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Abstract

In our paper we have developed the tools necesary to calculate the mean squared
displacements for magnetic field lines for various dimensionless Kubo numbers:
the magnetic Kubo number Km, the dimensionless inhomogeneous magnetic Kubo
number KB and the magnetic shear Kubo number Ks. The model developed in
our paper considers a stochastic magnetic field that contains two linear deter-
ministic terms representing the gradient of the magnetic field and the shear term
and also two fluctuating terms that are described by the dimensionless functions
bi(X,Y, Z), i = (x, y), taken to be Gaussian processes and that are perpendicular
to the main magnetic field B0.

PACS numbers: 52.35 Ra, 52.25 Fi, 05.40.-a, 02.50.-r.

1 Introduction

One of the most important feature in plasma physics is the study of the diffusion of
magnetic field lines in tokamak. The simplified model used in our paper is a Taylor
expansion of the stochastic magnetic field that contains two linear deterministic terms
representing the gradient of the magnetic field and the magnetic shear term and also
two fluctuating terms that are described by the dimensionless functions bi(X,Y, Z), i =
(x, y), taken to be Gaussian processes and that are perpendicular to the main magnetic
field B0. The magnetic fluctuations, whose intensity is measured by the dimensionless
magnetic Kubo number Km (to be defined below), even when small, can destroy the
nested magnetic and thus enhancing the radial transport. By the other hand, the presence
of an inhomogeneity of the magnetic field (given by the existence of the magnetic field
gradient and measured by the dimensionless inhomogeneous magnetic Kubo number KB)
and of the magnetic shear (measured by the dimensionless shear Kubo number Ks), can
be important keys in order to explain the observed increase of the poloidal flow which
is equivalent to the appearance of a transport barrier. In our paper we developed the
main tools of the DCT method whose idea concerns in the study of the Langevin system
not in the whole space of the realizations of the potential fluctuations; the whole space is
subdivided into subensembles S, characterized by given values of the potential and of the
fluctuating field components at the starting point of the trajectories. The exact expression
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of the Lagrangian correlation can be written in the form of a superposition of Lagrangian
correlations in various subensembles. The validity of the approximation involved in DCT
method can be assessed by a posteriori comparison with experiment and simulations, as
is done in all theories of strong turbulence.

2 The magnetic field model and the related Langevin

equations

A local expansion of the stochastic magnetic field that considers the perpendicular vari-
ations is:

B(X, Y, Z) = B0

{[
1 +XL−1

B

]
ez + βbx (X, Y, Z) ex +

[
βby (X, Y, Z) +XL−1

s

]
ey
}

(1)

where β is a dimensionless parameter measuring the amplitude of the magnetic field
fluctuations relative to the main magnetic field B0. There are two linear terms depending
on X in the right hand side of eq.(1): the shear term XL−1

s where Ls is the shear length
and the nonhomogeneous term XL−1

B where LB is the gradient scale length, which are
the radial distance on Ox axis over the magnitude of the magnetic field would double
in this linear model. We will define the term B0

[
1 +XL−1

B

]
ez as the gradient B term.

Because the model expression given in (1) represents a Taylor series expansion of the
magnetic field it is only valid for small distances from the origin, i.e. are valid the
following approximations:

XL−1
B << 1 XL−1

S << 1 (2)

The magnetic field lines corresponding to the definition given in (1) are:

dX

βB0bx
=

dY

B0 (βby +XL−1
s )

=
dZ

B0

(
1 +XL−1

B

) (3)

Using (2), i.e. considering that

1

1 +XL−1
B

≃ 1−XL−1
B

and neglecting the terms quadratic in X we obtain the dimensional Langevin system of
equations

dX

dZ
= βbx (X; Z)

(
1−XL−1

B

)
= βbx − βbxXL

−1
B (4)

dY

dZ
= βby +XL−1

s − βbyXL
−1
B (5)

where the coordinate Z plays the role of time.
We introduce the dimensionless coordinates x =(x, y, z) which are related to the

dimensional ones by the relations:

x =
X

λ⊥
, y =

Y

λ⊥
, z =

Z

λ∥
(6)

The magnetic field given in Eq.(1) satisfies the zero-divergence constraint ∇ ·B =0 that
is imposed by Maxwell’s equations. This condition is automatically fulfilled if we consider
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that the fluctuating magnetic field derives from the following vector potential which has
only the z - component:

A(X;Z) = B0λ⊥β ψ(x; z) ez (7)

The dimensionless system equivalent to the one given in (4, 5) is:

dx

dz
= (1− xKmKB) bx ≡ K (x) bx (8)

dy

dz
= xKs + (1− xKmKB) by ≡ xKs +K (x) by (9)

We have the following relations between the fluctuating parts of the magnetic field and
the magnetic potential ψ(x; z):

bx[x(z); z] =
∂ψ(x(z); z)

∂y

∣∣∣∣
x=x(z)

and

by[x(z); z] = − ∂ψ(x(z); z)

∂x

∣∣∣∣
x=x(z)

In the system (8-9) the following Kubo numbers are introduced:

1. The magnetic Kubo number Km = β
λ∥
λ⊥

(10)

2. The shear Kubo number Ks =
λ⊥
Ls

(11)

3. The inhomogeneous Kubo number KB =
λ∥
LB

(12)

The Langevin Eqs.(9) will be used in order to calculate the running and asymptotic
diffusion coefficient of the magnetic field lines for different values of the Kubo numbers.
The Lagrangian correlation (which is the main tool for determining the running and
asymptotic diffusion coefficient) of the directly fluctuating quantities bi[x(z); z] is defined
as:

Lij(z) = ⟨bi(x(0); 0)bj [x(z); z]⟩ (13)

where ⟨...⟩ denotes the ensemble average over the realizations of the fluctuating magnetic
field components. The running diffusion coefficient matrix is calculated using (13) as:

Dij (z) =

z∫
0

dζLij(ζ) (14)

provided that the stochastic field is ”stationary”; the corresponding asymptotic diffusion
coefficient matrix is then:

Das
ij = lim

z→∞
Dij (z) (15)

An important simplification of the calculus can be done if a relation between the La-
grangian correlation and the corresponding Eulerian one can be established. Unfortu-
nately, until now, does not exist a general exact relation between these two types of
correlations, valid for both weak and strong turbulence regime. For a weak magnetic
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turbulence regime (Km < 1) an approximate formula which relates the two types of cor-
relations already exists: this is the celebrated Corrsin approximation [7] which includes the
quasilinear and the Bohm approximations. We write here, for convenience, the Corrsin’s
relation between the Lagrangian and the Eulerian correlations:

Lij(z) =

∫
dx ⟨bi [x(0); 0] bj [x; z] δ [x− x(z)]⟩ ≃

Corrs≃
∫
dx ⟨bi [x(0); 0] bj [x; z]⟩ ⟨δ [x− x(z)]⟩ (16)

where at least in some asymptotic sense, the exact propagator δ [x− x(z)] is approximated
by its ensemble average.

3 The DCT tools for our magnetic field model

In our paper we closely follow the results obtained in [4]. The DCT method main idea
concerns in the study of the Langevin system (8-9) not in the whole space of the real-
izations of the potential fluctuations; the whole space is subdivided into subensembles S,
characterized by given values of the potential and of the fluctuating field components at
the starting point of the trajectories. The exact expression of the Lagrangian correla-
tion can be written in the form of a superposition of Lagrangian correlations in various
subensembles. The validity of the approximation involved in DCT method can be assessed
by a posteriori comparison with experiment and simulations, as is done in all theories of
strong turbulence.

The DCT method is now systematically developed for the present problem. We first
define a set of subensembles S of the realizations of the stochastic sheared magnetic field
that are defined by given values of the potential ψ and magnetic field fluctuation b in the
point x = 0 at the ”moment” z = 0:

ψ(0; 0) = ψ0, bi(0; 0) = b0i , i = (x, y) (17)

The correlation of the Lagrangian fluctuating components of the magnetic field can be
represented as a sum over the subensembles S of the correlations LSij(z) calculated in each
subensemble:

Lij(z) =

∫
dψ0db0P (b0, ψ0) ⟨bi(0; 0)bj [x(z); z]⟩S (18)

where

P (b0, ψ0) = P (b0x)P (b
0
y)P (ψ

0) = (2π)−3/2 exp

[
−
(ψ0)

2
+ (b0x)

2
+
(
b0y
)2

2

]
(19)

is the probability density of (b, ψ) having the values (b0, ψ0) at x = 0 and at the ”mo-
ment” z = 0.

Since the initial fluctuating fields in the subensemble S are bi(0; 0) = b0i for all
trajectories, the subensemble average defined in (18) is:

⟨bi(0; 0)bj [x(z); z]⟩S = b0i ⟨bj [x(z); z]⟩
S (20)

and thus the Lagrangian correlation Lij(z) is simply the weighted average Lagrangian of
the fluctuating field in all subensembles. We need first to calculate the average Eulerian
fields bi in the subensemble S:

bSi (x; z) ≡ ⟨bi (x; z)⟩S , i = (x, y) (21)
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The next step in the DCT method is to define a deterministic trajectory in each
subensemble as a solution of the system (8-9) that becomes

dxS(z)

dz
=

(
1− xSKmKB

)
bSx

[
xS(z); z

]
dyS(z)

dz
= xSKs +

(
1− xSKmKB

)
bSy

[
xS(z); z

]
in which the right hand sides are replaced by the average fields bSj in the subensemble. It
can be seen also that the Kubo number K (x) = (1− xKmKB) differs from a subensemble
to another. We made the following assumption: in a subensemble S we factorize the
average of the terms of the form

⟨xbj (x; z)⟩S ≡ xSbSj
(
xS; z

)
, j = x, y

The system used in the DCT calculations can be formally written in the following compact
form

dxS

dz
= K

(
xS

)
bSx (22)

dyS

dz
= xSKs +K

(
xS

)
bSy (23)

We need first to calculate the average Eulerian fields bi in the subensemble S:

bSi (x; z) ≡ ⟨bi (x; z)⟩S , i = (x, y) (24)

The DCT method is now systematically developed for the present problem. We first
define a set of subensembles S of the realizations of the stochastic sheared magnetic field
that are defined by given values of the potential ψ and magnetic field fluctuation b in the
point x = 0 at the ”moment” z = 0:

ψ(0; 0) = ψ0, bi(0; 0) = b0i , i = (x, y) (25)

The fluctuating magnetic potential ψ(x; z) is assumed to be a Gaussian stochastic process
with zero average. The second order moment of ψ(x; z), i.e., its Eulerian autocorrelation
function M(x; z) is assumed to have the following factorized form:

M(x; z) = ⟨ψ(0; 0)ψ(x; z)⟩ =M1(x)M2(z) (26)

where:

M1(x) = exp(−x2

2
), M2(z) = exp(−z

2

2
) (27)

The mixed Eulerian correlations between the potential and the fluctuating magnetic field
components are defined in [5] as:

Mψn(x; z) = ⟨ψ(0; 0)bn(x; z)⟩

Mnψ(x; z) = ⟨bn(0; 0)ψ(x; z)⟩ , n = (x, y) (28)

and the following relations between these correlations hold [5]:

Mψx(x; z) = −Mxψ(x; z) =
∂M(x; z)

∂y
= −yM(x; z)
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and

Mψy(x; z) = −Myψ(x; z) = −∂M(x; z)

∂x
= xM(x; z) (29)

The dimensionless fluctuating magnetic field autocorrelation tensor components are de-
rived from M(x; z) as [5], [6]:

Mxx(x; z) = −∂
2M(x; z)

∂y2
=

(
1− y2

)
M(x; z)

Myy(x; z) = −∂
2M(x; z)

∂x2
=

(
1− x2

)
M(x; z)

Mxy(x; z) =Myx(x; z) =
∂2M(x; z)

∂x∂y
= xyM(x; z) (30)

The Eulerian averages of the fluctuations are:

bSx
(
xS; z

)
= ψ0Mψx

(
xS; z

)
+ b0xMxx

(
xS; z

)
+ b0yMyx

(
xS; z

)
≡

≡
[
−ψ0yS + b0yx

SyS + b0x
(
1− yS 2

)]
M(xS; z) (31)

bSy
(
xS; z

)
= ψ0Mψy

(
xS; z

)
+ b0xMxy

(
xS; z

)
+ b0yMyy

(
xS; z

)
≡

≡
[
ψ0xS + b0xx

SyS + b0y
(
1− xS 2

)]
M(xS; z) (32)

The Lagrangian correlation tensor has the following components:

Lij(z) =

∞∫
−∞

dψ0

∞∫
−∞

db0y

∞∫
−∞

db0xP (b
0, ψ0)b0i b

S
j

[
xS(z); z

]
(33)

4 Conclusion

In this paper we have prepared the framework for the calculation of the diffusion coeffi-
cients for the stochastic inhomogeneous and sheared magnetic field lines. Different Kubo
numbers involved in the model will influence the diffusion. Some results were obtained
in [4] for the anisotropic case but not in the inhomogeneous case. In a future paper we
will calculate the diffusion coefficients and we will compare them with the anisotropic
homogeneous case.
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