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Abstract

The complex structure of magnetic field configurations in various tokamaks was
described in the previous work using 3/2 Hamiltonian systems and their discrete
version (i.e. systems generated by area preserving maps) studied through methods
specific to the dynamical systems’ theory. A particular attention was paid to the
study of the influence of the safety factor on the existence of internal transport
barrier. It was proved that some local modifications of the safety factor (creation
of a low shear zone) induce, even for monotonous safety factors, the formation of
a robust transport barrier. In the present work the asymptotic radial transport in
the same systems was studied using statistical methods which involve the distri-
bution function of the magnetic field lines. The general principles of discrete-time
nonequilibrium statistical mechanics were adapted for the study of the discrete sys-
tem generated by tokamap.

1 Introduction

Chaotic dynamics can be considered a bridge between the regular evolution of a system
and the random one because chaotic systems are deterministic, but exhibit a very com-
plicate dynamics. The ways to study these types of dynamics are different: quasiperiodic
and other regular functions in the first case and probabilistic equations in the second one.

Some deterministic chaotic systems of interest in fusion plasma physics were studied
using 3/2 d.o.f. Hamiltonian systems and their discrete version, i.e. systems generate
by area-preserving maps. This description was successfully used for the description of
magnetic field configuration. The first application of a Hamiltonian map to the problem
of magnetic field line diffusion in a tokamak in presence of a magnetic limiter appears to
be due to Martin and Taylor in 1984 [1]. A global model of a specific stellarator (W VII-
A) was introduced by Wobig in [2] and Punjabi studied the poloidal divertor geometry of
a tokamak by means of very simple algebraic maps [3].

In [4] it was shown that the standard map andWobig map do not satisfy a basic request
of the model: they are not compatible with the toroidal geometry. In the same paper a
new model was proposed, namely the tokamap. Beside the fact that this model describe
accurately the main features of the magnetic configuration, an important advantage of
the tokamap is that it is analytically tractable.
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Many other models were proposed in the last decade [5]- [10]. Their main drawback
is that they can be studied only numerically, due to their very complicate analytical
expressions.

In order to use another approach for the study of some of them, the evolution of the
distribution function of a dynamical system governed by the standard map was described
by the methods of nonequilibrium statistical mechanics in diffusive regime [11] and in
localized weak-stochasticity regime [12]. In [13] an analysis of the most appropriate kinetic
approach is made and fractional kinetics is proposed. The fractional kinetics for relaxation
and superdiffusion in a magnetic field was studied in [14] for a system equally generated by
the standard map. However, the kinetic approach is not often applied, due to important
complications related to analytical computations.

In this paper we focus on the study of the tokamap model because it is realistic (it obeys
the toroidal geometry requirements) and because some results concerning the existence
of the transport barriers that we previously obtained through deterministic methods can
be analysed from this new point of view.

The paper is organized as follows: in Section 2 the tokamap model and its main
properties is presented; the main results obtained in the study of the associated kinetic
equations are presented in Section 3; conclusions and discussions can be found in Section
4.

2 The tokamap model

For the description of the magnetic field configuration a set of toroidal coordinates (r, θ, ζ)
is generally used. ζ is the toroidal angle around the symmetry axis of the torus and (r, θ)
are the polar coordinates in a circular poloidal section ζ = ζ0 = cst. However, since
canonicity of the coordinates is needed for the Hamiltonian description, one used the
toroidal flux ψ = r2/2 instead of radial coordinate [4].

The Poincare map is obtained from the intersection points of a magnetic field line
starting from (ψ, θζ0) with the poloidal section ζ = ζ0.

It is T : [0,∞)× [0, 2π) → [0,∞)× [0, 2π)

T :











ψ = ψ − ε ψ

1+ψ
sin θ

θ =

(

θ + 2πW
(

ψ
)

− ε 1

(1+ψ)
2 cos θ

)

(mod 2π)
(1)

This map is considered to describe qualitatively the configuration of the magnetic field in
various tokamaks if it involves realistic safety factors q (ψ) = 1/W (ψ).

In our study we will consider a monotonous winding function

W (ψ) = (2− ψ)
(

2− 2ψ + ψ2
)

/4.

which was used in [15] and obtained from magneto-hydrodynamic considerations.
In our previous studies on the tokamap model we analyzed individual long trajectories

with the purpose of establishing their topological properties as revealed typically by time-
correlation functions. In the globally stochastic region, such studies provided us with
a very detailed picture of the motion of an individual point, with alternations of quasi-
random motion and of segments sticking to islands, as well as the effect of this topology
on transport.
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3 Kinetic equation

Another method for studying the tokamap model involves the distribution function (or
of the density profile) of a statistical ensemble, based on a kinetic equation. This global
approach is complementary to the previous one. Both are exact, hence equivalent at
the starting point, but the type of approximations adapted to each of them is different.
Thus, in the global approach it is difficult to describe the fine structure of orbits in the
neighborhood of an island. On the other hand, the local approach does not tell us anything
about the shape of the density profile.

In the statistical approach the study of individual trajectories is replaced by the study
of a statistical ensemble defined by the distribution function.

At the moment τ the statistical ensemble is defined by the function F (ψ, θ, τ) which
is 2π periodic in θ and is defined only for integer values of τ .

The evolution of the distribution function of the system generated by (1) can be defined
using the Perron-Frobenius operator U defined bellow. It involves the inversion of (1)

F (ψ, θ, τ + 1) = (UF ) (ψ, θ, τ) = F
(

ψ−1, θ−1, τ
)

. (2)

Severe limitations in obtaining analytical results occurs because the inverse of (1), i.
e. T−1 (ψ, θ) = (ψ−1, θ−1), can be computed only numerically.

Of special interest for transport theory is the averaged distribution function, called
the density profile

DP (ψ, τ) =

2π
∫

0

F (ψ, θ, τ) dθ.

The density profile is a main tool for computing the running diffusion coefficient.
We must consider also the fluctuations G (ψ, θ, τ) defined such as

F (ψ, θ, τ) = DP (ψ, τ) +G (ψ, θ, τ) .

Direct numerical simulations were made in the weak chaotic regime (ε << 1) in order
to enlighten the influence of some local modifications of the safety factor on transport
properties in the diffusive regime (large perturbations and small values of the wave vector).

The initial density profile and the initial fluctuations considered in the simulations is

DP (ψ, 0) = 2
Q√
π
e−Q

2ψ2

respectively G (ψ, θ, 0) =

{

DP (ψ, 0) if |θ| < θ0
0 elsewhere

. (3)

The evolution of the distribution function is deeply related to the dynamic of the
system. Its evolution is spectacular when the system has chaotic behavior.

In Figure 1 (left) is presented the phase portrait and Figure 1 (right) represents the
distribution function for ε = 0.45. The left figure is obtained from many individual
trajectories, the right figure is obtained using the evolution law (2). The blue colour in
the right figure shows that F (ψ, θ, τ) ≈ 0 so the spreading effect is limited, which is
natural if we take into account the existence of many transport barriers, as shown in the
left figure.

In Figure 2 (left) are presented the phase portrait and the distribution function in the
system corresponding to ε = 0.75. The black zone in the left figure is a single chaotic
orbit having 50000 points. The distribution function, presented in Figure 2 (right), shows
similar complexity only in 498 steps. In this situation all transport barriers inside the
chaotic zone were destroyed.
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Figure 1: Phase portrait for ε = 0.45 (left)and Distribution function at τ = 0.498 for
ε = 0.45 (right)
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Figure 2: Phase portrait for ε = 0.75 (left)and Distribution function at τ = 0.498 for
ε = 0.75 (right)
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It was observed that the creation of a low shear region induces the creation of a
internal transport barrier. The characteristics of the radial transport were correlated
with the width and the position of the transport barrier.

More information about the memory time (time when the initial fluctuations are an-
nihilated) and the relaxation time (existence of long living fluctuations created out of
density profile) can obtained from the study of the master equations.

From the spectral decomposition (i.e. the Laplace-Fourier representation) of F (ψ, θ, τ)

F (ψ, θ, τ) =
∞
∑

M=−∞





∞
∫

−∞

e2πi(qψ+Mθ)fM (q, τ) dq





the density profile and the fluctuations can be obtained using the relations

DP (ψ, τ) =

∞
∫

−∞

e2πiqψf0 (q, τ) dq
notation
=

∞
∫

−∞

e2πiqψϕ (q, τ) dq

G (ψ, θ, τ) =
∑

M 6=0





∞
∫

−∞

e2πi(qψ+Mθ)fM (q, θ) dq



 .

The moments of the density profile n (ψ, τ) are simply expressed in terms of derivatives
of its Fourier transform [11]:

〈ψp (τ)〉 = 1

(2πi)p
∂pϕ

∂qp
(0, τ) .

The aim of the study is to study the evolution of the density profile and of fluctuations
using a closed master equation for the density profile and a equation expressing the
fluctuations as functional of density profile.

The master equations for systems described by discrete-time iterative maps was ob-
tained Bandtlow and Coveney (in fact there is a closed master equation for the density
profile and an equation expressing the fluctuations as a functional of the density profile):

ϕ (τ + 1) =

τ
∑

σ=0

Ψ (σ)ϕ (τ − σ) +D (τ + 1) g (0) (4)

fM (ψ, τ + 1) =

τ
∑

σ=0

C (σ)ϕ (τ − σ) (5)

where Ψ (t) is the memory kernel, g (0) is the initial fluctuation, D (t), C (t) and P (t) are
related to the destruction, creation, respectively propagation fragment. These quantities
can be computed only numerically because the inverse of the tokamap can not be ana-
lytically obtained. But the kinetic equation (4) and the fluctuation equation (5) describe
more precisely than the direct numerical simulations the evolution of the system.

We studied the kinetic equation of the tokamap in the diffusive regime (ε >> 1), i.e.
for large values of the stochasticity parameter, when the system has chaotic behavior.
The density profile and the fluctuations (3) are initially sharply peaked around ψ = 0.
The density profile we used is

n (ψ, 0) =
λ

2
e−λ|ψ| with λ = 0.01.
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We identified two characteristic time scales: the short memory time (it is of order
of 4-5 iterations) and the long relaxation time. The initial fluctuations produce during
the (short) memory time a small cumulative effect in the density profile through the
destruction fragment. They are replaced by long-living fluctuations created out of the
density profile, which eventually decay to 0 after the (long) relaxation time. This process
is characterized by an initial transient regime characterized by complex phenomena, for
example the occurrence of Levy flights after long sticking in some regions of the phase
space.

4 Conclusions

The tokamap model was studied through statistical methods. The results were compared
with those obtained using classical methods in dynamical systems’ theory and the quali-
tative agreement was pointed out. In the diffusive case the corresponding kinetic equation
was numerically studied. In this case it is not possible to provide analytical solutions (as
in standard map case) due to the fact that the inverse of tokamap can be only numerically
computed. We identified two characteristic time scale (the short memory time and the
long relaxation time). This results is also in agreement with that obtained through direct
numerical simulations.
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