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Abstract

In this former part of a paper dedicated to the computation of local BRST co-
homology for a free massless tensor field with the mixed symmetry (k, 1) (k ≥ 4) we
focus on the main cohomological properties of the exterior longitudinal differential.

PACS: 11.10.Ef

1 Introduction

Real tensor fields transforming according to exotic representations of GL(D,R) corre-
sponding to two-column Young diagrams with (k+1) cells and k lines (“hook” diagrams)
or, briefly, tensor fields with the mixed symmetry (k, 1) have been studied starting more
than two decades ago in [1]–[5] and more recently (inclusively within the BRST setting)
in [6]–[9]. Such fields are present for instance in the bosonic sector of Chern–Simons
gravities in odd dimensions [10]–[12] due to the fact that the free limit of their massless
version describes one of the dual formulations of linearized gravity in k + 3 spacetime
dimensions. The limit k = 1 provides the linearized Einstein–Hilbert action without
cosmological terms, known as the Pauli–Fierz model [13, 14].

The aim of this paper is to analyze the main properties of the local BRST cohomology
for the free theory describing a massless tensor field with the mixed symmetry (k, 1) for
k ≥ 4. The case k = 2 is covered in [15] and k = 3 respectively in [16]. To this end
we rely on the general BRST cohomological results for gauge field theories with a well-
defined Cauchy order [17]–[20] completed by specific techniques and results from [15, 16]
and [21]–[26]. In this context the findings on some BRST cohomological aspects related to
a massless tensor field corresponding to a two-column non-rectangular Young tableau [27]
are also interesting. More precisely, in this former part we will evaluate the cohomology
of the exterior longitudinal differential and its local version. The latter part [28] will
be dedicated to the computation of the local cohomology of the Koszul–Tate differential
and of its invariant version and finally to the study of the core properties of the local
cohomology of the BRST differential in maximum form degree. We use the conventions,
notations, and results from [29] on the Lagrangian formulation and BRST symmetry of a
single massless tensor field (k, 1).
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2 Lagrangian formulation. BRST symmetry

Let tµ1...µk|α be a real tensor field with the mixed symmetry (k, 1) on a D-dimensional
Minkowski space M, meaning it is antisymmetric with respect to its first k indices and
satisfies the identity t[µ1...µk|α] ≡ 0, where [µ . . . ν] stands for full antisymmetry. We assume
that M is endowed with the metric σµν = σµν = (− + . . .+). The trace of this field,
tµ1...µk−1

= tµ1...µk|ασ
µkα, defines an antisymmetric tensor of order (k − 1).

The Lagrangian formulation of a free, massless tensor field (k, 1) (k ≥ 4) relies on the
general principle of gauge invariance in terms of a generating set of gauge symmetries

δ(1)
θ ,

(1)
ϵ
tµ1...µk|α = ∂[µ1

(1)

θ µ2...µk]|α + ∂[µ1

(1)
ϵ µ2...µkα] + (−)k+1(k + 1)∂α

(1)
ϵ µ1...µk

, (1)

which renders in the limits k = 2 and k = 3 the well-known results [15, 16]. The

gauge parameters
(1)

θ display the mixed symmetry (k − 1, 1), so they are antisymmetric

in their first (k − 1) indices and fulfill the identity
(1)

θ [µ1...µk−1|α] ≡ 0, while
(1)
ϵ are fully

antisymmetric. It has been shown in [29] that the corresponding Lagrangian reads as

St
0[tµ1...µk|α] = − 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µk
F µ1...µk

]
dDx, (2)

where D ≥ k+2 in order to ensure a non-negative number of physical degrees of freedom.
The tensor Fµ1...µk+1|α is linear in the first-order derivatives of field components

Fµ1...µk+1|α = ∂[µ1tµ2...µk+1]|α, (3)

exhibits the mixed symmetry (k + 1, 1), and possesses the gauge transformation

δ(1)
θ ,

(1)
ϵ
Fµ1...µk+1|α = (−)k+1k∂α∂[µ1

(1)
ϵ µ2...µk+1]. (4)

Its trace, Fµ1...µk
= Fµ1...µk+1|ασ

µk+1α, is completely antisymmetric

Fµ1...µk
= ∂[µ1tµ2...µk]

+ (−)k∂αtµ1...µk|α, (5)

and presents the gauge variation δ(1)
θ ,

(1)
ϵ
Fµ1...µk

= −k∂α∂[α
(1)
ϵ µ1...µk]. The generating set of

gauge transformations of action (2), given by (1), has been shown in [29] to be Abelian
and off-shell reducible of order (k − 1).

The field equations
δSt

0

δtν1...νk|α
≡ 1

k!
T ν1...νk|α ≈ 0, (6)

are expressed in terms of the tensor T ν1...νk|α, linear in the field components tµ1...µk|β,
first-order in its derivatives, and with the mixed symmetry (k, 1)

T ν1...νk|α = �tν1...νk|α + ∂µ
(
(−)k∂[ν1tν2...νk]µ|α − ∂αtν1...νk|µ

)
+ (−)k+1∂α∂[ν1tν2...νk]

+σα[ν1
[
(−)k�tν2...νk] + ∂µ

(
(−)k+1∂βt

ν2...νk]µ|β − ∂ν2tν3...νk]µ
)]
. (7)

It is useful to write T ν1...νk|α in terms of the tensor Fµ1...µk+1|β introduced in (3)

T ν1...νk|α = ∂µF
µν1...νk|α − σα[ν1∂µF

ν2...νkµ]. (8)
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The most general gauge-invariant quantities constructed out of tµ1...µk|α and its space-
time derivatives are given by the components of the “curvature tensor”

Kµ1...µk+1|αβ = ∂αFµ1...µk+1|β − Fµ1...µk+1|α ≡ ∂[µ1tµ2...µk+1]|[β,α], (9)

together with their derivatives. The tensor Kµ1...µk+1|αβ is linear in the original field,
second-order in its derivatives, and displays the mixed symmetry (k + 1, 2), so it is sepa-
rately antisymmetric in its first (k + 1) indices and in the last two ones and satisfies the
first Bianchi identity K[µ1...µk+1|α]β ≡ 0. Moreover, it satisfies the second Bianchi identity

∂[µ1Kµ2...µk+2]|αβ ≡ 0, Kµ1...µk+1|[αβ,γ] ≡ 0. (10)

The invariance of action (2) with respect to the gauge transformations (1) is equivalent
to the Noether identities ∂ν1T

ν1...νk|α ≡ 0, ∂αT
ν1...νk|α ≡ 0, while the reducibility of this

generating set of gauge symmetries shows that not all Noether identities are independent.
The free theory of a massless (k, 1) tensor field satisfies the general regularity conditions
[30] and generates a linear gauge theory with the Cauchy order equal to (k + 1).

Next, we briefly review the antibracket-antifield BRST symmetry of this free theory,
exposed in [29]. The first step of this procedure requires the identification of the algebra on
which the BRST differential s acts. The BRST generators are of two kinds: fields/ghosts
and antifields. The ghost spectrum is composed of the tensor fields{{(m)

C µ1...µk−m|α,
(m)
η µ1...µk−m+1

}
m=1,k−1

,
(k)
η µ

}
, (11)

where
(1)

C and
(1)
η are respectively associated with the gauge parameters

(1)

θ and
(1)
ϵ from

(1), while the other ghost fields correspond to the reducibility parameters detailed in

[29]. We ask that
(m)

C with m = 1, k − 1 possess the mixed symmetry (k − m, 1), and
therefore are antisymmetric in their first (k−m) (where applicable) and fulfill the identities
(m)

C [µ1...µk−m|α] ≡ 0, m = 1, k − 1, while
(m)
η with m = 1, k − 1 remain antisymmetric. For

further purposes we make the compact notation

ΦA ≡
{
tµ1...µk|α,

{(m)

C µ1...µk−m|α,
(m)
η µ1...µk−m+1

}
m=1,k−1

,
(k)
η µ

}
. (12)

The antifield spectrum corresponds to the original fields and to the newly added ghosts,
being structured into

Φ∗
A ≡

{
t∗µ1...µk|α,

{(m)

C

∗µ1...µk−m|α

,
(m)
η

∗µ1...µk−m+1}
m=1,k−1

,
(k)
η

∗µ}
. (13)

The mixed symmetry/antisymmetry properties of the antifields are the same with those

of the corresponding fields/ghosts, so in particular t∗[µ1...µk|α] ≡ 0,
(m)

C

∗[µ1...µk−m|α]

≡ 0,
m = 1, k − 1.

The BRST differential of this free model splits into

s = δ + γ, s2 = 0 ⇔ (δ2 = 0, γ2 = 0, δγ + γδ = 0), (14)

with δ the Koszul–Tate differential, N-graded in terms of the antighost number agh
(agh(δ) = −1) and γ the exterior longitudinal derivative, which is a true differential
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here, anticommuting with δ and N-graded according to the pure ghost number pgh
(pgh(γ) = 1). These two degrees are independent (agh(γ) = 0, pgh(δ) = 0). The
overall degree of the BRST differential is the ghost number (gh), defined as the difference
between pgh and agh, such that gh(s) = gh(δ) = gh(γ) = 1. Consequently, the BRST
differential is Z-graded in terms of gh. The standard rules of the antibracket-antifield for-
malism endow the generators of the BRST complex with the gradings collected in Table
1, where ε denotes the Grassmann parity.

BRST generator pgh agh gh ε
tµ1...µk|α 0 0 0 0{(m)

C µ1...µk−m|α

}
m=1,k−1

m 0 m m mod 2{
(m)
η µ1...µk−m+1

}
m=1,k

m 0 m m mod 2

t∗µ1...µk|α 0 1 −1 1{(m)

C

∗µ1...µk−m|α}
m=1,k−1

0 m+ 1 −(m+ 1) (m+ 1) mod 2{
(m)
η

∗µ1...µk−m+1}
m=1,k

0 m+ 1 −(m+ 1) (m+ 1) mod 2

Table 1: Gradings of BRST generators.

The actions of the operators δ and γ on the BRST generators (assuming they act like
right derivations) that comply with all the BRST requirements are expressed by

γtµ1...µk|α = ∂[µ1

(1)

C µ2...µk]|α + ∂[µ1

(1)
η µ2...µkα]

+ (−)k+1(k + 1)∂α
(1)
η µ1...µk

, (15)

γ
(m)

C µ1...µk−m|α = ∂[µ1

(m+1)

C µ2...µk−m]|α + ∂[µ1

(m+1)
η µ2...µk−mα]

+(−)k−m+1(k −m+ 1)∂α
(m+1)
η µ1...µk−m

, m = 1, k − 2, (16)

γ
(m)
η µ1...µk−m+1

= k−m
k−m+2

∂[µ1

(m+1)
η µ2...µk−m+1]

, m = 1, k − 1, (17)

γ
(k−1)

C µ1|α = ∂(µ1

(k)
η α), γ

(k)
η µ = 0, γΦ∗

A = 0, (18)

δΦA = 0, δt∗µ1...µk|α = − 1
k!
T µ1...µk|α, (19)

δ
(1)

C

∗µ1...µk−1|α

= −∂µ
(
kt∗µµ1...µk−1|α + (−)kt∗µ1...µk−1α|µ

)
, (20)

δ
(m)

C

∗µ1...µk−m|α

= (−)m∂µ

(
(k −m+ 1)

(m−1)

C

∗µµ1...µk−m|α

+(−)k−m+1
(m−1)

C

∗µ1...µk−mα|µ)
, m = 2, k − 2, (21)

δ
(k−1)

C

∗µ1|α

= (−)k−1∂µ
(k−2)

C

∗µ(µ1|α)

, δ
(1)
η

∗µ1...µk

= (−)k(k + 1)∂αt
∗µ1...µk|α, (22)

δ
(m)
η

∗µ1...µk−m+1

= (−)k(k −m+ 2)∂α
(m−1)

C

∗µ1...µk−m+1|α

+ (−)m(k−m+2)(k−m+1)
k−m+3

∂µ
(m−1)
η

∗µµ1...µk−m+1

, m = 2, k, (23)
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with T µ1...µk|α like in (7). These definitions may be written more compactly if we perform
some linear transformations on the ghosts/antifields without affecting their homogeneity
with respect to the various gradings

(m)

C ′
µ1...µk−m||α ≡

(m)

C µ1...µk−m|α + (k −m+ 2)
(m)
η µ1...µk−mα, (24)

(m)

C ′
∗µ1...µk−m||α

≡
(m)

C

∗µ1...µk−m|α

+ 1
k−m+2

(m)
η

∗µ1...µk−mα

, (25)

with m = 1, k − 1. The double bar “||” means full antisymmetry with respect to the
indices placed before (if applicable) without further identities. The redefined variables are
useful at various computations since for every m = 1, k − 1 the independent components

of the ghost tensor
(m)

C ′ are given by the union between the independent components of

all ghosts of pure ghost number m, namely
(m)

C and
(m)
η . Similarly,

(m)

C ′
∗

gather all the
independent components of the antifields with the antighost number equal to (m + 1).
Now, some of formulas (15)–(23) take a simpler form

γtµ1...µk|α = ∂[µ1

(1)

C ′
µ2...µk]||α − 1

k+1
∂[µ1

(1)

C ′
µ2...µk||α], (26)

γ
(m)

C ′
µ1...µk−m||α = ∂[µ1

(m+1)

C ′
µ2...µk−m]||α, m = 1, k − 2, (27)

γ
(k−1)

C ′
µ1||α = 2∂µ1

(k)
η α, δ

(1)

C ′
∗µ1...µk−1||α

= −k∂µt
∗µµ1...µk−1|α, δ

(k)
η

∗α
= (−)k2∂µ1

(k−1)

C ′
∗µ1||α

, (28)

δ
(m)

C ′
∗µ1...µk−m||α

= (−)m(k −m+ 1)∂µ
(m−1)

C ′
∗µµ1...µk−m||α

, m = 2, k − 1. (29)

3 Local BRST cohomology. Generalities

All cohomological computations will be carried out on the algebra of local differential
forms with coefficients from the BRST algebra without explicit dependence on the space-
time coordinates xµ, to be denoted by Λ. In other words, the form coefficients are elements
of the BRST algebra A of local “functions” that do not explicitly depend on the global
coordinates of the Minkowski spacetime M, and therefore polynomials in ghosts, anti-
fields, and their spacetime derivatives up to a finite order, ‘smooth’ in the original tensor
field with the mixed symmetry (k, 1) and also polynomials in its derivatives up to a finite
order. Consequently, the algebra Λ will inherit the four gradings of the BRST algebra
[the Z2-grading in terms of the Grassmann parity ε, the Z-grading according to gh as well
as the two N-gradings involving agh and pgh] introduced via Table 1, accompanied by

ε(dxµ) = 1, ε(dxµ1 ∧ . . . ∧ dxµp) = p mod 2, (30)

agh(dxµ) = 0, pgh(dxµ) = 0, gh(dxµ) = 0, (31)

where ∧ is the symbol for wedge product. In addition, Λ is endowed with a supplementary
N-grading in terms of the form degree deg

Λ =
⊕
p∈N

[p]

Λ, deg(
[p]
ω) = p ⇔

[p]
ω ∈

[p]

Λ, (32)

[p]
ω = 1

p!
aµ1...µpdx

µ1 ∧ · · · ∧ dxµp , aµ1...µp ∈ A. (33)
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Since the dimension of M is by hypothesis finite and denoted by D, the decomposition
(32) stops at D; all forms that are homogeneous with respect to deg like in (33) and with
the form degree p > D vanish. The operators δ, γ, and s are extended to the algebra Λ
via relations (15)–(23) together with

δ(dxµ) = 0, γ(dxµ) = 0, s(dxµ) = 0 (34)

and by assuming their actions as right derivatives on Λ with respect to the wedge product.
In this context we recall that for any element of the form (33) with aµ1...µp ∈ A of well-
defined Grassmann parity, ε(a), we have that

ε(
[p]
ω) = [ε(a) + p] mod 2. (35)

In this way all the properties of the operators δ, γ, and s = δ+γ are transferred from the
BRST algebra A to the algebra of local forms Λ. In particular, these operators remain
differentials and δ still anticommutes with γ. Also, δ continues to be acyclic on Λ in
strictly positive values of the antighost number agh, H(δ) ≡ H0(δ), and it makes sense
to compute the cohomology algebras H(γ|H0(δ)) and H(s). Moreover, the isomorphisms
Hj(s) ≃ H0

−j(δ) for j < 0 and H l(s) ≃ H l(γ|H0(δ)) for l ≥ 0 still hold. Regarding the
last relations, j from Hj(s) stands for the ghost number, (−j) from H0

−j(δ) represents the
antighost number, and the superscript 0 refers to the value equal to zero of pgh; l from
H l(s) means the ghost number, while l from H l(γ|H0(δ)) signifies the pure ghost number.
From (34) we notice that the form degree of δ, γ, and s is equal to zero

deg(δ) = deg(γ) = deg(s) = 0. (36)

We define a linear operator d : Λ → Λ as an odd, right derivation

da = ∂µa dx
µ, a ∈ A, d(dxµ) = 0, (37)

d(ω1 ∧ ω2) = ω1 ∧ dω2 + (−)ε(ω2)(dω1) ∧ ω2, ω1,2 ∈ Λ, (38)

where it was assumed that ω1,2 possess well-defined Grassmann parities. The operator
d becomes a differential on Λ with respect to deg, traditionally known as the exterior
spacetime differential: ε(d) = 1, deg(d) = +1, d2 = 0. From (31) and (37) it follows that

agh(d) = 0, pgh(d) = 0, gh(d) = 0. (39)

The operators δ, γ, and s are also differentials that anticommute with d on Λ

O2 = 0 = d2, Od+ dO = 0, O = δ, γ, s. (40)

Their gradings to not interfere

grad(d) = 0, deg(O) = 0, grad = agh, pgh, gh, (41)

so it makes sense to compute the local cohomologies H(O|d) in Λ. These are standardly
defined like the set of equivalence classes of local forms O-closed modulo d, Oω + dj = 0,
modulo the local forms that are O-exact modulo d, ω′ = Ow + dm. We highlight that
there is a strict correspondence between O and grad, namely: O = δ ↔ grad = agh,
O = γ ↔ grad = pgh, O = s ↔ grad = gh. These means that whenever O = s the local
BRST cohomology H(s|d) is a vector space simultaneously Z2-graded (according to the
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Grassmann parity) and Z-graded in terms of gh, H(s|d) =
⊕

g∈ZH
g(s|d), where for every

g ∈ Z the space Hg(s|d) is in turn N-graded according to the form degree, Hg(s|d) =⊕D
p=0H

g,p(s|d). The subspaceHg,p(s|d) is called local BRST cohomology in ghost number
g and form degree p. If O = δ, then the local cohomology of the Koszul–Tate differential
H(δ|d) is a vector space Z2-graded and meanwhile N-graded in terms of agh, H(δ|d) =⊕

j∈N Hj(δ|d), where for every j ∈ N the space Hj(δ|d) is again N-graded according to

deg, Hj(δ|d) =
⊕D

p=0H
p
j (δ|d). The subspace H

p
j (δ|d) is known as the local cohomology of

the Koszul–Tate differential in antighost number j and form degree p. Finally, if O = γ,
then the local cohomology of the exterior longitudinal differential H(γ|d) is a vector space
Z2-graded, but also N-graded in terms of pgh, H(γ|d) =

⊕
l∈N H

l(γ|d), where for every

l ∈ N the space H l(γ|d) is N-graded according to deg, H l(γ|d) =
⊕D

p=0H
l,p(γ|d). The

subspace H l,p(γ|d) means the local cohomology of the exterior longitudinal differential in
pure ghost number l and form degree p.

The study of the local BRST cohomology is an essential step in view of constructing
consistent interactions involving a massless tensor field with the mixed symmetry (k, 1)
by means of the deformation of the solution to the master equation [31]–[34]. This defor-
mation method requires the computation of the local BRST cohomology in ghost number
0 and in maximum form degree. From this perspective in what follows we approach the
main cohomological ingredients related to the spaces H(γ) and H(γ|d).

4 H(γ) and H(γ|d)
In the sequel we evaluate the cohomology algebra H(γ) in the algebra of local forms Λ,
defined like the set of equivalence classes of γ-closed local forms modulo γ-exact ones.
Due to the second relation in (34) it is enough to compute H(γ) in the BRST algebra of
local “functions” A, defined as the set of equivalence classes of γ-closed elements from A
modulo γ-exact ones. The computation of the cohomology H(γ) in A or in Λ makes sense
since the operator γ is a true differential on both algebras in this case, with pgh(γ) = +1,
γ2 = 0. We recall that H(γ) defines a supercommutative algebra (Z2-graded), N-graded
in terms of pgh, H(γ) =

⊕
l∈N H

l(γ). Moreover, if we work on Λ, then for every l ∈ N
the space H l(γ) is also N-graded with respect to the form degree

H l(γ) =
D⊕
p=0

H l,p(γ), l ∈ N. (42)

We rely on definitions (15)–(18) and approach the construction gradually, according to
the increasing values of pgh.

From Table 1 we observe that there are no BRST generators with negative pure
ghost numbers, such that in pgh = 0 the cohomology H0(γ) coincides with the kernel
of γ, H0(γ) = (Ker(γ))0 and, due to the additive behavior of pgh with respect to the
multiplication operation on A, it will actually be an algebra. Table 1 helps us to identify
the BRST generators of pure ghost number equal to 0 being given by the antifields Φ∗

A

introduced in (13) and their spacetime derivatives up to a finite order together with the
field tµ1...µk|α and its derivatives up to a finite order. The last definition from (18) implies
that the (polynomial) dependence on [Φ∗

A] produces elements belonging to (Ker(γ))0, and
thus implicitly to H0(γ), where the generic notation f [φ] means that f depends on φ and
its derivatives up to a finite order. Relation (15) compared with (1) shows that the action
of γ on the field with the mixed symmetry (k, 1) follows from its gauge transformation
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by replacing the gauge parameters
{(1)

θ ,
(1)
ϵ
}

respectively with the ghosts
{(1)

C,
(1)
η
}
. Since

the most general gauge-invariant quantities constructed out of the field with the mixed
symmetry (k, 1) and its derivatives are given by the curvature tensor (9) together with its
derivatives, we obtain that the entire dependence on tµ1...µk|α of the elements from H0(γ)
is represented by polynomials (in order to ensure the spacetime locality) in [Kµ1...µk+1|αβ].
In conclusion, H0(γ) computed in the BRST algebra of local “functions” A is precisely
the algebra of invariant polynomials (local “functions” with pgh = 0 that are γ-invariant
and therefore true polynomials in [Φ∗

A] and [Kµ1...µk+1|αβ] since they are not allowed to
depend on the undifferentiated components of the field t)

H0(γ) in A = {algebra of invariant polynomials} ≡ {α([Φ∗
A], [K])}. (43)

Consequently, H0(γ) computed in the algebra of local differential forms Λ will also be
an algebra (where the function multiplication must be replaced with the wedge product
among the forms) allowing for a decomposition of the form (42) with l = 0, where the
elements of each space H0,p(γ) are p-forms whose coefficients are invariant polynomials

H0(γ) =
D⊕
p=0

H0,p(γ), H0,p(γ) ∋
[p]
α = 1

p!
αµ1...µp([Φ

∗
A], [K])dxµ1 ∧ · · · ∧ dxµp . (44)

In the next step, from Table 1 we identify the BRST generators of pure ghost number 1

being expressed by the ghosts
(1)

C and
(1)
η together with their derivatives up to a finite order

and further use definitions (16) and (17) for m = 1. Equivalently, from (24) for m = 1 we
get that the BRST generators of pure ghost number 1 are given by linear combinations

of the ghosts
(1)

C ′ and of their derivatives up to a finite order. From the action of γ on the
latter generators, given by (27) for m = 1, we deduce the most general γ-closed quantities

(so from Ker(γ) at pgh = 1) linear in
(1)

C ′ and their derivatives up to a finite order under
the form{

∂[µ1

(1)

C ′
µ2...µk]||α, ∂ρ1∂[µ1

(1)

C ′
µ2...µk]||α, · · · , ∂ρ1...ρn∂[µ1

(1)

C ′
µ2...µk]||α

}
∈ (Ker(γ))1.

It is more convenient to introduce the notations

∂[µ1

(1)

C ′
µ2...µk]||α ≡

(1)

T µ1...µk||α, (45)

in terms of which the previous relation becomes

{(1)

T µ1...µk||α, ∂ρ1
(1)

T µ1...µk||α, ∂ρ1ρ2
(1)

T µ1...µk||α, · · · , ∂ρ1...ρn
(1)

T µ1...µk||α
}
∈ (Ker(γ))1. (46)

With the help of formula (26) it can be shown that

∂ρ1
(1)

T µ1...µk||α = γ(∂ρ1tµ1...µk|α + (−)k+1∂[µ1tµ2...µkα]|ρ1), (47)

such that all the elements from (46) excepting the first one are γ-exact (or, in other words,
trivial in H(γ))

{
∂ρ1

(1)

T µ1...µk||α, ∂ρ1ρ2
(1)

T µ1...µk||α, · · · , ∂ρ1...ρn
(1)

T µ1...µk||α
}
∈ (Im(γ))1. (48)
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The proof of the result that the undifferentiated ghost
(1)

T is not γ-exact can be done by
direct computation via reductio ad absurdum [16]. The last observation shows that the
only nontrivial quantities from H(γ) linear in the ghosts of pure ghost number 1 and in

their derivatives are represented by the components of the tensor
(1)

T introduced in (45)
(obviously not symmetrized with respect to the last index, placed after the double bar,
and to any other index before the double bar).

On the other hand, definition (17) for k = 1 leads to the fact that the only γ-invariant

quantities, linear in the pure ghost number 1 ghost
(1)
η and its derivatives are{

∂[µ1

(1)
η µ2...µk+1]

, ∂ρ1∂[µ1

(1)
η µ2...µk+1]

, · · · , ∂ρ1...ρn∂[µ1

(1)
η µ2...µk+1]

}
∈ (Ker(γ))1.

Equivalently, by means of the notation

∂[µ1

(1)
η µ2...µk+1]

≡
(1)

F µ1...µk+1
, ε

((1)

F µ1...µk+1

)
= 1, pgh

((1)

F µ1...µk+1

)
= 1 (49)

we have that{(1)

F µ1...µk+1
, ∂ρ1

(1)

F µ1...µk+1
, ∂ρ1ρ2

(1)

F µ1...µk+1
, · · · , ∂ρ1...ρn

(1)

F µ1...µk+1

}
∈ (Ker(γ))1. (50)

Formula (4) translated in terms of the longitudinal exterior differential (replacing the

gauge variation with γ and the gauge parameters
(1)
ϵ with the ghosts

(1)
η ) becomes

∂ρ1
(1)

F µ1...µk+1
= γ

(
(−)k+1

k
Fµ1...µk+1|ρ1

)
(51)

and shows that all the quantities from (50) excepting the first one are γ-exact

{
∂ρ1

(1)

F µ1...µk+1
, ∂ρ1ρ2

(1)

F µ1...µk+1
, · · · , ∂ρ1...ρn

(1)

F µ1...µk+1

}
∈ (Im(γ))1. (52)

Applying a technique similar to that described in the above it can be checked that
(1)

F
defined in (49) is not a trivial (γ-exact) element from H1(γ).

In this manner we inferred two apparently different results, namely, that the most
general nontrivial quantity from H1(γ), linear in the ghosts of pure ghost number equal
to 1 is given by (45) as well as by (49). These two elements are clearly independent since

the former depends on the ghost
(1)

C ′, so it effectively involves both ghosts
(1)

C and
(1)
η , while

the latter depends only on
(1)
η . This statement is not contradictory and will be explained

in what follows. The element (45) does not display the mixed symmetry (k, 1); it is only

antisymmetric with respect to its first k indices. So,
(1)

T does not transform according to an
irreducible representation of the group GL(D,R), but allows for a unique decomposition,
being written as the sum between a completely antisymmetric tensor and another with
the mixed symmetry (k, 1) (each of these ones therefore irreducible)

(1)

T µ1...µk||α =
(1)

T ′
µ1...µkα +

(1)

T ′′
µ1...µk|α, (53)

where
(1)

T ′
µ1...µkα = 1

k+1

(1)

T [µ1...µk||α],
(1)

T ′′
µ1...µk|α =

(1)

T µ1...µk||α − 1
k+1

(1)

T [µ1...µk||α]. (54)
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Thus, even if
(1)

T ′ as well as
(1)

T ′′ from (53) are γ-invariant, only the former is nontrivial,
while

(1)

T ′′
µ1...µk|α = γtµ1...µk|α, (55)

such that
(1)

T ′ belongs to the same (nontrivial) equivalence class from H(γ) like
(1)

T

(1)

T µ1...µk||α =
(1)

T ′
µ1...µkα + γtµ1...µk|α,

(1)

T µ1...µk||α ∼
(1)

T ′
µ1...µkα. (56)

At this moment we remark that the former relation in (54) together with (45) and with

formula (24) for m = 1 allow us to correlate the tensor
(1)

T ′ with the tensor
(1)

F defined in
(49)

(1)

T ′
µ1...µk+1

= k
(1)

F µ1...µk+1
. (57)

Combining the last two relations, we finally managed to show that

(1)

T µ1...µk||α = k
(1)

F µ1...µkα + γtµ1...µk|α,
(1)

T µ1...µk||α ∼ k
(1)

F µ1...µkα, (58)

so the tensor
(1)

T pertains to the same cohomological class from H(γ) like k
(1)

F and we can
choose any of these as nontrivial representative of H1(γ). In what follows we will work

with
(1)

F because on one hand it is irreducible and on the other hand contains no trivial
components. The conclusion of the above discussion is that the most general, nontrivial
quantities from H(γ) that are linear in the ghosts of pure ghost number equal to 1 of the
free theory associated with a massless tensor field with the mixed symmetry (k, 1) are
precisely the components of the tensor (49).

As a side comment we emphasize that
(1)

F is nothing but the nontrivial part of
(1)

T with
respect to H(γ) in the sense that there is no linear combination among the components

of
(1)

F yielding a γ-exact element. Nevertheless, this statement does not apply to
(1)

T since
its part symmetrized with respect to the last two indices is γ-trivial

(1)

T µ1...µk−1(µk||α) = γtµ1...µk−1(µk|α). (59)

On the other hand, if we are simply interested in computing (Ker(γ))1 (without inquiring
its factorization to (Im(γ))1), then (46) are the most general objects linear in the ghosts

pertaining to this space, and not (50). Indeed, (46) depend on both
(1)
η and

(1)

C , while (50)

only on
(1)
η .

Next, we come back to Table 1 and notice that the BRST generators of pure ghost
number m, for each fixed value of m within the range 2, k − 1, are precisely the ghosts
(m)

C ,
(m)
η , and their spacetime derivatives up to a finite order. Equivalently, from (24)

we observe that all the independent components of these ghosts are expressed via the

transformed ghosts
(m)

C ′ (for each m = 2, k − 1) and their derivatives up to a finite order.
Invoking definitions (27) for m = 2, k − 2 and the first relation from (28) (in pure ghost
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number (k−1)) it can be shown that for each value of the pure ghost number m = 2, k − 1

the most general γ-closed quantities, linear in
(m)

C ′ and its derivatives read as

{
∂[µ1

(m)

C ′
µ2...µk−m+1]||α, ∂ρ1∂[µ1

(m)

C ′
µ2...µk−m+1]||α, · · · , ∂ρ1...ρn∂[µ1

(m)

C ′
µ2...µk−m+1]||α

}
∈ (Ker(γ))m,

(60)
and can be equivalently written with the aid of the notations

∂[µ1

(m)

C ′
µ2...µk−m+1]||α ≡

(m)

T µ1...µk−m+1||α, m = 2, k − 1, (61)

in the form{(m)

T µ1...µk−m+1||α, ∂ρ1
(m)

T µ1...µk−m+1||α, · · · , ∂ρ1...ρn
(m)

T µ1...µk−m+1||α
}
∈ (Ker(γ))m, (62)

with m = 2, k − 1. All the objects present in (62) are nevertheless trivial in H(γ) on
account of the relations

(m)

T µ1...µk−m+1||α = γ
(m−1)

C ′
µ1...µk−m+1||α, m = 2, k − 1, (63)

so we can state that{(m)

T µ1...µk−m+1||α, ∂ρ1
(m)

T µ1...µk−m+1||α, · · · , ∂ρ1...ρn
(m)

T µ1...µk−m+1||α
}
∈ (Im(γ))m, (64)

for m = 2, k − 1. In conclusion, the nontrivial representatives of the cohomology H(γ)
(computed in any of the algebras A or Λ) do not depend on any of the ghosts with the
pure ghost number within the range m = 2, k − 1 or on their derivatives.

Finally, using one more time Table 1 we observe that the only ghost with maximum

pure ghost number, equal to k, is
(k)
η . The second definition from (18) furnishes the most

general γ-invariant elements that are linear in this ghost and its derivatives up to a finite
order in the form {(k)

η α, ∂ρ1
(k)
η α, · · · , ∂ρ1...ρn

(k)
η α

}
∈ (Ker(γ))k. (65)

Due to the first relation in (28) all the elements from (65) excepting the first one fall in
(Im(γ))k

∂ρ1
(k)
η α = γ

(
1
2

(k−1)

C ′
ρ1||α

)
⇒

{
∂ρ1

(k)
η α, · · · , ∂ρ1...ρn

(k)
η α

}
∈ (Im(γ))k, (66)

and therefore we conclude that the most general nontrivial elements of the cohomology
H(γ) that are linear in the ghost with the pure ghost number equal to k and in its

derivatives are solely the components of the undifferentiated ghost itself,
(k)
η α.

Putting together all the results deduced so far we are able to organize the dependence
of the nontrivial representatives of the cohomology algebra H(γ) evaluated in the BRST
algebra of local functions A on the BRST generators together with their spacetime deriva-
tives corresponding to a massless tensor field with the mixed symmetry (k, 1) like in Table
2. Consequently, we can claim that the general expression of a nontrivial representative
belonging to the cohomology algebra of the exterior longitudinal differential H(γ) com-
puted in the algebra A exhibiting well-defined values of both pure ghost and antighost
numbers, i.e. the general solution to the equation

γa = 0, a ∈ A, pgh(a) = l ≥ 0, agh(a) = j ≥ 0, (67)
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BRST generator Nontrivial representatives pgh
[tµ1...µk|α] [Kµ1...µk+1|αβ] 0
[Φ∗

A] [Φ∗
A] 0[(1)

η µ1...µk

]
,
[(1)
C µ1...µk−1|α

] (1)

F µ1...µk+1
1[(m)

η µ1...µk−m+1

]
,
[(m)

C µ1...µk−m|α
]

— m, m = 2, k − 1[(k)
η α

] (k)
η α k

Table 2: Nontrivial representatives of the cohomology H(γ) computed in the algebra A.

is given (up to trivial contributions) by

a =
∑
J

αJ

(
[Φ∗

A], [K]
)
eJ
((1)

F ,
(k)
η
)
, agh(αJ) = j ≥ 0, pgh(eJ) = l ≥ 0. (68)

The object αJ denotes an invariant polynomial (of pure ghost number equal to 0) and

the notation eJ
((1)

F ,
(k)
η
)
signifies the elements with the pure ghost number equal to l (and

obviously of antighost number 0) of a basis in the space of polynomials in the tensor
(1)

F
defined by (49) and in the (undifferentiated) vector ghost

(k)
η . With the help of the results

from Table 2, of the concluding remarks stated so far, and of the fact that the action
of the differential γ on dxµ is vanishing, we have gathered all the ingredients necessary
at the evaluation of the cohomology algebra of the exterior longitudinal differential H(γ)
in the algebra of local forms Λ. More precisely, the general expression of a nontrivial
representative from H(γ) computed in Λ displaying well-defined values of the form degree,
pure ghost number, and antighost number

γϖ = 0, ϖ ∈ Λ, deg(ϖ) = p ≤ D, pgh(ϖ) = l ≥ 0, agh(ϖ) = j ≥ 0, (69)

can be written, up to the addition of trivial terms, in the form

ϖ =
∑
J

[p]
αJ

(
[Φ∗

A], [K]
)
eJ
((1)

F ,
(k)
η
)
, (70)

where deg(
[p]
αJ) = p ≤ D, agh(

[p]
αJ) = j ≥ 0, pgh(eJ) = l ≥ 0. In the last formula each

form
[p]
αJ is constructed out of invariant polynomials like in (44), so it provides an element

of the space H0,p(γ). By abuse of terminology from now on we will call the algebra
H0(γ) computed in Λ also the algebra of invariant polynomials and invoke its elements as

invariant polynomials. The pure ghost number of each invariant polynomial
[p]
αJ is equal

to 0. The notation eJ has precisely the same meaning like in (68), so for every J its
antighost number is equal to 0 and it does not depend on dxµ. The entire dependence on

dxµ is assumed to enter the invariant polynomial only (deg(ϖ) = p = deg(
[p]
α).

The operator d remains a differential also on the algebra of invariant polynomials
H0(γ) ≡ (Ker(γ))0 evaluated in Λ, such that the computation of the cohomology of the
exterior spacetime differential in the algebra of invariant polynomials still makes sense.
The next important result, related precisely to the last cohomology, can be shown to hold.
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Theorem 1 The cohomology of the exterior spacetime differential computed in the algebra
of invariant polynomials corresponding to the free theory of a massless (k, 1) tensor field
is trivial in form degrees strictly less than D and in strictly positive antighost numbers

[
d
[p]
α([Φ∗

A], [K]) = 0, p < D, agh(
[p]
α) > 0

]
⇒

[p]
α = d

[p−1]

β , (71)

where
[p−1]

β can be taken to be an invariant polynomial,
[p−1]

β ([Φ∗
A], [K]).

In form degree D the previous result must be rephrased as: if the invariant polynomial
[D]
α ([Φ∗

A], [K]) of strictly positive antighost number is d-exact,
[D]
α = d

[D−1]

β , then the (D−1)-

form
[D−1]

β can be taken to be an invariant polynomial.

The proof of this theorem goes along the same line with the similar result from [16, 25].
The key points are given by the decomposition of the differential d into two anticom-
muting differentials d = d0 + d1 (where d0 acts nontrivially only on [K] and d1 only on
[Φ∗

A]) accompanied by the triviality of the cohomology of d1 in the algebra of invariant
polynomials in form degree strictly less than D [19]. The second part of the theorem
may be reformulated in dual language in terms of invariant polynomials with the form
degree equal to zero: if α([Φ∗

A], [K]) with agh(α) > 0 is an invariant polynomial with the
form degree equal to 0 displaying vanishing Euler–Lagrange derivatives, α = ∂µj

µ, then
the current jµ can be taken to be an invariant polynomial. The previous theorem can
be generalized to the cohomology of the exterior spacetime differential computed in the
entire cohomology H(γ) (the latter evaluated in Λ). The computation of this cohomology
also makes sense since d induces a differential in H(γ) evaluated in Λ, to be denoted also
by d.

Theorem 2 The cohomology of the exterior spacetime differential computed in H(γ) for
a free massless tensor field (k, 1) is trivial in form degree strictly less than D and in
strictly positive antighost numbers

Hg,p
j (d,H(γ)) = 0, p < D, j > 0, (72)

where p denotes the form degree, j the antighost number, and g the ghost number.

The proof of the last theorem is carried out similarly to the corresponding results from
[16, 25]. We specify that an object from Hg,p

j (d,H(γ)) is a local p-form of ghost number

g and antighost number j (both fixed) that is γ-closed and d-closed modulo γ: γ
[p]
a = 0,

d
[p]
a = γ

[p+1]

b . The above theorem states that if p < D and j > 0, then
[p]
a = d

[p−1]
c + γ

[p]
e ,

with γ
[p−1]
c = 0. Theorem 2 allows for an extremely important corollary.

Corollary 3 In strictly positive values of the antighost number the local cohomology of
the exterior longitudinal differential H(γ|d) computed in the algebra Λ of local forms
corresponding to the free theory of a massless (k, 1) tensor field can be replaced by the
cohomology H(γ) evaluated in the same algebra.

The above corollary states that if
[p]
a ∈ Λ, with agh(

[p]
a ) = j > 0, pgh(

[p]
a ) = l ≥ 0,

and deg(
[p]
a ) = p ≤ D satisfies the equation γ

[p]
a + d

[p−1]

b = 0, where agh(
[p−1]

b ) = j > 0,
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pgh(
[p−1]

b ) = l + 1 > 0, and deg(
[p−1]

b ) = p − 1 < D, then one can always redefine
[p]
a by

[p]
a →

[p]

a′ =
[p]
a+d

[p−1]
c such that γ

[p]

a′ = 0. It is important to stress that
[p−1]

b as well as
[p−1]
c are

not necessarily γ-invariant elements. In other words, in strictly positive antighost numbers
an element of the local cohomology H l,p(γ|d) can always be replaced by an element of
the cohomology H l,p(γ) computed in Λ. This corollary is especially important since it
simplifies enormously the computation of the local cohomology of the exterior longitudinal
cohomology in strictly positive antighost numbers by reduction to the computation of the
longitudinal exterior differential only, which has already been accomplished (see formula
(70)). The proof of this corollary is done similarly with the corresponding results from
[16, 20, 23, 25]. The connection of this result to the general context of BRST quantization
method is highlighted in [24].

5 Conclusions

In conclusion, in this paper we succeeded in elucidating the cohomological aspects re-
lated to the exterior longitudinal differential associated with the free theory of a massless
tensor field with the mixed symmetry (k, 1) for k ≥ 4. These results represent the first
step toward the computation of the local BRST cohomology for this model and will be
continued by further cohomological investigations regarding the Koszul–Tate differential
[28].
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