

λ1...λ5

[0]
η (1,0) = ∂µm

′′µ
1 (q1)− γaII.1+2

1,D=8 (q1). (135)

Due to the fact that the object from the left-hand side of the above condition is a nontrivial
element of H(γ) in pure ghost number 2 which cannot be written as a divergence, it results
that (135) is fulfilled if and only if the constant q1 is vanishing

q1 = 0. (136)

Substituting (136) in all the components of aII.1+2
D=8 computed so far, we find that all the

terms depending on q1 vanish, so expansion (110) ends at antighost number 5 [we already
established at a previous step that the non-vanishing component of maximum antighost
number was 6 instead of 7] and, more important, that aII.1+2

D=8 is being parameterized by
a single arbitrary, real constant, q2. Replacing (134) in (133), implementing (136) in
the resulting relation, and further computing δaII.1+2

2,D=8 , we partially identify the piece of

antighost number 1 from aII.1+2
D=8 as solution to equation (115) for i = 2

aII.1+2
1,D=8 = −45q2ε

µ1...µ8

[3]

B

∗

[µ1µ2µ3
C(0)µ4...µ8] + âII.1+2

1,D=8 . (137)

Finally, we apply δ on (137) and investigate the consistency of aII.1+2
D=8 in antighost

number 0 [the existence of solutions aII.1+2
0,D=8 to equation (115) for i = 1]. Firstly we infer

that we can take
âII.1+2
1,D=8 = 0 (138)

in (137) and secondly we find that the existence of aII.1+2
0,D=8 imposes the condition

15q2ε
µ1...µ8

[2]

A[µ1µ2Fµ3...µ8] = ∂µm
′′µ
0 − γaII.1+2

0,D=8 . (139)

We analyze (139) taking into account the fact that the 2-form gauge field
[2]

A is not γ-exact
[there are no BRST generators of strictly negative pure ghost number], which further
restricts the quantity Fµ1...µ6 ≡ ∂[µ1C(0)µ2...µ6] to be γ-exact. This is indeed the case since

Fµ1...µ6 = γ
[
− 1

�
(1
4
∂αFµ1...µ6|α

)]
, (140)
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where 1/� denotes the inverse of the d’Alembert operator �. Due to the fact that the
right-hand side of the last formula is a non-local object, it follows that, even if there exist
solutions aII.1+2

0,D=8 to (139), they would be non-local, which breaks the locality hypothesis
imposed on the deformations of the solution to the master equation. Therefore, we remove
these contributions by setting

q2 = 0. (141)

The last result plays a key role since it eliminates all the remaining pieces from (110)
[indeed, we established earlier that aII.1+2

D=8 is parameterized only by q2, so the vanishing
of this constant sets aII.1+2

D=8 to zero].
All the results presented until now allow us to conclude that the first two subclasses of

“potentially independently consistent” ‘homogeneous’ solutions depending on the ghost
C(4) from the (5, 1) sector can be safely eliminated from the first-order deformation re-
sponsible for the cross-couplings in D = 8 between the BF fields and the (5, 1) tensor field
due to inconsistency reasons.

At this stage we only need to show that the third subclass of ‘homogeneous’ solutions
from class II also provokes inconsistencies at the level of the first-order deformation. In
this respect we prove that there is no density aII.3D=8 in agreement with all the working
hypotheses and displaying the properties

aII.3D=8 =
6∑

i=0

aII.3i,D=8, ε(aII.3i,D=8) = 0, agh(aII.3i,D=8) = i = pgh(aII.3i,D=8), (142)

aII.36,D=8 =qεµ1...µ8

[7]

C

∗

(2,4)[µ1...µ7
C(4)µ8]

[0]
η (1,0), (143)

that fulfils the equation governing the first-order deformation of the solution to the clas-
sical master equation, saII.3D=8 = ∂µm

′µ, equivalent to the tower of equations

γaII.36,D=8 = 0, (144)

δaII.3i,D=8 + γaII.3i−1,D=8 = ∂µm
′µ
i−1, i = 1, 6. (145)

Clearly, equation (144) is satisfied by construction [see (88)]. Acting with δ on (143) we
partially infer the solution to equation (145) for i = 6 under the form

aII.35,D=8 = qεµ1...µ8

[6]

C

∗

(2,3)[µ1...µ6

(
− 3C(3)µ7µ8]

[0]
η (1,0) −

[1]

Aµ7C(4)µ8]

)
+ âII.35,D=8, (146)

where âII.35,D=8 collects the γ-invariant contributions to aII.3D=8 in antighost number 5 that
ensure the consistency of aII.35,D=8 in antighost number 4 [the existence of solutions aII.34,D=8

to equation (145) for i = 5]. Computing the action of δ on (146), on the one hand we
deduce the expression of âII.35,D=8

âII.35,D=8 = 2qεµ1...µ8

(
−

[5]

C

∗

(2,2)[µ1...µ5

[2]

B

∗

µ6µ7
−

[4]

C

∗

(2,1)[µ1...µ4

[3]

C

∗

(2,0)µ5µ6µ7

)
C(4)µ8] (147)

and on the other hand we find that the existence of aII.34,D=8 as a solution to equation (145)
for i = 5 imposes the condition

2qεµ1...µ8

(
∂[µ1

[3]

C

∗

(2,0)µ2µ3µ4

)[3]
C

∗

(2,0)µ5µ6µ7
C(4)µ8] = ∂µm

′′µ
4 − γa′II.34,D=8. (148)

54



The antifield
[3]

C

∗

(2,0)µ1µ2µ3
is bosonic and meanwhile bears an odd number of Lorentz indices,

so we cannot transfer the derivative acting on it to C(4)µ8 [up to a total divergence] in order
to provide a γ-exact term [∂[µ1C(4)µ2] = γ(3C(3)µ1µ2)]. In consequence, (148) takes place if
and only if its left-hand side vanishes

q = 0, (149)

which further yields aII.3D=8 = 0 and concludes both the proof and the paper since it confirms
that neither the third subclass of ‘homogeneous’ solutions from class II can contribute to
the first-order deformation for the model under study.
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