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Abstract

In this latter part of a paper dedicated to the free massless tensor field with the
mixed symmetry (k, 1) (k ≥ 4) we focus on the main cohomological properties of
the Koszul–Tate differential and on the computation of the local BRST cohomology
in maximum form degree.

PACS: 11.10.Ef

1 Introduction

The aim of this paper is to continue the main properties of the local BRST cohomology
for the free theory describing a massless tensor field with the mixed symmetry (k, 1)
for k ≥ 4 started in [1]. Actually, here we will evaluate the local cohomology of the
Koszul–Tate differential and its invariant version and finally expose the key features of
the local cohomology of the BRST differential in maximum form degree. In the sequel we
extensively employ the conventions, notations, and results from [1].

2 Cohomologies H(δ|d) and H inv(δ|d)
The results included in the former part of this section are valid for any field theory with
nontrivial gauge symmetries that satisfies the usual regularity conditions [2] (normal gauge
theory). These results involve also the local cohomology of the Koszul–Tate differential
evaluated in the algebra of local forms explicitly depending on xµ, to be denoted by Λx.
The form coefficients are in this situation elements of the BRST algebra depending on
the spacetime coordinates, Ax. The structure Ax is generated starting with the standard
BRST algebra A enhanced with the definitions

δxµ = 0, γxµ = 0, · · · , sxµ = 0, agh(xµ) = pgh(xµ) = gh(xµ) = 0 (1)

and in which the space of field histories I is replaced by M × I, the stationary surface
(of field equations) Σ by M × Σ, etc. In the context of these general statements the
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notations A, Ax, Λ, and Λx together with the operators s, δ, d, and so on refer to
an arbitrary gauge field theory. The presence of eventual additional relations from (1),
denoted by ‘· · · ’, takes into account the fact that it is possible that the BRST differential
s does not reduce to δ + γ, but decomposes according to a (possibly infinite) number of

operators (odd derivations), s = δ + γ +
∑

j∈N,j≥1

(j)
s , the antighost number of each

(j)
s

being equal to j, such that the nilpotency of s is achieved, s2 = 0. (In the case where

at least the operator
(1)
s is nontrivial, then γ is no longer a true differential, but just a

differential modulo δ, γ2 = −(δ
(1)
s +

(1)
s δ), even if it still anticommutes with δ, γδ+δγ = 0.)

The essential difference between the algebras Λ and Λx consists in the different struc-
tures of the cohomology of the exterior spacetime differential computed in each of these
algebras in strictly positive form degrees, known as the algebraic Poincaré Lemma [3]–[6].
Concerning the local cohomology of the Koszul–Tate differential in this general setting,
the following statements can be shown to hold.

Theorem 1 The local cohomology of the Koszul–Tate differential computed either in Λ
or in Λx at strictly positive values of both antighost number (j) and pure ghost number is
trivial

Hj(δ|d) = 0, j > 0, pgh > 0. (2)

Due to relation (2) from now on it is understood that the evaluation of the local coho-
mology of the Koszul–Tate differential in strictly positive antighost numbers is carried
out only with respect to the subalgebras of local forms from Λ or Λx that are ghost
independent.

Proposition 2 The local cohomology of the Koszul–Tate differential in form degree zero
and in strictly positive values of the antighost number computed in the BRST algebra of
local functions depending or not on xµ, but independent of ghosts, is trivial

H0
j (δ|d) = 0, j > 0. (3)

Theorem 3 The following isomorphism holds

Hp
j (δ|d) ≃ Hp−1

j−1 (δ|d), p ≥ 1, j > 1, (4)

where the local cohomology algebra H(δ|d) is computed in the algebra of local forms de-
pending on xµ and ghost-independent.

If we eliminate the dependence on xµ, then Theorem 3 is still valid, but we have to factorize
each side of relation (4), where possible, to the space of constant forms of appropriate
degree. A significant corollary of Proposition 2 and of the last theorem is expressed
by the triviality of the local cohomology H(δ|d) in antighost number strictly greater
than the form degree, Hp

j (δ|d) = 0 for j > p. Without entering further details, we
mention that by terminology abuse the local cohomology of the Koszul–Tate differential
at maximum form degree and strictly positive antighost number, HD

j (δ|d) with j > 0,
computed in the algebra of local forms dependent on xµ and ghost-independent is also
known as characteristic cohomology. For gauge field theories endowed with a well-defined
Cauchy order the next theorem, essential at the evaluation of the local BRST cohomology,
holds.
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Theorem 4 The characteristic cohomology for a gauge field theory with the Cauchy order
equal to q is trivial in antighost numbers strictly greater than q

HD
j (δ|d) = 0, j > q. (5)

From now on we focus on the free massless tensor with the mixed symmetry (k, 1).
Theorem 4 together with the value (k + 1) of the Cauchy order for this model yields the
following corollary.

Corollary 5 The characteristic cohomology of the free theory describing a massless ten-
sor field with the mixed symmetry (k, 1) is trivial in antighost numbers strictly greater
than (k + 1)

HD
j (δ|d) = 0, j > k + 1. (6)

Another ingredient necessitated by the computation of the local BRST cohomology for this
model is represented by the local cohomology of the Koszul–Tate differential computed in
the algebra of invariant polynomials, denoted by H inv(δ|d). The elements of the algebra
of invariant polynomials, H0(γ) ≡ (Ker(γ))0, do not depend on the ghosts; a generic
representative of this algebra with a given form degree reads as in formula (44) from [1].
The cohomology H inv(δ|d) is defined like the set of equivalence classes of δ-closed modulo
d elements α ∈ H0(γ), δα = dβ, with β also an invariant polynomial, two such elements
pertaining to the same equivalence class if and only if their difference is trivial. By
trivial elements in this context we understand invariant polynomials that are δ-exact
modulo d-exact, ᾱ = δβ̄ + dγ̄, where it is essential that both β̄ and γ̄ be invariant
polynomials. The cohomology H inv(δ|d) is supercommutative and N-graded in terms of
the antighost number, H inv(δ|d) =

⊕
j∈NH

inv
j (δ|d), where the space H inv

j (δ|d) is called
invariant local cohomology of the Koszul–Tate differential in antighost number j. In
addition, the invariant local cohomology of the Koszul–Tate differential at each fixed value
j of agh decomposes along the form degree, H inv

j (δ|d) =
⊕D

p=0H
invp
j (δ|d), with H invp

j (δ|d)
the invariant local cohomology of the Koszul–Tate differential in antighost number j and
form degree p. In maximum form degree and strictly positive antighost number the space
H invD

j (δ|d) is named, again by abuse of terminology, invariant characteristic cohomology
in antighost number j. In the sequel we show that the result of Corollary 5 remains valid
at the level of invariant characteristic cohomology. In view of this, we need the following
lemma.

Lemma 6 Let α be an invariant polynomial corresponding to the free theory that describes
a massless tensor field with the mixed symmetry (k, 1), which is δ-exact, α = δβ. Then,
β can be taken to be also an invariant polynomial.

The proof of this lemma is standard [7]–[11] etc. and will not be given here, but the
statement of this lemma is extremely useful in the context of the next theorem, which
represents the key element in establishing the validity of (6) at the level of invariant
characteristic cohomology as well as for providing some general properties of the local
BRST cohomology in maximum form degree.

Theorem 7 Let
[p]
αj be an invariant polynomial corresponding to the free theory that de-

scribes a massless tensor field with the mixed symmetry (k, 1), with agh(
[p]
αj) = j ≥ k + 1

and deg(
[p]
αj) = p ≤ D, which is trivial in Hp

j (δ|d)

[p]
αj = δ

[p]

ζ j+1 + d
[p−1]

ζ j, j ≥ k + 1, k ≥ 4, 0 ≤ p ≤ D, (7)
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agh(
[p]

ζ j+1) = j + 1, agh(
[p−1]

ζ j) = j, deg(
[p]

ζ j+1) = p, deg(
[p−1]

ζ j) = p− 1. (8)

Then,
[p]
αj is trivial also in H invp

j (δ|d), so both
[p]

ζ j+1 and
[p−1]

ζ j can be taken to be invariant
polynomials.

Proof. We start from relation (7). Assuming p < D, we act with d, use its nilpotency
(d2 = 0) together with its anticommutation with δ, and obtain

d
[p]
αj = δ(−d

[p]

ζ j+1). (9)

Due to the fact that
[p]
αj is an invariant polynomial, d

[p]
αj is also an invariant polynomial.

According to formula (9), we have an invariant polynomial that is also δ-exact. Lemma 6

ensures that d
[p]
αj = −δ

[p+1]
α j+1, where

[p+1]
α j+1 is also invariant. From (9) and the previous

equation we deduce that δ(
[p+1]
α j+1 − d

[p]

ζ j+1) = 0. Because of the acyclicity of δ in strictly

positive antighost numbers, it follows that the invariant polynomial
[p+1]
α j+1 is trivial in

the space Hp+1
j+1 (δ|d)

[p+1]
α j+1 = δ

[p+1]

ζ j+2 + d
[p]

ζ j+1. (10)

Applying the same procedure, after (D − p− 1) steps we infer the equations

[p+2]
α j+2 = δ

[p+2]

ζ j+3 + d
[p+1]

ζ j+2, (11)

...

[D]
α j−p+D = δ

[D]

ζ j−p+D+1 + d
[D−1]

ζ j−p+D, (12)

where all the elements denoted by α are invariant polynomials.
We start again with relation (7). Supposing j > k + 1 and p > 0, we act with the

operator δ and account for its nilpotency and its anticommutation with d, which imply

δ
[p]
αj = d(−δ

[p−1]

ζ j). (13)

As
[p]
αj is an invariant polynomial, we obtain that δ

[p]
αj is also an invariant polynomial with

the antighost number j−1 ≥ k+1 > 0. According to relation (13), an invariant polynomial

with agh > 0 is d-exact, such that Theorem 1 from [1] ensures that δ
[p]
αj = d(−

[p−1]
α j−1),

with
[p−1]
α j−1 an invariant polynomial. Formula (13) and the last result imply the equation

d(
[p−1]
α j−1− δ

[p−1]

ζ j) = 0. The triviality of the cohomology of d in the algebra of local forms
with agh > 0 and pgh = 0 grants that

[p−1]
α j−1 = δ

[p−1]

ζ j + d
[p−2]

ζ j−1. (14)

If j = k+1 in (7), then we cannot lower the antighost number like in (14). Starting with
(14) and resuming the procedure between formulas (13) and (14), we notice that there
appear two distinct situations, namely:
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– if j − p < k + 1, then this procedure ends after (j − k − 1) steps (j ≥ k + 1), at
agh = k + 1

[p−j+k+1]
α k+1 = δ

[p−j+k+1]

ζ k+2 + d
[p−j+k]

ζ k+1; (15)

– if j − p ≥ k + 1, then this algorithm stops after p steps, at deg = 0

[0]
αj−p = δ

[0]

ζ j−p+1. (16)

In both situations the left-hand sides are invariant polynomials.
By means of results (10)–(12) and (14)–(16) it follows that equation (7) leads to a

chain of similar equations, that can be organized according to the decreasing values of
both agh and deg as

[D]
α j−p+D = δ

[D]

ζ j−p+D+1 + d
[D−1]

ζ j−p+D, (17)

...

[p+1]
α j+1 = δ

[p+1]

ζ j+2 + d
[p]

ζ j+1, (18)

[p]
αj = δ

[p]

ζ j+1 + d
[p−1]

ζ j, (19)

[p−1]
α j−1 = δ

[p−1]

ζ j + d
[p−2]

ζ j−1, (20)

...

[p−j+k+1]
α k+1 = δ

[p−j+k+1]

ζ k+2 + d
[p−j+k]

ζ k+1 or
[0]
αj−p = δ

[0]

ζ j−p+1, (21)

in the sense that all the quantities denoted by α are invariant polynomials with agh ≥ k+1.
We notice the limit case j = k + 1 and p = D, where there appear no more equations
excepting the original one, (7), such that neither the superior chain (17)–(18) nor the
inferior one (20)–(21) is present. If p = D, then the superior chain is absent; if p = 0 or
j = k + 1, then the inferior one is removed.

In what follows we show that if at least one object denoted by ζ is an invariant
polynomial, then all the other quantities denoted by ζ can be taken to be also invariant

polynomials. Such objects may be involved in a single equation,
[D]

ζ j−p+D+1 in (17) or

respectively
[p−j+k]

ζ k+1 in (21) if j− p < k+1, or in two equations otherwise. Thus, in the

first case we assume that
[D]

ζ j−p+D+1 is an invariant polynomial, such that δ
[D]

ζ j−p+D+1 is
also invariant. Consequently, from (17) we get

d
[D−1]

ζ j−p+D =
[D]
α j−p+D − δ

[D]

ζ j−p+D+1. (22)

Since the right-hand side is an invariant polynomial with agh ≥ k+1 > 0, the last equation

shows that this is d-exact, so Theorem 1 from [1] induces that we can take
[D−1]

ζ j−p+D to
be an invariant polynomial. Based on the last result, we approach the next equation and
repeat this procedure until we exhaust also the last equation from the above chain. In the
next case, if j − p < k + 1, then the last equation of the previous chain becomes the first

equation from (21). Assuming that
[p−j+k]

ζ k+1 is an invariant polynomial, then d
[p−j+k]

ζ k+1
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will also be an invariant polynomial with agh = k + 1, such that the first equation from
(21), written as

δ
[p−j+k+1]

ζ k+2 =
[p−j+k+1]

α k+1 − d
[p−j+k]

ζ k+1, (23)

expresses the fact that an invariant polynomial is δ-exact, so Lemma 6 further implies that
[p−j+k+1]

ζ k+2 can also be taken to be invariant. Relying on the last result we manipulate
along the same line the rising equations from the chain until the first one and deduce the
same conclusion, namely, that all the objects denoted by ζ can be taken to be invariant
polynomials. Next, we investigate the last possibility, where an invariant polynomial
[A−1]

ζ B is involved in two equations

[A]
αB = δ

[A]

ζ B+1 + d
[A−1]

ζ B, (24)

[A−1]
α B−1 = δ

[A−1]

ζ B + d
[A−2]

ζ B−1. (25)

Related to (24), we reprise the same reasoning as in the above starting with
[p−j+k]

ζ k+1 and
formula (23). Concerning (24), we resume the arguments carried out previously beginning

with
[D]

ζ j−p+D+1 and relation (22). In the end we conclude that both
[A]

ζ B+1 and
[A−2]

ζ B−1

can be taken to be invariant polynomials. Further, each of these objects are involved
in two other equations from the chain, so a similar reasoning can be repeated until we
exhaust all the quantities of interest, such that all elements denoted by ζ can indeed be
taken to be invariant polynomials.

The structure of the equation chain (17)–(21) accompanied by the above results shows
that it is enough to prove the theorem in form degreeD and in antighost numbers j ≥ k+1
(in other words, only with respect to the first equation, of the type (17))

[D]
α j = δ

[D]

ζ j+1 + d
[D−1]

ζ j, j ≥ k + 1, k ≥ 4. (26)

More precisely, due to the previous argument related to equation (22), it is enough to

prove that
[D]

ζ j+1 is an invariant polynomial. In view of this, we remark that the theorem
is true in form degree D and in antighost numbers j ≥ D+ k+1. Indeed, supposing that
the first equation, (17), takes the form

[D]
α j = δ

[D]

ζ j+1 + d
[D−1]

ζ j, j ≥ D + k + 1, (27)

then we can descend to deg = 0, the last equation of the chain being of the latter type
from (21)

[0]
αj−D = δ

[0]

ζ j−D+1, j −D ≥ k + 1. (28)

The last equation expresses that an invariant polynomial is δ-exact, so Lemma 6 guar-

antees that
[0]

ζ j−D+1 can be taken to be invariant, while the arguments from the previous

paragraph ensure that
[D]

ζ j+1 can also be taken to be an invariant polynomial. Under these
considerations, we only need to prove the theorem in form degree D and in antighost num-

bers k+1 ≤ j ≤ D+k, so we have to show that if the invariant polynomial
[D]
α j is δ-exact

modulo d,
[D]
α j = δ

[D]

ζ j+1 + d
[D−1]

ζ j, k + 1 ≤ j ≤ D + k, (29)
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then we can take
[D]

ζ j+1 to be an invariant polynomial.
For the sake of simplicity we pass (29) in dual language and show in what follows that

if αj is an invariant polynomial (see formula (44) from [1]) satisfying

αj = δζj+1+∂µm
µ, agh(αj) = agh(ζj+1)−1 = agh(mµ) = j, k+1 ≤ j ≤ D+k, (30)

then ζj+1 can also be taken as an element of the algebra of invariant polynomials (see
formula (44) from [1]). The current mµ and the object ζj+1 are at this stage elements
of the algebra A with pgh = 0 that are ghost-independent, but not necessarily invariant
polynomials, in the sense that they depend only on the original field t, on the antifields Φ∗

A,
and their derivatives up to a finite order, but we still do not know whether the dependence
on [t] is implemented or not through the curvature tensor [K]. Since by assumption the
antighost number of ζj+1 is j + 1 > k + 1, while the maximum value of the degree agh
with respect to all the BRST generators is equal to k+1 (see Table 1 from [1]), it follows
that in principle ζj+1 may explicitly involve all the antifields (see formula (13) from [1])
and their derivatives up to a finite order. In order to simplify the procedure we choose

to replace the antifields denoted by
(m)
η

∗
and

(m)

C

∗

(with m = 1, k − 1) with the generators
(m)

C ′
∗

(defined by transformation (25) from [1]), so from now on we will work with

Φ∗
A ≡

{
t∗µ1...µk|α,

{(m)

C ′
∗µ1...µk−m||α}

m=1,k−1
,

(k)
η

∗µ}
. (31)

Under these considerations, if we denote the right Euler–Lagrange derivatives of ζj+1 by

δRζj+1

δ
(k)
η

∗

α

≡ gαj−k,
δRζj+1

δ
(m)

C ′
∗

µ1...µk−m||α

≡ g
µ1...µk−m||α
j−m , m = 1, k − 1, (32)

δRζj+1

δt∗µ1...µk|α
≡ g

µ1...µk|α
j ,

δRζj+1

δtµ1...µk|α
≡ f

µ1...µk|α
j+1 , (33)

where the subscript of the objects denoted by g or f signifies their antighost number,
then we notice that all these quantities display strictly positive values of agh on behalf
of the assumption j ≥ k + 1. We maintain the significance of the double bar explained
in the former part of this paper [1] and highlight that only the quantities g

µ1...µk|α
j and

f
µ1...µk|α
j+1 are endowed with the mixed symmetry (k, 1). We employ the actions of δ on the
BRST generators mentioned in the previous part (see formulas (19) and (28)–(29) in [1])
and evaluate the Euler–Lagrange derivatives of both sides of equation (30) (taking into
account the right action of the Koszul–Tate differential on ζj+1 and the vanishing of all
Euler–Lagrange derivatives of the divergence), which produce the following equations

δRαj

δ
(k)
η

∗

α

= (−)k+1δgαj−k,
δRαj

δ
(k−1)

C ′
∗

µ1||α

= (−)k
(
δg

µ1||α
j−k+1 − 2∂µ1gαj−k

)
, (34)

δRαj

δ
(m)

C ′
∗

µ1...µk−m||α

= (−)m+1
(
δg

µ1...µk−m||α
j−m − ∂[µ1g

µ2...µk−m]||α
j−m−1

)
, m = 1, k − 2, (35)

δRαj

δt∗µ1...µk|α
= −

(
δg

µ1...µk|α
j − ∂[µ1g

µ2...µk]||α
j−1

)
, (36)
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δRαj

δt α
µ1...µk|

= δf
µ1...µk|
j+1 α + 1

k!
∂µk+1

∂β
(
δ[µ1
α δµ2

β g
µ3...µk+1µ]|
j µ

)
. (37)

In deducing equation (37) we took into account the action of δ on the antifield t∗ (see the
second definition in formula (19) from [1]), the expression of the tensor involved in the
Euler–Lagrange derivatives of the Lagrangian action associated with the massless tensor
field (k, 1) (see relations (6) and (7) from [1]), and also the fact that this tensor can be
equivalently written as

T µ1...µk|α = ∂µk+1
∂βΦ

µ1...µk+1|αβ, (38)

where the quantity denoted by Φ exhibits the mixed symmetry (k + 1, 2) and reads as

Φ
µ1...µk+1|

αβ = −δ[µ1
α δµ2

β t
µ3...µk+1ρ]|

ρ. (39)

We emphasize that relations (38)–(39) have a special meaning: they implement the
Noether identities at the level of the free theory of a massless tensor field with the mixed
symmetry (k, 1), i.e. are the general solutions to the equations

∂µ1T
µ1...µk|α = 0, ∂αT

µ1...µk|α = 0. (40)

If we adopt the notation

G
µ1...µk+1|
j αβ ≡ 1

k!
δ[µ1
α δµ2

β g
µ3...µk+1µ]|
j µ, (41)

then the contravariant tensor G
µ1...µk+1|αβ
j displays the mixed symmetry (k + 1, 2) of the

curvature tensor precisely due to the mixed symmetry (k, 1) of g
µ1...µk|α
j from (33). Con-

sequently, (37) can be written as

δRαj

δtµ1...µk|α
= δf

µ1...µk|α
j+1 + ∂µk+1

∂βG
µ1...µk+1|αβ
j . (42)

Let us analyze now relations (34)–(36) and (42). Because αj is by hypothesis an
invariant polynomial, it follows that its Euler-Lagrange derivatives are also invariant.
Moreover, we assumed that j ≥ k+1, so j−k > 0. The former equation in (34) shows that
an invariant polynomial is δ-exact, so Lemma 6 guarantees that we can take gαj−k to be an
invariant polynomial. Based on the last result, from the latter equation in (34) we deduce

immediately that g
µ1||α
j−k+1 can also be taken to be an invariant polynomial. Extending the

same argument to the remaining equations we conclude that all the objects denoted by g
or f are invariant polynomials and therefore (34)–(36) and (42) can be written as

δRαj

δ
(k)
η

∗

α

= (−)k+1δḡαj−k,
δRαj

δ
(k−1)

C ′
∗

µ1||α

= (−)k
(
δḡ

µ1||α
j−k+1 − 2∂µ1 ḡαj−k

)
, (43)

δRαj

δ
(m)

C ′
∗

µ1...µk−m||α

= (−)m+1
(
δḡ

µ1...µk−m||α
j−m − ∂[µ1 ḡ

µ2...µk−m]||α
j−m−1

)
, m = 1, k − 2, (44)

δRαj

δt∗µ1...µk|α
= −

(
δḡ

µ1...µk|α
j − ∂[µ1 ḡ

µ2...µk]||α
j−1

)
, (45)

δRαj

δtµ1...µk|α
= δf̄

µ1...µk|α
j+1 + ∂µk+1

∂βḠ
µ1...µk+1|αβ
j , (46)
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where all the bar quantities are invariant polynomials and

Ḡ
µ1...µk+1|
j αβ = 1

k!
δ[µ1
α δµ2

β ḡ
µ3...µk+1µ]|
j µ. (47)

We reconstruct the invariant polynomial αj from its Euler–Lagrange derivatives by means
of the homotopy formula

αj =

1∫
0

dτ

(
δRαj

δ
(k)
η

∗

α

(τ)
(k)
η

∗

α +
k−1∑
m=1

δRαj

δ
(m)

C ′
∗

µ1...µk−m||α

(τ)
(m)

C ′
∗

µ1...µk−m||α

+
δRαj

δt∗µ1...µk|α
(τ)t∗µ1...µk|α +

δRαj

δtµ1...µk|α
(τ)tµ1...µk|α

)
+ ∂µl

µ, (48)

where, assuming that f([y]), we used the notation f(τ) ≡ f(τ [y]). Replacing relations
(43)–(46) in (48) and recalling the actions of δ on the involved BRST generators, after
some computations we arrive at

αj = δ

[ 1∫
0

dτ

(
ḡαj−k(τ)

(k)
η

∗

α +
k−1∑
m=1

ḡ
µ1...µk−m||α
j−m (τ)

(m)

C ′
∗

µ1...µk−m||α

+ ḡ
µ1...µk|α
j (τ)t∗µ1...µk|α + f̄

µ1...µk|α
j+1 (τ)tµ1...µk|α

)]
+ ∂µs

µ. (49)

We remark that all the terms on which the operator δ acts excepting the last one are true
invariant polynomials. Comparing (49) with (30), it is clear that in order to complete the
proof it remains to be shown that the last term on which δ acts can also be represented
as an invariant polynomial. In view of this, we proceed as follows.

We start from relation (46) and recall that the Euler–Lagrange derivatives of an in-
variant polynomial αj, δ

Rαj/δtµ1...µk|α, are also invariant polynomials. This means that
αj depends on [t] only through the components of the curvature tensor Kµ1...µk+1|αβ (see
formula (9) from [1]) and their derivatives up to a finite order, so

δRαj

δtµ1...µk|α
= (−)k+12(k + 1)∂µk+1

∂β
δRαj

δKµ1...µk+1|αβ
, (50)

where the mixed symmetry (k + 1, 2) of the curvature tensor implies the same symmetry
for the Euler–Lagrange derivatives of αj with respect to this tensor. By means of the
notation

(−)k+12(k + 1)
δRαj

δKµ1...µk+1|αβ
≡ G

′µ1...µk+1|αβ
j , (51)

formula (50) takes the equivalent form

δRαj

δtµ1...µk|α
= ∂µk+1

∂βG
′µ1...µk+1|αβ
j , (52)

where, since its left-hand side is an invariant polynomial, its right-hand side will inherit
the same property, but we still do not know whether G′

j is invariant. Substituting (52)
into equation (46) and denoting the difference G′

j − Ḡj by ∆j, the latter becomes

δf̄
µ1...µk|α
j+1 = ∂µk+1

∂β∆
µ1...µk+1|αβ
j ⇔ δf̄

µ1...µk|α
j+1 = ∂µk+1

∆
µ1...µk+1|αβ,
j β, (53)
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where the tensor ∆j displays the mixed symmetry (k + 1, 2) of the curvature tensor.
Both f̄j+1 and the right-hand side are invariant polynomials, but this property cannot be
passed for now to ∆j. Equation (53) indicates that for every fixed value of the index α

the quantity f̄
µ1...µk|α
j+1 defines an invariant polynomial with deg = D− k and agh = j +1,

which is trivial in the cohomology HD−k
j+1 (δ|d). Applying successively Theorem 3 we find

the isomorphismHD−k
j+1 (δ|d) ≃ HD

j+k+1(δ|d), so by Corollary 5 we have thatHD
j+k+1(δ|d)=0,

so we deduce that HD−k
j+1 (δ|d) = 0. The triviality of the last space together with (53) for

each distinct value of α yields that f̄j+1 is trivial in HD−k
j+1 (δ|d)

f̄
µ1...µk|α
j+1 = δR

µ1...µk||α
j+2 + ∂µk+1

U
µ1...µk+1||α
j+1 , (54)

where Rj+2 and Uj+1 are not invariant polynomials for now. Related to their symmetry
properties, we only know that they are antisymmetric with respect to the Lorentz indices
preceding the double bar. In the sequel the proof of the theorem proceeds in an inductive
manner according to the antighost number, namely we presume it is true in deg = D and
in antighost numbers (j + 2) and respectively (j + k + 1) and show that is also holds in
deg = D and agh = j.

The isomorphism HD−k
j+1 (δ|d) ≃ HD

j+k+1 accompanied by the induction hypothesis in
deg = D and agh = j + k + 1 implies that Rj+2 and Uj+1 from (54) can be taken to be
some invariant polynomials, to be redenoted by R̄j+2 and Ūj+1

f̄
µ1...µk|α
j+1 = δR̄

µ1...µk||α
j+2 + ∂µk+1

Ū
µ1...µk+1||α
j+1 . (55)

We modify the Lorentz indices from (55) according to further purposes and in the last
term we bring the last index before the double bar to the front by successive permutations

f̄
µ1...µk|µk+1

j+1 = δR̄
µ1...µk||µk+1

j+2 + (−)k∂αŪ
αµ1...µk||µk+1

j+1 . (56)

We have shown in the above that f̄j+1 possesses the mixed symmetry (k, 1) and hence

satisfies the identity f̄
[µ1...µk|µk+1]
j+1 ≡ 0. Taking the antisymmetric of the last equation with

respect to the indices {µ1, . . . , µk+1} and making use of the above mentioned identity, we
obtain that

0 = δR̄
[µ1...µk||µk+1]
j+2 + (−)k∂αŪ

α[µ1...µk||µk+1]
j+1 . (57)

Acting with δ on (57), from its nilpotency combined with its commutation with the
spacetime derivatives it follows that

∂α
(
δŪ

α[µ1...µk||µk+1]
j+1

)
= 0. (58)

In this way, for each set of fixed values of the indices {µ1, . . . , µk+1} the last equation
defines the components of a d-closed (D − 1)-form with pgh = 0 and agh = j > 0. The
triviality of the cohomology of d (in deg = D − 1, pgh = 0, and agh > 0) further induces
that

δŪ
α[µ1...µk||µk+1]
j+1 = ∂βV

µ1...µk+1||αβ
j , (59)

where Vj is endowed with pgh = 0 and agh = j > 0, is separately antisymmetric in its first
(k+1) indices and in its last two ones, but does not exhibit in general the mixed symmetry
(k+1, 2). (The detailed analysis of equation (58) discloses that since Ūj+1 is an invariant
polynomial of antighost number j + 1 > k + 1 > 1, then δŪj+1 is also invariant and with
agh = j > 0, such that for any fixed values of the indices {µ1, . . . , µk+1} we obtain a d-
closed invariant polynomial with deg = D−1 and strictly positive agh. Theorem 1 from [1]
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further guarantees that we can take Vj from (59) to be also invariant. Nevertheless, in
this context the invariant property of Vj is not essential.) Equation (59) signifies that

for any fixed values of the indices {µ1, . . . , µk+1} the quantity Ū
α[µ1...µk||µk+1]
j+1 defines an

element of the local cohomology HD−1
j+1 (δ|d), so, by means of Theorem 3, we deduce the

isomorphism HD−1
j+1 (δ|d) ≃ HD

j+2(δ|d). By hypothesis j+2 > k+1, and hence Corollary 5

leads to HD
j+2(δ|d) = 0, which yields HD−1

j+1 (δ|d) = 0, meaning that Ū
α[µ1...µk||µk+1]
j+1 is trivial

Ū
α[µ1...µk||µk+1]
j+1 = δW

µ1...µk+1||α
j+2 + ∂βS

µ1...µk+1||αβ
j+1 , (60)

with Sj+1 separately antisymmetric in its first (k + 1) and respectively last two Lorentz
indices. Because all the components of Ūj+1 are invariant polynomials, it follows that its
antisymmetric over the last (k + 1) indices is also invariant. Equation (60) defines, for
each set of fixed indices {µ1, . . . , µk+1}, an invariant polynomial with deg = D − 1 and
agh = j+1, which is δ-exact modulo d, such that the isomorphism HD−1

j+1 (δ|d) ≃ HD
j+2(δ|d)

together with the induction hypothesis in deg = D and agh = j+2 imply that both Wj+2

and Sj+1 become invariant polynomials (to be respectively redenoted by W̄j+2 and S̄j+1)

Ū
α[µ1...µk||µk+1]
j+1 = δW̄

µ1...µk+1||α
j+2 + ∂βS̄

µ1...µk+1||αβ
j+1 . (61)

At this stage we reconstruct the tensor Ū
µ1...µk+1||α
j+1 from its components antisymmetric

with respect to the last (k + 1) indices with the help of formula

Ū
µ1...µk+1||α
j+1 = 1

k+1

(
Ū

µ1[µ2...µk+1||α]
j+1 +

k+1∑
i=2

(−)k(i−1)Ū
µi[µi+1...µk+1µ1...µi−1||α]
j+1

+ (−)kkŪ
α[µ1...µk||µk+1]
j+1

)
, (62)

where all the (k + 1) terms from the first line of (62) generates a quantity that is anti-
symmetric with respect to the indices {µ1, . . . , µk+1}. Inserting (61) in each term from
the right-hand side of (62), adapting the indices appropriately, and conveniently grouping
the resulting expressions, we get

Ū
µ1...µk+1||α
j+1 =δ

[
1

k+1

(
W̄

[αµ1...µk||µk+1]
j+2 + (−)k(k + 1)W̄

µ1...µk+1||α
j+2

)]
+ ∂µk+2

[
1

k+1

(
S̄
α[µ1...µk||µk+1]µk+2

j+1 + (−)kkS̄
µ1...µk+1||αµk+2

j+1

)]
. (63)

Obviously, the operator δ acts now on an invariant polynomial since all the components
of W̄j+2 are so, which, moreover, is completely antisymmetric with respect to the indices
{µ1, . . . , µk+1}. A similar observation holds with respect to the object on which the
spacetime derivatives ∂µk+2

act. By means of the notation

1
k+1

(
W̄

[αµ1...µk||µk+1]
j+2 + (−)k(k + 1)W̄

µ1...µk+1||α
j+2

)
≡ W̃

µ1...µk+1||α
j+2 , (64)

where W̃j+2 is an invariant polynomial, antisymmetric with respect to its Lorentz indices
placed before the double bar, result (63) becomes

Ū
µ1...µk+1||α
j+1 = δW̃

µ1...µk+1||α
j+2 + ∂µk+2

[
1

k+1

(
S̄
α[µ1...µk||µk+1]µk+2

j+1 + (−)kkS̄
µ1...µk+1||αµk+2

j+1

)]
. (65)
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Acting now with ∂µk+1
on (65) leads to

∂µk+1
Ū

µ1...µk+1||α
j+1 =δ

(
∂µk+1

W̃
µ1...µk+1||α
j+2

)
+ 1

k+1
∂µk+1

∂β
(
S̄
[αµ1...µk||µk+1]β
j+1 + (−)k(k + 1)S̄

µ1...µk+1||αβ
j+1

)
. (66)

We can add the terms
− 1

k+1
∂µk+1

∂βS̄
[βµ1...µk||µk+1]α
j+1 ≡ 0 (67)

to the right-hand side of (66) since they identically vanish due on the one hand to the
symmetry with respect to the pair of indices {µk+1, β} of the second-order derivative
operator and on the other hand to the antisymmetry with respect to the same index pair
of the quantity S̄j+1, such that formula (66) can be equivalently written as

∂µk+1
Ū

µ1...µk+1||α
j+1 = δ

(
∂µk+1

W̃
µ1...µk+1||α
j+2

)
+ 1

k+1
∂µk+1

∂β
(
S̄
[αµ1...µk||µk+1]β
j+1 − S̄

[βµ1...µk||µk+1]α
j+1

+ (−)k(k + 1)S̄
µ1...µk+1||αβ
j+1

)
. (68)

We notice that the operator ∂µk+1
∂β acts now on an object that is obviously an invari-

ant polynomial, and, essentially, became separately antisymmetric in {µ1, . . . , µk+1} and
respectively in {α, β}

S̃
µ1...µk+1||αβ
j+1 ≡ 1

k+1

(
S̄
[αµ1...µk||µk+1]β
j+1 − S̄

[βµ1...µk||µk+1]α
j+1 + (−)k(k + 1)S̄

µ1...µk+1||αβ
j+1

)
. (69)

In this way we showed that

∂µk+1
Ū

µ1...µk+1||α
j+1 = δ

(
∂µk+1

W̃
µ1...µk+1||α
j+2

)
+ ∂µk+1

∂βS̃
µ1...µk+1||αβ
j+1 . (70)

Substituting (70) in formula (55) leads to

f̄
µ1...µk|α
j+1 = δ

(
R̄

µ1...µk||α
j+2 + ∂µk+1

W̃
µ1...µk+1||α
j+2

)
+ ∂µk+1

∂βS̃
µ1...µk+1||αβ
j+1 . (71)

Acting now with δ on the last result and using the nilpotency of this operator, we have
that

δf̄
µ1...µk|α
j+1 = δ

(
∂µk+1

∂βS̃
µ1...µk+1||αβ
j+1

)
. (72)

Based on the previous result we can arrange the last term in the right-hand side of formula
(49) like

δ
(
f̄
µ1...µk|α
j+1 (τ)tµ1...µk|α

)
= 1

2(k+1)
(−)k+1δ

[
S̃
µ1...µk+1||αβ
j+1 (τ)Kµ1...µk+1|αβ

]
+ ∂µρ

µ, (73)

where Kµ1...µk+1|αβ is the curvature tensor, so it is γ-invariant, such that the product

S̃j+1K finally defines an invariant polynomial. Replacing relation (73) into the homotopy
formula (49) for αj we derive in the end that

αj = δ

[ 1∫
0

dτ

(
ḡαj−k(τ)

(k)
η

∗

α +
k−1∑
m=1

ḡ
µ1...µk−m||α
j−m (τ)

(m)

C ′
∗

µ1...µk−m||α + ḡ
µ1...µk|α
j (τ)t∗µ1...µk|α

+ 1
2(k+1)

(−)k+1S̃
µ1...µk+1||αβ
j+1 (τ)Kµ1...µk+1|αβ

)]
+ ∂µψ

µ. (74)

At this stage all the terms present in the argument of the integrand are invariant poly-
nomials. A prominent role in deducing the last result is played by formula (72), where
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the double divergence acts on the tensor S̃j+1, which is precisely an invariant polynomial
simultaneously antisymmetric in its first (k+1) and respectively last two indices (even if
it does not necessarily exhibit the mixed symmetry (k + 1, 2)). Indeed, on the one hand
the double antisymmetry of S̃j+1 allows us to transfer the two derivatives on the field t
and generate in (73) (up to some total derivatives) precisely the curvature tensor, which is
an invariant polynomial, and on the other hand the property of S̃j+1 of being an invariant
polynomial instates the same feature at the level of S̃j+1K.

Coming back to equation (30) compared with (74) and recalling the arguments devel-
oped so far we conclude that the induction hypothesis in form degree D and in antighost
numbers j+2 and j+k+1 leads to the same property in form degree D and in antighost
number j (j = k + 1, D + k). This completes the proof since we have shown previously
that the theorem holds in deg = D and agh ≥ D + k + 1.

The last theorem allows us to transfer the result expressed by (6) to the level of the
invariant characteristic cohomology.

Corollary 8 The invariant characteristic cohomology of the free theory that describes a
massless tensor field with the mixed symmetry (k, 1) is trivial in antighost numbers strictly
greater than (k + 1)

H invD
j (δ|d) = 0, j > k + 1. (75)

Proof. The proof is quite straightforward. Indeed, let
[D]
α j be an element of an arbi-

trary class from the invariant characteristic cohomology H invD
j (δ|d). This means it is

an invariant polynomial with deg = D and agh = j > k + 1 that fulfils the equa-

tion δ
[D]
α j = d

[D−1]

ζ j−1, with
[D−1]

ζ j−1 also an invariant polynomial. The last equation

shows that
[D]
α j meanwhile pertains to an equivalence class of elements from HD

j (δ|d) with
j > k+1. But, in agreement with Corollary 5 (formula (6)), we have that HD

j (δ|d) = 0 for

j > k+1, such that
[D]
α j is automatically trivial in the considered class from HD

j (δ|d) = 0,

[D]
α j = δ

[D]

ζ j−1 + d
[D−1]

ζ j. Nevertheless,
[D]
α j is by assumption an invariant polynomial of

antighost number j > k + 1, such that Theorem 7 ensures that we can take both
[D]

ζ j−1

and
[D−1]

ζ j from the previous relation to be also invariant polynomials. In other words,
[D]
α j is in fact trivial in the (arbitrary) chosen class from H invD

j (δ|d), which proves the
corollary.

In terms of the antifield spectrum organized like in (31) and recalling the actions of
the Koszul–Tate differential on the BRST generators (see formulas (19) and (28)–(29)
from [1]), it can be shown that the spaces associated with both the characteristic and re-
spectively invariant characteristic cohomology, HD

j (δ|d) and H invD
j (δ|d), for j = 2, k + 1,

are linearly generated by the complete sets of nontrivial representatives given in Table
1. We notice that there is no nontrivial representative of either

(
HD

j (δ|d)
)
j=2,k+1

or(
H invD

j (δ|d)
)
j=2,k+1

that depends on the curvature tensor or its derivatives. The same

observation holds with respect to a more than linear dependence on the antifields or their
derivatives. Unlike these characteristic cohomology spaces, which are finite-dimensional,
the cohomology HD

1 (δ|d) (in pure ghost number zero), correlated with usual global sym-
metries and conservation laws, is infinite-dimensional since the theory under study is
free.
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agh complete set of nontrivial representatives

k + 1
(k)
η

∗α

j = 2, k
(j−1)

C ′
∗µ1...µk−j+1||α

Table 1: Structure of
(
HD

j (δ|d)
)
j=2,k+1

and
(
H invD

j (δ|d)
)
j=2,k+1

.

3 Properties of the cohomology H(s|d)
We come back to the general setting of a normal gauge theory (see the beginning of section
2). The homological perturbation theory [12, 13] applied to the BRST cohomology H(s)
computed in any of the local form algebras Λ or Λx (without and respectively with an
explicit dependence on xµ) ensures that, irrespective of the structure of the decomposition

of the BRST differential s along agh, s = δ + γ +
∑

j∈N,j≥1

(j)
s , only the Koszul–Tate

differential and the exterior longitudinal derivative contribute to H(s). More precisely, in
this general framework are valid the isomorphisms mentioned in the former part of this
paper (see the paragraph between formulas (35) and (36) from [1]). Similar arguments
of homological perturbation theory lead to the next general results concerning the local
BRST cohomology H(s|d).

Theorem 9 The local BRST cohomology computed in any of the algebras of local differ-
ential forms Λ or Λx is given by:

H l(s|d) ≃ H l(γ|d,H0(δ)), l ≥ 0, (76)

Hj(s|d) ≃ H−j(δ|d), j < 0. (77)

Just like in the first part of section 3 from [1], the values l and respectively j signify the
degrees gh in relation with the local BRST cohomologies H l(s|d) and Hj(s|d). On the
contrary, l represents pgh with respect to the local cohomology of the exterior longitudinal
derivative γ computed in H0(δ), H

l(γ|d,H0(δ)), while (−j) means the degree agh in
connection with the local cohomology of the Koszul–Tate differential H−j(δ|d). We recall
that H0(δ) means the entire cohomology algebra of δ since the Koszul–Tate differential
is acyclic in strictly positive values of agh and γ may be in principle only a differential
modulo d and not necessarily a true differential, as happens in the case of the (k, 1) theory.
By means of the above theorem we remark that in gh = l ≥ 0 the cohomological classes of
H l(s|d) are completely antifield-independent, while in gh = j < 0 the classes of Hj(s|d)
are obtained by means of their minimum antighost components, −j, such that Theorem
1 guarantees that these components do not involve either the ghosts or their derivatives.

These general results get simplified in the context of the model describing a free,
massless tensor field with the mixed symmetry (k, 1) due to the results analyzed in [1].
Indeed, on the one hand the decomposition s = δ + γ of the BRST differential in this
case induces that the operator γ can be realized as a true differential, in which context
the specific results contained in Table 1, formulas (67)–(68), Theorems 1 and 2, and
Corollary 3 from [1] hold. On the other hand, the simple tensor gauge structure of this
theory endows the differential δ with nice, lucrative properties and results, collected into
Corollary 5, Theorem 7, Corollary 8, and Table 1. All these allow us to establish the
next result, extremely useful at the effective computation of the general expression of the
cocycles from the local BRST cohomology in maximum form degree.
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Proposition 10 From any cocycle of the local BRST cohomology corresponding to the
free theory that describes a massless tensor field with the mixed symmetry (k, 1) in ghost

number g ∈ Z and in maximum form degree,
[D]
a ∈ Hg,D(s|d), all components with

agh > k + 1 can be eliminated by trivial redefinitions only. The terms from
[D]
a of maxi-

mum antighost number involve only nontrivial elements from the invariant characteristic
cohomology.

We stress that the term “trivial redefinition” is synonym with “transformation that does
not change the equivalence classes from Hg,D(s|d)” and will be explained below. The
proof of this proposition goes along the same line with the similar results from [7]–[11]
and will not be given here. In the sequel we are mainly interested in the implications of

this proposition. Let
[D]
a ∈ Hg,D(s|d) be a BRST cocycle of maximum form degree and

with a fixed value g of the ghost number

s
[D]
a + d

[D−1]

b = 0, (78)

deg
([D]
a
)
= D, gh

([D]
a
)
= g ∈ Z, deg

([D−1]

b
)
= D − 1, gh

([D−1]

b
)
= g + 1. (79)

By trivial redefinition with respect to equation (78) we understand the simultaneous
transformations

[D]
a →

[D]

a′ =
[D]
a + s

[D]
c + d

[D−1]
e ,

[D−1]

b →
[D−1]

b′ =
[D−1]

b + s
[D−1]
e + d

[D−2]

f , (80)

deg
([D]
c
)
= D, deg

([D−1]
e
)
= D − 1, deg

([D−2]

f
)
= D − 2, (81)

gh
([D]
c
)
= g − 1, gh

([D−1]
e
)
= g, gh

([D−2]

f
)
= g + 1, (82)

such that

s
[D]

a′ + d
[D−1]

b′ ≡ s
[D]
a + d

[D−1]

b (83)

via the nilpotency of the operators s and d (s2 = 0 = d2) and their anticommutation
(sd+ ds = 0) on the BRST algebra of local forms.

We decompose
[D]
a according to agh taking into account the fact that for any local form

of simultaneously fixed degrees gh = g ∈ Z and agh = j ≥ 0 the value of the pure ghost
number is also fixed and, moreover, positive, pgh ≡ l = g + j ≥ 0, which further implies

a restriction on the degree agh: j ≥ max{0,−g}. Similarly, related to
[D−1]

b there appears
the restriction j ≥ max{0,−(g+1)}. Consequently, we infer the following decompositions

at the level of
[D]
a and

[D−1]

b

[D]
a =

n∑
j=max{0,−g}

[D]
a j, deg

([D]
a j

)
= D, agh

([D]
a j

)
= j, gh

([D]
a j

)
= g, (84)

[D−1]

b =
n′∑

j=max{0,−(g+1)}

[D−1]

b j, deg
([D−1]

b j

)
= D − 1, agh

([D−1]

b j

)
= j, gh

([D−1]

b j

)
= g + 1,

(85)

where n and n′ are some finite natural numbers since we work in the space of local forms
that are polynomials in antifields and their derivatives. The previous proposition states
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that we can eliminate all the components from (84) with n > k+1 and respectively from
(85) with n′ > k+1 meanwhile preserving the equivalence class from Hg,D(s|d) and hence
work with

[D]
a =

k+1∑
j=max{0,−g}

[D]
a j,

[D−1]

b =
k+1∑

j=max{0,−(g+1)}

[D−1]

b j. (86)

In this way two distinct situations are met. If g < −(k + 1), then the range of the index
j in the former relation from (86) is empty (the superior limit (k + 1) from the first
expansion is strictly less than the inferior limit max{0,−g} = −g > k + 1) or, in other
words, there are no nontrivial elements in Hg,D(s|d). If g ≥ −(k + 1), then formulas (86)
apply.

Assume the second case and, moreover, that g ≥ 0, which then further implies
max{0,−g} = 0 = max{0,−(g + 1)}, such that (86) becomes

[D]
a =

k+1∑
j=0

[D]
a j,

[D−1]

b =
k+1∑
j=0

[D−1]

b j. (87)

By replacing the last two expansions in the cocycle condition (78) together with the de-
composition s = δ+γ we generate the equivalent sequence of equations (ordered according
to the decreasing values of agh)

γ
[D]
a k+1 + d

[D−1]

b k+1 = 0, (88)

δ
[D]
a k+1 + γ

[D]
a k + d

[D−1]

b k = 0, (89)

...

δ
[D]
a 1 + γ

[D]
a 0 + d

[D−1]

b 0 = 0. (90)

Corollary 3 from [1] applied to equation (88) allows us to transform
[D]
a k+1 such as to

eliminate the component
[D−1]

b k+1 from (87) and replace this equation with γ
[D]
a k+1 = 0

also without changing the class from Hg,D(s|d). In this manner we reach the conclusion
that in positive values of the ghost number the analysis of BRST cocycles with maximum

form degree starts from assuming that
[D]
a and

[D−1]

b are expanded like

[D]
a =

k+1∑
j=0

[D]
a j,

[D−1]

b =
k∑

j=0

[D−1]

b j, (91)

deg
([D]
a j

)
= D, agh

([D]
a j

)
= j, pgh

([D]
a j

)
= j + g, (92)

deg
([D−1]

b j

)
= D − 1, agh

([D−1]

b j

)
= j, pgh

([D−1]

b j

)
= j + g + 1 (93)

where their components are computed as solutions to the equations (equivalent to (78))

γ
[D]
a k+1 = 0, (94)

δ
[D]
a k+1 + γ

[D]
a k + d

[D−1]

b k = 0, (95)
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...

δ
[D]
a 1 + γ

[D]
a 0 + d

[D−1]

b 0 = 0. (96)

(The properties of the local forms
[D]
a j and

[D−1]

b j related to agh and gh have been trans-
lated in terms of the degrees agh and pgh.) Equation (94) shows that the piece of max-

imum antighost number from the development of
[D]
a can be taken, without affecting the

generality of the approach, as elements of the cohomology Hk+1+g,D(γ) (with antighost
number (k + 1)), such that result (70) from [1] leads to its representation (up to γ-exact
contributions) under the form

[D]
a k+1 =

∑
J

[D]
α J

(
[Φ∗

A], [K]
)
eJ
((1)
F ,

(k)
η
)
, (97)

deg(
[D]
α J) = D, agh(

[D]
α J) = k + 1, pgh(eJ) = k + 1 + g. (98)

We recall that
[D]
α J are invariant polynomials, in this case of form degreeD and of antighost

number (k + 1) due to the first two properties from (92) in the particular case j = k + 1,

while eJ denote the elements of a basis in the space of polynomials in the tensor
(1)

F µ1...µk+1

(see notation (49) from [1]) and also in the undifferentiated ghost
(k)
η of pure ghost number

equal to (k + 1 + g) (according to the third requirement from (92) with j = k + 1). The
final part of Proposition 10 states that the invariant polynomials present in (97) can be
taken as (nontrivial) elements of the invariant characteristic cohomology,

[D]
a k+1 =

∑
J

[D]
α Je

J
((1)
F ,

(k)
η
)
,

[D]
α J ∈ H invD

k+1 (δ|d), pgh(eJ) = k + 1 + g. (99)

Finally, Table 1 at agh = k+1 provides the coefficients of the D-forms
[D]
α J as terms linear

in the components of the undifferentiated antifield
(k)
η

∗
.

4 Conclusions

The main conclusion of this two-part paper is that the systematic approach of the results
exposed (here and in [1]) provides the recursive (according to the decreasing values of the
antighost number), explicit computation of the BRST cocycles in maximum form degree.
This technique in the particular case of ghost number 0 is required at the investigation of
consistent interactions involving a massless tensor field with the mixed symmetry (k, 1)
with the help of the deformation of the solution to the master equation [14]–[17]. Some
examples in this sense can be found in [18, 19].
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