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Abstract

Evolution of dynamic systems requires balance between information variance
and the rate of eliminating less-fit system variants. When competing systems are
simple and advantages of novel phenotypes are petite or implement slowly, networks
of systems become cluttered with information variants. This chokes evolution and
adaptation analogous in consequence with Manfred Eigen’s ”error catastrophe”.
Using the simulation platform BiADA (i.e. Biotic Abstract Dual Automata), we
have studied extinction controllers and rates when primitive energy dissipative net-
works with similar cyclomatic complexity compete. Potential controllers included
the stability of individual system parts, the abundance of free energy, variation in
free energy availability, catalysis of uptake/dissipation of free energy and autocatal-
ysis. Results indicate that: (a) Elimination of the less-fit is more efficient in energy
limitative environments and difficult in energy copious environments; (b) Evolving
prebiotic networks may have required environments progressively richer in free en-
ergy (albeit limitative); (c) The rate of increase in energy availability has to be low
relative to the rate of information evolution; (d) In energy-rich environments, syn-
ergism between energy availability and autocatalysis amplifies minute differences in
performance and facilitates extinction events; and (e) Autocatalysis is a major con-
troller of prebiotic selection by increasing the stringency of selection and correlating
it with energy availability, thus allows extinction of the less-fit to keep pace with
information innovation. We hypothesize that the evolution of prebiotic automata
required an environment progressively rich in free energy, and that the rate of this
change must have been slow enough relative to the rate of adaptation. Excess free
energy in a primeval environment or speedy increase in energy availability repressed
the evolution of prebiotic chemical networks toward life.

1 Introduction

Modern life forms use a translation machinery to decipher encrypted information, which
classifies them as informata. Systems that use solely analogical mechanisms for func-
tioning and inheritance are classified as automata [1]-[2]. During prebiotic evolution,
automata most likely preceded informata, which means that understanding evolution of
simple dynamic systems toward life requires explaining competition between automata.
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The evolution of modern biological informata occurs by Darwinian selection, but the
principles controlling the evolution of automata (which are much simpler) are different.
Informata keep records of historical changes in organization successful in the past (within
information storage limits), and thus store either as individuals or collective, a cache of
“virtual states”. These backup system states represent potential responses to variations
in the environment (based on past experiences). In contrast, automata have no special-
ized means of remembering the past, and as such, have poor, if any, “recollection” of
former states. This makes automata less efficient with regard to response strategies in
variable environments. Henceforth, informata are better adapted to withstand variable
environments, while the robustness of automata increases in homogeneous environments.
Automata contain little if any hidden information. The number of virtual states in au-
tomata is very low relative to informata, and therefore, the only automata that survive
environmental challenges (such as limitation in resources and stress from complex and
variable environments), are those open to innovation. Because they never learn from
the past, automata have less competitive potential of automata; this explains why once
informata have emerged in evolution they easily took over the world making all present
living systems informata. During this transition, control has also shifted from being
thermodynamics-based to being information-assisted as well. Last but not least, most
informata have sufficient information content to evolve the capacity to reproduce; hence-
forth, they are better at filling the habitable space with copies of themselves. During
competition, informata multiply fast, because in their case information too (apart from
thermodynamics) controls the final equilibrium between system variants. In doing this,
informata can eliminate competitors even when differences in performance between phe-
notypes are petite. Automata too, can evolve toward many information variants, but
because they do not have an efficient strategy for selection-to-elimination of the less fit
they end up in thermodynamic equilibrium among competitors.

A continuing problem of the origin of life is explaining the evolution of automata (or
very simple systems) toward increased complexity and elimination of less-fit competitors
prior to the advent of replication of information and informata systems. In homogeneous
environments, rather than competitive elimination information variants evolve toward
thermodynamic equilibrium and endless diversity (an indirect agreement with the 2nd

law of thermodynamics). Such clusters of systems will accumulate large collections of
information variants, analogous in consequence with Manfred Eigen “quasi-species” and
“error catastrophe” [3], instead of eliminating the less fit. During this crisis the pace of
corralling diversity is lower than the pace of creating diversity. The habitat populations
of automata occupy fills with random diversity, mediocre information, low order and poor
networking, low complexity and thermodynamic equilibrium; these trends are opposite to
the origin of life. Solutions to these problems are key to any origin of life theory. In theory,
evolution via competition-to-elimination of the less fit automata could not have occurred if
the environment was poor in free energy; i.e. insufficient for supporting the maintenance
and the buildup of information. At the other end of the spectrum, in energy copious
environment energy starvation cannot occur. This demonstration has not been made and
implications have not been studied. Informata show extensive self-controlling capabilities.
On the opposite, automata are to a large extent controlled by their environment and the
stability of their parts. The questions we tackle in this study are:

- What properties should a primitive environment have, to drive the elimination of
less competitive systems when differences in performance between competing systems are
petite?

- In what circumstances do catalysis (and autocatalysis) help this elimination process?
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Figure 1: Diagram of the model used in this study for analyzing competition between
two types of low complexity automata with similar cyclomatic complexity (Syst.1 and
Syst.2). The two systems compete for building materials (BM) and free energy (W) in a
closed environment (i.e. with energy exchanges, but no exchanges of materials with the
exterior). Q = heat energy released from activity. Albeit changes in proportion between
internal components occur within each system during simulation, no inheritable variation
exists (typical for automata). Details of the structure and function of these systems are
given in the Appendix section.

- From an information and energy point of view, catalysis (and autocatalysis) are not
free. How are their costs and benefits balanced? And how are they used in prebiotic
competition simulations?

2 Materials and Methods

Basic structure and functioning of systems analyzed
The model created for this study is that of competition for building materials and

energy between low complexity automata (Figure 1). In this study we analyze how com-
petition is influenced by three factors: energy availability (in an energy homogeneous
environment with bottomless heat sink); thermodynamic stability of system parts and
catalysis/autocatalysis. We also discuss advantages and pitfalls of increase in order (an
expected outcome of prebiotic evolution). A Stella8 implementation of this model is
available at: http://www.ksg.ro/Buildingmodel71vmc.STM . The model is explicit, so
that readers can re-construct it in another dynamic simulation program.

Principles for model construction
Explaining the origin of life requires knowledge of disequilibrium thermodynamics

[4]-[6], theory of information and statistical mechanics [7]-[9], as well as drivers of trans-
formation and basic trends of prebiotic evolution [10]-[18]. Because the essence of life is
composition independent, but also because ”not everything that is measurable is worth
measuring”, many prebiotic simulations have been created that sacrifice mimicking minute
details of the real world, for the sake of explaining the origin of life broadly by means such
as meta-chemistry, non-earth centric, non-chemical centric and using abstract modeling
principles [13], [19]-[27].

The modeling avenue chosen for this study is BiADA (acronym for Biotic Abstract
Dual Automata), [28]-[29]. BiADA models use the following set of rules:
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1) Modelled systems are abstract. Units of measure common in chemical system
analyses, such as the Avogadro number (NA), molar concentration (M), Boltzmann’s
constant (kB) and a universal energy content per unit of information (Landauer bound,
see below), are optional and not absolutely needed to explain prebiotic evolution.

2) Each system or form of organizing building blocks has two energy features: free
energy content (eg); disorder (or entropy)-related energy content (es) (equivalent to heat
content from chemistry),

3) Each system or form of organizing building blocks has two information features:
residual information (IRs) and remnant information (IRm).

4) For computational simplicity, EG, ES, IRs and IRm only take absolute (zero or
positive) values.

5) All transformations are discrete increments or decrements of building blocks, energy
and information, and transformations are expressed in integers of both units of transfor-
mation and units of organization.

6) Forward and reverse transformations are analyzed separately (i.e. as uni-flows).
Flows too only have absolute values and a model measures both the brut and net changes
and exchanges.

7) The direction and equilibrium of a process is not derived from changes in entropy
and standard free energy values, but rather from net rates of forward and reverse trans-
formations. Albeit not using conventional equilibrium calculations the meaning of free
energy, entropy and equilibrium remain the same as in conventional thermodynamics.

8) During transformations, the efficiency of exchanging free energy between two forms
of organization (i.e. source and target) depends, among others, on similarity/differences
between information content (i.e. meaningful information). Because the exchange of
meaningful information between source and target is seldom 100% efficient, most trans-
formations require import of free energy even in exergonic directions.

Energy and information in BiADA models
Features of BiADA models explained in earlier publications explain: basic model lay-

out; justifications for various formulas; software-specific commands for Stella software
implementation and sequence of actions for introducing data in a model [28], [2], [29].
Here, we only summarize parameters important for this study. ES is the disorder-related
(i.e. entropy-; heat-, or IRs-related) energy content of a system or form of organization.
For homology, in thermodynamic systems ES = T· S* (where: T = temperature; and
S* (or absolute entropy) = kL ·IRs). The kL parameter is explained below. EG is the
order-related (i.e. free energy- or IRm-related) energy content of a system or form of orga-
nization. Homologous to thermodynamic systems, EG = -G* (where: G* = the sum of all
standard bond energies or bond dissociation enthalpies) [32]. IRs or residual information
(i.e. unused information or information capacity), is the information capacity of the dis-
ordered part of a system or form of organization. For homology to statistical mechanics
and theory of information, IRs = D = log2Ω (where: D = information capacity or Shan-
non entropy measured in bits [7]; and Ω = the total number of potential microstates of a
given system state). IRm is the removed (or remnant) information of a system or form of
organization and represents information capacity lost to order (dIRs = -dIRm). IV t (= IRs

+ IRm) is the virtual information, or maximum information capacity of a system in fully
disordered state. Relative to the theory of information, IV t is equivalent with Shannon’s
channel capacity [7]. A system is assumed to be fully disordered when IRm = 0 and IV t =
IRs, while order is present in a system when IRm > 0 and IRs < IV t. Because in most cases
the energy amount per bit varies between the disordered part and the ordered part of a
system (i.e. ES/IRs ̸= EG/IRm), changes in the ES/EG of a system are not quantitatively
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correlated with changes in IRs/IRm. Meaningful information (IMn) is a difficult concept
if analyzed for a single system [38]. In BiADA, IMn is a measure relating two or more
systems or forms of organization. E.g., IMn is the amount of the IRm describing the or-
ganization of a source system (say: A) that is meaningful to the IRm of a receiver system
(say: B): IMn(AB) = IRm(A)∩ IRm(B). In BiADA models, one hundred percent efficient
information transfer means that: when IRm(A) > IRm(B) all information content needed
by B is available in A (i.e. IMn(AB) = IRm(B)); and also that when IRm(A) < IRm(B) all
information content of A is shared unaltered towards B.

Relationship between energy and information in BiADA models
The parameter kL (= S* / IRs) is the energy equivalent of a unit of information ca-

pacity [28], [2], [29] homologous in meaning to the Landauer bound (or Landauer limit)
from statistical mechanics [31], [36]. It is assumed that kL is constant for a whole class of
systems made of similar building blocks, yet may vary between systems of dissimilar type
[30], [33], [34], [35], [37] or systems at various scales. One should reasonably expect for
kL to vary between dissimilar systems such as chemical systems vs. cybernetic systems
and vs. socio-economical systems. This issue becomes important when analyzing non-
conventional life analogues, systems at various levels of hierarchical organization and in
chemistry-independent artificial life models. Although kL may vary, the basic principles
of organization and evolution of such systems remains the same. For example, at standard
temperature, kL (koL) = ES · To / (IRs · T). For models of chemical systems we assume
that kL (or Ebit) = kB· T· ln2 = 2.8·10−21 J bit−1 at 20oC [28], [2], [29]. Similar to abso-
lute entropy (S*), the ES and IRs of a system are difficult to determine in the real world.
Yet, this does not make these parameters less real. From a thought experiment point
of view, ES is the integrated heat capacity at constant pressure (CP ), or heat absorbed
by the degrees of freedom of a system, between 0 K and the temperature of observation
[28]. In practice, such measurement would only be straightforward if no changes in order
(i.e. phase transitions) occur, as a system is cooled to zero K. In reality, various bonds
and novel forms of organization emerge and are destroyed at various temperatures, due
to ordering effects of fundamental forces, altering the IRs and CP of a system. Yet, in ab-
stract system modeling (BiADA included), S*, ES and IRs take absolute and quantifiable
values. This helps explain in an empirical way why transformations occur in a system
and the effect of internal heat and temperature on the stability of a system or form of
organization. The parameter kG = EG / IRm from BiADA models, called ”Gibbs bound”
is the free energy associated with adding or removing order (or IRm) in a system. Unlike
kL, the kG parameter may vary with each type of organization and organization upgrade
(e.g. analogous to various types of bonds from chemistry). One form of organization
often consists of many types and layers of order. Thus, in models, specific kG values are
introduced (or deduced) for each system, form of organization or order upgrade. In a
thought experiment EG and IRs may be measured by combining results of calorimetry
with prior knowledge of ES, as temperature increases until all bonds are broken, all order
is disintegrated, IRm becomes zero and IV t = IRs. Yet, because ES and IRs cannot be
measured with precision and will vary with temperature, the EG and IRm of real world
systems are difficult to determine precisely. An EG approximation for chemical systems
can be obtained by adding all bond energies, albeit evaluating IRm (and thus kG) is still
difficult. Yet again, this does not mean that EG, IRs and kG are unreal physical realities;
such parameters are meaningful and very useful in abstract models.

Controllers of order in a prebiotic system
Presence of order (Ord) in a system depends on balance between ordering and disor-

dering factors. In simple models, it can be assumed that IRm > 0 requires that EG ≥
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ES. Yet, overall EG < ES does not exclude the existence of order. The Ord ∵ EG-ES ≥
0 constraint works at local scale, or when the distribution of EG and ES is homogeneous
throughout space, or when interaction is possible between IRs and IRm. Yet, if the distri-
bution of building blocks (or of EG vs. ES) is heterogeneous, (such as when areas of order
are separated from areas of disorder with little interaction between them) order may yet
exist locally even if the overall EG < ES. As temperature increases heat is absorbed in
the ES reservoir proportional to IRs until ES = EG. When this threshold is reached (and
contingent upon IRs and IRm partition) order is degraded (beginning with the weakest
bonds first) and part of IRm is lost to IRs. This change enhances the capacity of the sys-
tem to absorb heat (because ES = T · kL · IRs), and more order destruction occurs. The
process continues until only the strongest bonds and structures remain, where at least
locally and for the given temperature EG > ES. This is the empirical explanation why
phase transitions are fast during heating and cooling. Abstract models of prebiotic net-
works should include this effect as well, because they can produce systems where minute
changes in phenotype have major consequences on competition success.

In real world systems, order is mixed with disorder and EG and ES are not fully
separated. Their separate accounting in abstract models is yet useful because it allows
discussing their individual contribution to the behavior of a system. For example, one can
deduce from such analysis that pure order has no temperature, because only degrees of
freedom (i.e. IRs) have the capacity of absorbing heat. It follows that a fictional system
with one hundred percent order (i.e. IRs = 0; and ES = 0) and no material exchanges with
the exterior, will have zero heat content and heat conductivity and (at least in theory)
should be indestructible by heat alone. In the real world however, IRs is never zero, and So

all systems and forms of order are heat sensitive. This avenue of reasoning also explains
why systems with larger EG values tend to be more heat resistant and generally have
lower heat capacity (CP ) than systems with lower EG values (at comparable composition
and kG). No universal relationship exists between EG and (CP ), because kG varies among
various levels and forms of organization.

Absolute and relative values for free energy and entropy
Equilibrium thermodynamics calculations circumvent the need for absolute entropy

(S*) and absolute free energy (G*) by using relative parameters such as standard entropy
(So) and standard free energy (Go). With regard to the energy exchanged, the So-based
and Go-based calculations do not analyze uni-sense transformations, but only net differ-
ences between forward and reverse transformations. This approach works well in simple
reaction models, but underestimates the energy dissipative potential and energy flow of
systems in state of dynamic kinetic stability, (which is common in energy dissipative
systems and biochemical networks). The BiADA approach to modeling aims addressing
this limitation [28]-[29]. In chemical systems another solution exists: a reference form of
organization has been selected (i.e. H+(aq)), and given by default a So = 0 and Go =
0. The reason H+(aq) is used as zero reference is because it is the smallest and simplest
chemical nucleus analyzed, and because it is analyzed in a aqueous environment under
standard conditions of temperature and pressure (i.e. common for the natural chemistry).
Extraterrestrial chemists however, living on a planet where another fluid and another tem-
perature regime may be more common may choose another set of standard conditions for
equilibrium thermodynamic calculations.

The So value of all chemicals and ions is measured relative to the zero reference (i.e.
chemicals in the simplest, stable elemental form). So and S* are linearly correlated and
measured in similar units. They can be placed on the same scale, yet shifted with the zero
point in different position, analogous to oK and oC on the temperature scale; consequently

135



albeit So ̸= S*, dSo = dS*. Unlike entropy, Go and G* have dissimilar meaning and, on a
graph, they will appear independent of each other; consequently, dGo ̸= dG*. dGo values
measure differences in stability in standard conditions relative to the standard state, and
thus measure changes in free energy during net transformations. dGo measures changes in
free energy content (the energy content of bonds) during uni-sense transformations. dG*
alone cannot be used to predict whether a transformation was exergonic or endergonic.
To obtain such information, models have to include parameters such as K, Q, Go and T
or have to monitor forward and reverse transformations. In BiADA, EG = -G* because
order (and bonds) are assumed to only contain positive energy.

3 Results and Discussions

Series 1 of simulations
In this series, two systems (network types or forms of organization) called Syst.1

and Syst.2 compete, no free energy is available from the exterior, and the A and B
units of organization (i.e. components from the systems) form only due to software rules
external to the systems (analogous to fundamental forces). The structures A and B only
contain building materials (BM), free energy and heat and the information used in their
construction is not resident in the systems or controlled by the systems. The model has
the architecture shown in Fig.1 and the initial conditions from Table 1. Table 1 also
gives the meaning for the various parameters used in the model. We have analyzed how
changes in the degradation rate of A2 and B2 influence competition between the two types
of systems (Syst.1 and Syst.2). The competitive success of Syst.2 was examined based on
two factors: (1) changes in the rate of reduction of Syst.1; and (2) the ability to totally
eliminate Syst.1.

Table 1. Input variable used in the series 1 of simulation.

Init. no. of units of transformations Forward transf. rates Reverse transf. rates

Units BM init=1e10 Ro BM to A1=1e-3 Ro A1 to BM=1e-3

Units A1 init=2e8 Ro A1 to B1=1e-6 Ro B1 to A1=1e-5

Units B1 init=1e3 Ro BM to A2=1e-3 Ro A2 to BM=1e-3

Units A2 init=2e8 Ro A2 to B2=1e-6 Ro B2 to A2=1e-5

Units B2 init=1e3

Run conditions: DT=1; N0. of steps: 32500 or DT=10;

No. of steps:325000 or DT=20; No. of steps: 650000

E input and Euptake effieciency Catalysis and Energy availability

free E input =0 Cat natrl A1 to B1 =1

F Euptake A1 to B1 =1 Cat natrl A2 to B2 =1

F Euptake A2 to B2 =1 Autocat B1=0

Eff Etransfer A1 to B1=1 Autocat B2=0

Eff Etransfer A2 to B2=1

As expected from basic reasoning, results show that if no Ro differences exist between
Syst.1 and Syst.2, no successful competition occurs and the two systems of organization
end up with similar ratios at the end of simulations (Fig.2, Panel A, Plot 1). Next, we have
analyzed changes in competitive success due to two parameters: lower degradation rate
of A2 than A1 (i.e. ”Ro of A2 to BM” < ”Ro of A1 to BM”) and lower degradation rate
of B2 than B1 (i.e. ”Ro of B2 to A2” < ”Ro of B1 to A2”). These changes are expected
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to favor the B2 form or organization and Syst.2. Lower ”Ro of B2 to A2” should also
increase the relative abundance of B2 vs. B1, while lower ”Ro of A2 to BM” should
increase the capacity of Syst.2 to over-compete Syst.1. Simulation results confirmed these
expectations (Fig.2). When the value of ”Ro A2 to BM” was 1e-7, total elimination of
B1 has occurred within 560,000 steps (for a D.T. Stella parameter of 100). We have also
verified the effect of lowering the ”Ro B2 to A2” in the 1e-10 to 1e-5 range. At ”Ro
B2 to A2” of 1e-10 (and D.T. = 500), B1 has decreased to 1,561,500 units after 1.5e7
steps (results not shown). For the initial conditions used in this simulation the maximum
duration allowed by the program did not result in B1 = 0. Yet, the asymptotic trend
suggests that elimination of B1 may occur after approximately 1e+10 steps. Naturally,
the information regarding the construction of B1 and A1 cannot be lost when A1 and
B1 are eliminated because this information is resident in the rules of assembly (which
are external to the competing systems). This is unlike complex networks where blueprint
information is also stored in the systems themselves.

Without free energy from the exterior, we started from A and B having similar degra-
dation rates between Syst.1 and Syst.2 (i.e. ”Ro of A1 to BM” = 1e-6; ”Ro of A2 to
BM” = 1e-6; ”Ro of B1 to A1” = 1e-6 and ”Ro of B2 to A2 = 1e-6”), and compared
effects on competition between the two types of systems. Fig.2 illustrates the effect of:
(1a) Decrease in the degradation rate of A2 vs. A1; (Fig.2, Panel A); and (Fig.2, Panel
B, Plots 1 vs. 2); (1b) Decrease in the degradation rate of B2 vs. B1; (Fig.2, Panel B,
Plots 1 vs. 3); and (1c) Combined lower changes in the rate of A2 and B2 vs. A1 and B1
respectively, and relative to the above simulations from (1a), (Fig.2, Panel B, Plot 4).

Table 2 Ro A1 to BM Ro A2 to BM Ro B1 to A1 Ro B2 to A2

Plot (1) 1e-6 1e-6 1e-6 1e-6

Plot (2) 1e-6 1e-8 1e-6 1e-6

Plot (3) 1e-6 1e-6 1e-6 1e-8

Plot (4) 1e-6 1e-7 1e-6 1e-7

Results show that lowering the degradation rate of A2 has more beneficial effects on
the competitive edge of Syst.2 than lowering the degradation rate of B2. Also, decrease
in the degradation rate of both A2 and B2 is a very efficient strategy to increase the
competitiveness of Syst.2 (i.e. synergism). From prebiotic perspective, it is more likely
for an automaton to succeed in eliminating other automata through smaller (i.e. less
costly) changes in the rates of transformation of many of its internal components, than by
a very large change in the degradation rate of one or only a few of its internal components.
It indicates that at this stage of system organization, similarity in the effect of change of
various components from a system was an important selective factor.

Series 2 of simulations
In this series free energy was available from the exterior in uniform rate of supply. We

have used the conditions shown in Table 1, except that the rate of degradation of A2 was
lower (i.e. 1e-4 rather than 1e-3; similar to differences in competition between Syst.2 and
Syst.1 in Fig.2 Panel A Plot 1 vs. Fig.2, Panel A, Plot 3. In Series 1 of simulations this
difference in thermodynamic stability favors Syst.2. In Series 2 we have analyzed how
the availability of external free energy influences competition between the two types of
systems. This competition was studied from four perspectives (explained below in the
sections 2a, 2b, 2c and 2d).

(2a) Changes in the rate of Syst.1 removal; and
(2b) Changes in the final equilibrium between Syst.1 and Syst.2
A first tier series of simulations has indicated that when free energy becomes avail-
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Figure 2: Graphs summarizing the results of Series 1 of simulations. Evolution of the
competitive success of Syst.2 relative to Syst.1 in response to changes in ”Ro A2 to
BM”. In the model, ”Compet success 2 vs 1” is measured as ((A2+B2) - (A1+B1)) /
(A1+B1+A2+B2). Panel A shows that lower values for ”Ro A2 to BM” (i.e. decrease
in the rate of degradation of A2 relative to Table 1 favor Syst.2. ”Ro A2 to BM” =
1e-3 in Plot (1); 5e-4 in Plot (2); 1e-4 in Plot (3); 5e-5 in Plot (4) and 1e-5 in Plot (5).
Panel B shows results of lowering the degradation rate of A2. Plot (1) is a control with
similar values for the degradation rates of A1 and A2 and for the degradation rates of B1
and B2. Plot (2) shows that lowering the degradation rate of A2 relative to A1 increases
the competitive success of Syst. 2. Plot (3) shows that lower rate of B2 degradation
favors Syst.2, and that lowering the degradation rate of A2 is more important to the
competitive success of Syst.2 than lowering the degradation rate of B2. Plot (4) shows
that lowering the degradation rate for both A2 and B2 relative to A1 and B1 respectively
favors Syst.2 almost as much as very low degradation rate of A1 (Plot 2); a typical example
of synergism. This is important because in this material we seek to study circumstances
leading to large competitive success when differences in parameters between systems are
petite.

138



able Syst.2 becomes less competitive, and also that the competitive edge of Syst.2 was
lost when the free energy level reached 1e-10 (Fig.3, Panel A). At first glance, this may
indicate that differences in transformation rates (expected to drive competition success)
may be cancelled by an excess of free energy in the environment. However, upon careful
examination, not all levels of free energy lower the competitive advantage of Syst.2. For 0
< free energy < 3e-13, Syst.2 is actually favored (Fig.3, Panel B). An optimal free energy
value exists for this particular set of conditions (approximately 1.5e-13; relatively similar
to the Fig.3, Panel B, Plot 4) where Syst.2 has the advantage above the competitive level
that is expected based on differences in degradation rates alone.

Results of the 2a and 2b series of simulations show that free energy helps those system
containing components with largest stability (decay rate or survival rate), but only within
a specific free energy range. In fact, excess free energy cancels the competitive benefit of
a larger survival rate. The exact values are model dependent. In our model, this effect
was produced by the fact that free energy unused by Syst.2 (the system with components
having lower decay rate), became available to Syst.1; consequently, no energy limitation
has occurred and free energy stopped being a controller of information selection. An
optimal level of free energy was also found where energy availability and lower rate(s) of
degradation had synergic effects on competition-to-elimination. This is important with
regard to the origin of prebiotic networks, because it shows that the efficiency of catalysis
and energy dissipative potential must have evolved ”in tune” with the availability of free
energy in the environment. It may also indicate that one purpose of the catalytic energy
dissipation is deliberate creation of energy limitation and thus starvation of competitors.
Because BiADA models are abstract, this observation is also meaningful for analyzing
competition between other types of systems. It includes for example optimization strate-
gies in socio-economical systems. For example when socio-economical systems compete,
the choice for using cheap and disposable system components (commonly linked with short
half-life, high turnover of materials and energy, which also make systems more tolerant to
variability and change), as opposed to more costly and long lasting components (linked
with curbing waste, traditionalism in organization and lesser tolerance for variability and
quick-fixes) should be a strategy dependent upon predicted availability of resources. Al-
beit not analyzed in prebiotic networks, this observation is common in socio-economics
where excess free energy is linked with consumerist and poor recycling strategy, and vice
versa, resource limitation is linked with traditionalism and more efficient recycling. The
most interesting part here is the connection between energy availability and the pace of
adaptive evolution.

The effect of E availability on:
(2c) The competitive success of the fittest system; and on
(2d) The time threshold to eliminate the less-fit.
Fig.4 Panel A shows the final equilibrium between Syst.2 and Syst.1 after 325,000

steps using the conditions from Fig.2, Panel A, Plot 3, and various levels of free energy.
In this series of simulations we have used free energy levels between 1e-15 and 1e-4. For
Fig.4, Panel B we have selected a set of degradation rates where Syst.1 was totally elim-
inated, even when the available free energy was zero (Table 1 input conditions, Fig.4,
Panel B), and analyzed the effect of energy availability on the time needed to eliminate
Syst.1. Competition-to-elimination is a means to ”sanitize” the environment of useless
information variants and to corral diversity in the future. Anything less than total elim-
ination of competitors is unacceptable because it increases the diversity of information
variants when free energy becomes copious. We found that if the A2 and B2 components
were more stable than A1 and B1 respectively, the addition of free energy helps Syst.2
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Figure 3: Graphs summarizing results of Series 2 of simulations (2a and 2b). Panel A
shows the effect of energy availability on the competition between two systems: Syst.1
and Syst.2 (measured with regard to the rate of change) in the early part of the simulation
(up to 10,000 steps). The proxy for the competitive success of Syst.2 is a parameter called
”Compet success 2 vs 1” (see: the caption of Fig.2). ”A2 to BM” = 1e-4. The ”free E
input” is: 0 in Plot 1; 2e-12 in Plot 2; 5e-12 in Plot 3; 9e-12 in Plot 4 and 1e-10 in
Plot 5. Panel B shows results of simulations for analyzing the effect of the availability
of free energy from an external homogeneous source on the competition between Syst.1
and Syst.2. When no external free energy exists, i.e. ”free E input” = 0 (Graph A,
Plot 1) the B2 type of information is favored (homologous to thermodynamic advantage)
because ”Ro A2 to BM” < ”Ro A1 to BM” and ”Ro B2 to A2” < ”Ro B1 to A1”. The
addition of free energy in the range 0 < ”free energy input” < 1e-13 results in increasing
the abundance of Syst.2. Above 1e-13, but when ”free E input” < 3e-13 (Graph A Plot
5) free energy still benefits Syst.2, relative to ”free E input” = 0, albeit less than when
”free E input” = 1e-13. ”Ro A2 to BM” = 1e-4. The ”free E input” is: 0 in Plot 1; 1e-15
in Plot 2; 1e-14 in Plot 3; 1e-13 in Plot 4; 3e-13 in Plot 5 and 6e-13 in Plot 6.
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eliminate its competitor (Syst.1) more efficiently. In order for the external energy to in-
crease the stringency of this competition, the external energy has to be within a specific
range. Either too little or too much energy is unfavorable for competition-to-elimination.
In most cases the energy level alone was insufficient to produce total elimination of the
lesser efficient Syst.1, and free energy hastened the elimination of an information package
(in this case Syst.1), that was going to be eliminated anyway. Albeit not impossible, it
is more difficult however, to find a level of free energy that could lead to elimination of a
system if the potential for elimination (based on differences in transformation rates) do
not exist already. This effect caused by free energy did not occur when only one form of
organization (either A2 or B2) was more stable than its homologous competitor (i.e. A1 or
B1 respectively), (results not shown). Both A2 and B2 had to be more stable than A1 and
B2 (respectively) in order for this effect (i.e. enhancement of competition-to-elimination
with the help of external free energy) to be produced. In the future, it would be very
interesting to study this effect in complex networks (i.e. automata with more types of
internal components), in order to analyze the correlation between the pervasiveness of
stability among the components of a network and its competitiveness.

We found that the free energy level available in the environment is very important for
accelerating the elimination of over-competed information. With regard to the origin of
life, a narrow relationship had to exist between differences in degradation rates between
competing systems and the free energy available in the environment. Because free energy
is in this case the independent variable, the stability of prebiotic information must have
followed changes in the availability of free energy, or in the efficiency of up-taking free
energy (see: Appendix, Fig. 6).

Series 3 of simulations
In this series we have analyzed the effect of B2 autocatalysis (parameter ”Autocat

B2” in the model) on competition between Syst.2 and Syst.1, and on the response of
this competition to the availability of free energy in the environment. We still assume
that free energy was homogeneously available. Except for ”Autocat B2” and varying
levels of free energy, input conditions were similar to those from Simulation 2d (Fig.4,
Panel B). When the free energy level was very low (e.g. 1e-13) autocatalysis did not help
Syst.2 over-compete Syst.1. When the free energy level was 5e-12, and autocatalysis was
little, Syst.2 was less competitive relative to the Control conditions, and Syst.1 was not
eliminated. Increasing the efficiency of ”Autocat B2” also increased the competitiveness
of Syst.2. When the free energy was abundant (e.g. 1e-10) and ”Autocat B2” was zero, no
elimination of Syst.1 has occurred. Yet, under the same conditions, increasing ”Autocat
B2” to 0.6 level helped Syst.2 eliminate Syst.1.

Next we have asked whether a specific relationship exists between the free energy level
and the autocatalysis of B2 that can help Syst.2 eliminate Syst.1 more efficiently. Fig.5,
Panel B analyzes this relationship. Another question is: are some levels of free energy
so extreme that changes in Autocat B2 cannot help this competition? We found this to
be true for very low free energy levels and low Autocat B2 values. When the free energy
level was little, small changes in ”Autocat B2” had sizable effects on competition-to-
elimination. When the free energy level was very large (e.g. 1e-4) Syst.1 was eliminated
at ”Autocat B2” > 1.25, but not at ”Autocat B2” < 1. In this program any Autocat
values larger than zero represent catalysis and negative value represent inhibition.

We found that relationship exists between energy availability, autocatalysis and the
stringency of competition between low complexity automata. The optimum autocatalysis
value for fast elimination of competition depends on the free energy level. In environments
with low levels of homogeneous free energy, and where competition-to-elimination already
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Figure 4: Graphs summarizing the results of Series 2 of simulations (2c and 2d). Panel A
shows the effect of energy availability on the final equilibrium between Syst.2 and Syst.1
using the input conditions from Fig.2, Panel A, Plot 3. Panel B. Graph based on input
conditions selected so that Syst.1 was totally eliminated(see Table), showing how fast
Syst.1 is eliminated, as a function of the available free energy. If ”free E input” = 3e-12,
total elimination of Syst.1 occurs after 127,730 cycles. If ”free E input” = 4e-12 Syst.1
is not eliminated. The fastest elimination of Syst.1 (i.e. 41,240 steps), occurred when
the”free E input” was 1e-12 (i.e. the point of optimum free energy availability for helping
Syst.2 over-compete Syst.1).
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Figure 5: Graphs summarizing the results of Series 3 of simulations. Panel A. The effect
of changes in autocatalysis at different levels of free energy on the competition between
two systems of organization. The plots represent various energy levels and the OY axis
represent the time of death (in simulation steps) of Syst.1. Panel B. Graph showing the
”Autocat B2” level for various free energy levels where Syst.2 begins eliminating Syst.1.
Prior to this level Syst.1 is not eliminated.
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existed, autocatalysis did not help. Autocatalysis became more useful for selection-to-
elimination at higher levels of free energy. When the level of free energy has increased,
differences between unsuccessful and successful competition have narrowed, and small
changes in autocatalysis sharpened the selective effects. We reason that after competitiv-
ity has peaked there is no advantage in further increasing the efficiency of autocatalysts,
and therefore selection toward more efficient autocatalysis will lose momentum. With-
out autocatalysis however, competition between simple automata is highly sensitive to
variation in free energy availability. Our interpretation is that free energy only helps
systems compete within a narrow range of free energy availability, and that autocatalysis
helps systems by making competition-to-elimination more efficient over a broader range
of free energy availability. We have also found that linear correlation exists between the
autocatalysis of a form of organization (i.e. B2 components in this model) and the log
of the free energy level where Syst.2 could no longer eliminate its competitor. Hence-
forth, we propose that for a given competition situation it is possible to predict an energy
level were elimination of less efficient competitors is not possible. Vice versa, the level
of autocatalysis that may help a type of information (system of organization) eliminate
its competitors should also be predictable. These results support that during prebiotic
evolution one potential solution pushing systems toward ”error catastrophe” (analogous
to [3]) is synergism between energy availability and autocatalysis.

The effect of internal order on prebiotic competition of simple automata
Earlier simulations have shown that the relationship between energy availability and

the efficiency of autocatalysis is an important controller of the time needed for eliminating
the less efficient competitors (Fig.5, Panel A). When free energy becomes more abundant
more efficient catalysts are needed to starve the competitors. This in turn, also increases
the risk of an ”error catastrophe”. In this section we discuss how changes in internal order
may influence competition-to-elimination. This subject is extensive and its full analysis
will require a separate study. Here we only discuss the guiding principles of such analysis.

This problem can be simplified to the following: Increase in the level of order in
a system (i.e. increase in IRm/IRs ratio) is expected to influence fitness. Increase in
the specificity (and efficiency) of catalysts, improves competitiveness, but requires infor-
mation. Very often, albeit not always, increase in order has the added benefit of also
increasing the half-life of a form of organization (or system). On the flip side however,
remnant information (i.e. the basis of order) comes with higher free energy costs, which
may lower competitiveness. In systems with high compositional diversity, the number of
possible forms of order increases exponentially with the number of types of components.
Hence, albeit increase in catalytic specificity requires more order, increase in order does
not guarantees that an increase in catalytic efficiency will also occur. In order to move to-
ward this next step in evolution systems need sufficient time to explore numerous system
stats and select the most appropriate form of order. Finding the environmental conditions
that will give competing systems incentive to change, yet also give them the time they
need to ”experiment with”, and to screen among f, numerous information variants is one
of the most important subjects in the study of the origin of autocatalysis. This is im-
portant because once this step is taken (i.e. fast screening of variance and autocatalysis)
the evolution of information toward life gains both momentum and direction. Albeit the
model we have constructed here allows it, this subject is too extensive to be explored
in this manuscript. Readers can yet use the model to study the effect of the following
variables on the competitivity of Syst.2:

−Decrease the IRs of B2. This will increase the IRm, increase the Order level of Syst.2,
increase the EG of B2, and make the construction of each Syst.2 more expensive. In this
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situation one can study the cost of added order on the competitiveness of a system.
−Changes in the availability of free energy. Too little free energy is expected to

handicap Syst.2, which is more expensive to make, while too much energy will make some
unused free energy available to Syst.1, thus diminishing the stringency of elimination of
Syst.1 by Syst.2.

−The effect of changes in order on changes in stability; i.e. larger ”IRm R2” values
can be mathematically linked with the degradation rate of B2 (”Ro B2 to A2”). Lower
degradation rate of B2 helps by making Syst.2 more stable than Syst.1. The faster
turnover of Syst.1 will make this system ”leak” building materials in the environment
and help Syst.2 expand its habitable space.

−The effect of changes in the order of Syst.2 on changes in the autocatalytic efficiency
of B2. Increase in ”Autocat B2” is expected to increase the competitiveness of Syst.2,
but only if sufficient building materials and free energy are available.

We posit here that the properties of the environment, in particular the availability
of free energy, were a key regulator of the prebiotic evolution of self-controlled order.
Interestingly, this autocatalysis conjecture links free energy with selfish information, i.e.
creates a causal relationship between energy availability and prebiotic evolution toward
self-rewarding order.

4 Conclusions

In this study we have analyzed the effect of energy availability, differences in thermo-
dynamic stability and autocatalysis on competition between low complexity automata.
We found that energy limitation and differences in thermodynamic stability can produce
competition-to-elimination even in the absence of autocatalysis. Yet, the margin of error
for this selection is narrow and different competing systems and levels of organization
require different energy availability levels. When differences in competitiveness exist be-
tween systems, low energy availability speeds up the selection-to-extinction process. With
regard to the origin of life, this means that selection of low complexity automata could
not have occurred in energy copious environments, but have required environments that
were either poor in energy (in general) or energy-limitative (relative to a specific system’s
needs).

Subsequently, selective evolution became more complicated due to the fact that as
prebiotic networks have evolved and became more ordered and more complex their en-
ergy needs have also increased. In the absence of adaptive innovations (such as increase
in the efficiency of free energy uptake), biogenic environments must have also become
progressively richer in free energy in order to support competition between more com-
plex networks. During the origin of life, the pace of evolution in complexity and the
energy cost of order must have been tightly correlated with the evolution of energy avail-
ability, because insufficient free energy prohibits order and complexity and excess free
energy negatively influences the odds for competition-to-elimination between automata.
Without the addition of more innovative mechanisms, the pace of this increase in energy
availability could not have been faster than the time needed for information variation and
selection to occur. Therefore, it is assumed that the pace of increase in energy availability
in the biogenic environment must have been slow, and prebiotic evolution, albeit it could
have been faster, lagged behind the evolution of energy availability.

An important adaptation to increased energy availability to a system was autocataly-
sis, which allows automata to express competition-to-elimination at larger free energy lev-
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els and over broader range of free energy availability. Selection-to-extinction is ESsential
for prebiotic evolution. Without it, information variants accumulate and choke the hab-
itable space with excessively diverse information. Our results indicate that prebiotic
systems are likely to have originated in an energy-limiting environment that had progres-
sively (albeit slowly), changed toward a state of higher energy availability (albeit never
copious in free energy relative to the needs of resident systems). In such environments,
autocatalysis helped selection-to-extinction during episodes when energy availability has
steadily increased.

We hypothesize that the most deeply rooted biogenic event, which led to the creation
of the first prebiotic network, was symbiosis between an automaton capable of harvesting
free energy from the environment and a selfish gene (i.e. an autocatalytic replicator
preserving the specificity of the internal information). During competition between low
complexity networks, selection was controlled mainly by differences in the stability of
internal components, availability of free energy and autocatalysis. We speculate that the
next major innovation in prebiotic evolution was the origin of dynamic systems capable
of adjusting their energy dissipative potential to the availability of free energy. This
adaptation produced systems capable of energy-starving their competitors, yet capable of
withstanding wide range of energy availability. This also shifted evolution toward a novel
paradigm where selection-to-elimination and equilibrium between competing systems (i.e.
information variants) changed from being predominantly controlled by thermodynamics
and kinetics to being controlled by internal information as well.

5 Appendix

The automatons used in this study have the structure and free energy exchanges shown
in Fig. 6.

Principal external controllers of low complexity automata (such as those from Fig. 1
and Fig. 6) are proposed to include: energy availability, free energy homogeneity, temper-
ature and the magnitude of the terminal heat sink. Low energy availability means that
free energy from the environment is insufficient to maintain a given system state. Envi-
ronments where free energy is the first resource to be exhausted are defined as ”energy-
limiting”. In such environments dynamic systems are streamlined. Either the internal
order decreases, or systems assume states of lower free energy per unit mass or require less
free energy to maintain. The time averaged energy density in an environment may appear
to be sufficient for maintaining a system’s state, but the availability of energy may vary
considerably with time, reaching sub-liminal or harmfully large levels for periods of time
that are too long for the system state to survive. Systems not making sufficient reserves
of energy during periods of bounty may change irreversibly during extensive periods of
energy paucity. In such environments, successful survival strategy for automata includes
making reserves of free energy, or rebuilding the system by using structures (forms of
organization) with increased stability. Last but not least, environments with unlimited
capacity to absorb heat influence the selection of dynamic systems based on their energy
dissipative potential. Systems that cannot dissipate heat energy efficiently will overheat
and become unstable. A cold, infinitely large and ever-expanding universe may explain
ordering and stability of natural energy dissipative systems such as energy dissipative
storms, the great ocean belt, convection cells, stars and many others. It is believe that
this driver may have also played a role in the organization needed for the origin of life
[16].
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Figure 6: Energy-related controllers of the evolution of an automaton (low complexity
system) containing two forms of organization (A and B). ”A” is produced de novo from
disordered building materials (BM). EG(A) < EG(B) (where: EG(A) and EG(B) are the
free energy content of A and B respectively). The energy content and energy exchanges
associated with the entropy of the system (ES) can also be included in a model, but are
not shown in this figure. W = free energy exchanged with the environment and between A
and B. Q = heat released during the exchange of free energy. The potential energy-related
controllers of the system’s evolution are marked with circles: (1) Available free energy;
(2) Unevenness in free energy availability; (3) Heat sink magnitude; (4) The efficiency
of up-taking free energy from the exterior; (5) The efficiency of exchanging free energy
between A and B; (6) Thermodynamic equilibrium transformations; (7) The stability of
order; (8) The free energy content of order; and (9) The rate of A⇔B transformations.
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With regard to internal controllers of automata, the uptake of free energy from external
sources into internal forms of organization (i.e. Fig. 6(4)) is in most situations less than
100% efficient. During this uptake, energy is released in a degraded form such as heat
or thermal radiation. Energy uptake efficiency may vary considerably between various
systems and influence competition between systems. Differences in information content
also exist between forms of organization involved in various transformations within a
system. These differences lead to free energy being exchanged also with less than 100%
efficiency (e.g. ”5” in Fig. 6). This topic is seldom analyzed in thermodynamic models of
chemical transformations, because in most chemical analyses the free energy exchanged
when one form of organization becomes another is either assumed to be 100% efficient,
or the missing order comes from a combination of encounter probabilities, kinetic energy
and the intrinsic order of fundamental forces. Should no order come from such sources, a
transformation involving two forms of organization (A⇔B where EG(A) < EG(B)) that is
100 % efficient with regard to free energy exchanges means that:

- During A⇒B transformations, all free energy released from EG(A) is used into EG(B);
and

- During B⇒A transformations, all free energy needed by EG(A) comes from EG(B).
Other internal controllers of prebiotic evolution of automata are the thermodynamic equi-
librium of various transformations, the stability of order and the energy cost of order.
Competition between dissimilar systems is influenced by changes in transformation rates
(i.e. in Fig. 6(6)), which is a combination of factors such as thermodynamic stability,
catalysis and inhibition.

This model is organized in sectors.
Sector: Initial conditions, contains user imputed values for: universal constants; tem-

perature; the system’s volume; the initial amount of various units (i.e. forms of organi-
zation); the stoichiometry between BM, A and B; the mass per unit of organization; the
standard rates for the various transformations; the effect of temperature on these rates;
the number of degrees of freedom for various forms of organization (Ω); the Landauer
bound (kL) chosen by the user for the specific for the type of system analyzed (i.e. in
chemical systems kL ≃ 9.572·10-24 J bit−1 K−1); the EG per unit of organization; an en-
ergy availability factor describing how much free energy can enter from the environment;
the efficiency of up-taking free energy into EG; the auto-catalytic and self-inhibitory po-
tential of various forms of organization (Ref); the energy dissipative potential associated
with various forms of transformation; and the heat conductivity of the environment (a
proxy for the magnitude of the terminal heat sink).

Sector: Theoretical Transformation Rates, gives forward and reverse rates for all uni-
sense transformations from the model, in energy unlimited conditions.

Sector: Energy Hunger Level and Energy Inputs, calculates a parameter called ”Hung”
(abbreviation for hunger), which establishes the partition of input energy between com-
peting systems.

Sector: Main Model Evolution of Units of Transformation, describes the evolution of
units of transformation and flow of materials based on the input conditions and calcula-
tions from other sectors.

Sector: Free Energy Flow Model, is optional for this study, but useful in addressing
other prebiotic evolution questions; it describes the flow of energy through the various EG

reservoirs.
Sector: Model Variables and Monitored Parameters, describes the main variables ma-

nipulated in this study and the model parameters indicative of changes in order, compe-
tition, growth and fitness.
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In the model constructed for this study, the space that can be occupied by ordered
structures has a finite number of building materials BM with EG = 0. Only four types of
structures (forms of organization) exist in the system (A1, A2, B1 and B2). The compo-
sition, the EG value and the ES value are similar between A1 and A2 and between B1 and
B2. The only types of transformations allowed, and the stoichiometry of transformations
chosen for this study, are the following: 2BM⇔2A1⇔ 1B1 and 2BM⇔2A2⇔1B2. EG

increases, while ES decreases, in the BM⇒A⇒B direction. The outcome of competition
between the two systems of organization (Syst. 1 = A1B1 and Syst.2 = A2B2) is mea-
sured through changes in their abundance relative to the total amount of construction
materials (BM + A1 + 2B1 + A2 + 2B2). The order level depends on the abundance of
B relative to A.

The competition success of the two systems of organization is measured as:
Competition success of Syst.1 vs. Syst.2 = ((A1+B1)-(A2+B2))/((A1+B1)+(A2+B2))
Competition success of Syst.2 vs. Syst.1 = ((A2+B2)-(A1+B1))/((A1+B1)+(A2+B2))
where: A1+B1 = Syst.1 and A2+B2 = Syst.2 are systems of organization; and A1,

A2, B1 and B2 are units of organization.
The Order level is defined as:
Ord = (B-A)/(Beq-Aeq) where: A and B represent the number of units of transforma-

tion; and Aeq and Beq represent the number of units of transformation at equilibrium.
The following notations for model’ variables have been used:
· energy availability (”E factor”);
· variation in energy availability (”Period”);
· heat sink magnitude (”Heat conductiv”);
· the efficiency of up-taking free energy from the exterior (”Effc free E uptake”);
· the efficiency of free energy exchange between forms of organization (”Effc free E

uptake”); and
· the effect of catalysts and inhibitors on the kinetics of transformation between the

forms of organization (”Cat”).
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