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Abstract

Auxiliary plasma heating by radio-frequency waves is a usual procedure in the
modern tokamaks. In the case of 3He minority heating is analysed the equilib-
rium distribution function for minority species and the factor modi�cation of the
Maxwellian form is plotted for speci�c parameters values as function of radial co-
ordinate and normalized velocity. The energetic minority tail develops with the
heating.

1 Introduction

The use of radio-frequency (rf) power in magnetic fusion devices has many important
goals: heating plasma, current drive and pro�le control. Using rf power in the ion cy-
clotron resonance frequency (ICRF) to drive poloidal �ow with radial velocity shear can
stabilize microturbulence and improve plasma con�nement.
In the present paper we consider a magnetically con�ned plasma in the presence of

ion cyclotron resonant heating (ICRH) in the minority scheme. The knowledge of the
distribution function is a key problem to solve both the heating e¢ ciency of the plasma
and the transport problem. The impact of ICRF heating on the distribution functions of
various constituients are largely discussed in literature, see for example [1] - [7]. The plan
of the paper is as follows:
In the section I, the frame and conditions of the simpli�ed quasi-linear Fokker-Planck

equation (QLFPE) is introduced. In the section II, the solution of the QLFPE is given in
the condition of velocity space isotropy and the modi�cation of the distribution function
due to the presence of radio-frequency waves is evaluated. In the last section, for some
speci�c values of parameters, the factor modi�cation of the distribution function from
Maxwellian is plotted and the results are discussed.
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2 Quasilinear Fokker-Planck Equation

We consider a non-ohmic multi-component plasma heated at the ion cyclotron resonance
for minority species, m. Let us consider the case of a low concentration of ions 3He
colliding with a thermal background plasma, composed by Deuterium and electrons. The
3Heminority is about 2%�3% of the density of the background plasma and it is heated by
ion cyclotron resonant heating. We shall limit ourselves to analyze the so-called simpli�ed,
quasi-linear, Fokker Planck equation where it is taken into account only the contribution
due to the perpendicular component of the electric �eld, E+? , which is concordant to
the direction of rotation of the minority. We then neglect the contributions due to the
perpendicular component of the electric �eld, E�? , which is discordant to the direction
of rotation of the minority, and the one due to the parallel component of the electric
�eld, Ek. Under these conditions, in the velocity space, the long term evolution of the
distribution function for the high frequency heated ions, is governed by the equation

@Fm(y; t)

@t
= �r � Sm(Fm) + P (Fm) (1)

where
Sm(Fm) = �SmW (Fm) +

X
�=e;i

�Sm�c (Fm) (2)

Su¢ ces m and � [with m = 3He and � = (e;D)] distinguish the minority population and
the species of the background plasma, respectively. The �rst term in Eq. (2) describes the
quasi-linear di¤usion due to the resonant wave particle interactions (RF contribution).
The second term in Eq. (2) is due to the collisional operator. P (Fm) takes into account
other auxiliary sources; in our analysis, we shall put P (Fm) = 0. The gradient operator,
r, is de�ned as the row vector r � (@vx ; @vy ; @vz) in the velocity space, whilst r � ��A is
the matrix multiplication between the gradient vector and the matrix ��A. �Sm�c and the
simpli�ed quasi-linear term, �Smw , can be written as

�Sm�c (Fm) = �[r � ( ��Dm�(2)

c Fm)]T + �Dm�(1)
c Fm (3)

�SmW (Fm) = �[r � ( ��Dm(2)

W Fm)]T + �D
m(1)
W Fm

where the expressions of the matrix di¤usion coe¢ cients ( ��D
m�(2)

c and ��D
m(2)

W , for the colli-
sional and the RF contributions, respectively) and the drift vector coe¢ cients ( �Dm�(1)

c and
�D
m(1)
W , for the collisional and the RF contributions, respectively) have been introduced. T

denotes the transpose operation. We shall provide the stationary solution, Fm, of Eq. (1)
in terms of the variables w de�ned as

w =
v

vthm
; vthm =

r
2Tm
mm

(4)

where Tm , mm , v denote the temperature, mass and velocity of the minority species,
respectively. For the minority species (� = m), introduce notation

�k =
kkvthm

cm

; �? =
k?vthm

cm

; ! =
!


cm
; 
cm =

ZmeB0
mmc

(5)

with 
cm denoting the Larmor gyro-frequency of the minority, Zm the charge number of
the minority and vthm the thermal velocity of the minority species.
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3 Solution of the quasilinear equation assuming isotropy

In the case of minority heating it is su¢ cient to regard the heated ions (m = 3He) as test
particles colliding with a Maxwellian background plasma. Owing to the weak nonlinearity
of the Fokker-Planck operator this is usually an acceptable approximation. If the applied
power is not too large we can (as a �rst approximation) simplify the QLFPE further by
neglecting the anisotropy which develops in the ion distribution function, Fm(w) , which
should satisfy the following one dimensional, steady-state, Fokker-Planck equation [7]

1

Fm

dFm

dw
= �2 	� (w)

	c (w) + 2w


D (�?w)

�
ql

w (6)

with the solution

Fm (w) = Fm
0 exp

24�2 wZ
0

	� (u) udu

	c (u) + 2u


D (�?u)

�
ql

35 (7)

where

	c (w) �
X
�

�m=�

�m
	

�
vthm
vth�

w

�
=
�m=e

�m
	

�
vthm
vthe

w

�
+
�m=D

�m
	

�
vthm
vthD

w

�
(8)

	� (w) �
X
�

�m=�

�m

Tm
T�
	

�
vthm
vth�

w

�
=
�m=e

�m

Tm
Te
	

�
vthm
vthe

w

�
+
�m=D

�m

Tm
TD
	

�
vthm
vthD

w

�
(9)

	(u) =
1

u2

�
erf (u)� 2p

�
u exp

�
�u2

��
Chandrasekhar function (10)

and Fm
0 = Fm (w = 0) is the normalization integral. With simpli�ed notations

A (w) � 	

�
vthm
vthe

w

�
+
�m=D

�m=e
	

�
vthm
vthD

w

�
(11)

B (w) � Tm
Te
	

�
vthm
vthe

w

�
+
�m=D

�m=e
Tm
TD
	

�
vthm
vthD

w

�
(12)

the solution (7) becomes

Fm (w) = Fm
0 exp

24�2 wZ
0

B (u) udu

A (u) + 2u �m
�m=e



D (�?u)

�
ql

35 (13)

Moreover, the isotropic part of the normalized quasilinear di¤usion operator, see for
example [6], reads as



D (�?w)

�
ql
=

Dp

2�mv2thm

+1Z
�1

d�
�
1� �2

�
J2p

�
�?w

q�
1� �2

��
(14)

with Dp given in terms of the �initial�heating rate (when the distribution function is a
Maxwellian)

Dp =
P linabs

4nmmm

1Z
0

w3 J2p (�?w) exp (�w2) dw

(15)
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Here, Jp(x) indicates the Bessel functions of the �rst kind, P linabs is the power per unit
volume supplied to the system, nm is the number density of the minority species and
� the pitch angle, respectivelly. The coe¢ cients Dp (with dimension of �mv2thm) are
proportional to the power available per ion of the heated species.
With 


D (�?w)
�
ql
�
hD (�?w)iql
�mv2thm

(16)

the equation (13) reads as

Fm (w) = Fm
0 exp

24�2 wZ
0

B (u) udu

A (u) + 2u
hD(�?u)iql
v2thm�

m=e

35 (17)

with Fm
0 = Fm

0 (r ;w = 0). When hD (�?w)iql � 0 and all species have the same
temperature, Fm (w) reduces to unperturbed Maxwellian, FmM (w),

Fm
M(w) = Fm

0 exp(�w2) (18)

The equilibrium distribution function Fm(w) corresponding to the minority species
heated by rf heating will be assumed of the form

Fm(w) = �m1 (r)Fm
M(w) (19)

and so

�m1 � exp

8<:w2 � 2
wZ
0

B (u) udu

A (u) + 2u
hD(�?u)iql
v2thm�

m=e

9=; (20)

To lowest order in the thermal Larmor radius, for minority heating (p = 0),

D0 =
P linabs

4nmmm

1Z
0

w3 J20 (�?w) exp (�w2) dw

(21)

It is easily checked that in the limit �?w � 1, we �nd

1Z
0

w3 J20 (�?w) exp
�
�w2

�
dw ! 1

2
; for �?w � 1

and

D0 =
P linabs

2nmmm

for p = 0 and �?w � 1 (22)

As can be seen from (11) and (12), the collisions between minority species (seen as a
test particle) and the background particles (electrons and majority ion species) are taking
into account through the quantities A (r; w) and B (r; w) .
With

�m = �
m=D + �m=e � �m=D (23)
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we have

�m1 (r; w) � exp

8<:w2 � 2
wZ
0

B (r; u) udu

A (r; u) + 2u
hD(�?u ; r)iql
v2thm�

m=e

9=; (24)

With collision frequencies, see for example [8],

�a=b = 4�
nbe

2
ae
2
b ln �

m2
av
3
Ta

(25)

we obtaine

�m=e = 4�
neZ

2
me

4 ln �

m2
mv

3
Tm

; �mnD = 4�
nDe

2
me

2
D ln �

m2
mv

3
Tm

;
�m=D

�m=e
= Z2D

nD
ne

A (r; w) = 	

�
vthm
vthe

w

�
+ Z2D

nD
ne
	

�
vthm
vthD

w

�
(26)

B (r; w) =
Tm
Te
	

�
vthm
vthe

w

�
+ Z2D

nD
ne

Tm
TD
	

�
vthm
vthD

w

�
(27)

4 Conclusions and discussions

In the following we take particular values of the parameters in order to plot numerically
the function �m1 (w). The perpendicular wave number k? is assumed as k? � 1=�Lm and
so �? = k?vthm=
cm = 1. The initial density radial pro�les for electron and Deuterium
majority ion species are given in Fig.1 and Fig.2, respectively.
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Fig.1 Electron density radial pro�le.
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Fig.2 Majority ion species (Deuterium) density radial pro�le.

Also the initial temperature (before heating) radial pro�les for electron (Fig.3) and
3He minority species (Fig.4) are given.
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Fig.3 Electron temperature radial pro�le.
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Fig.4 Minority ion species (3He) temperature radial pro�le.

6



20 40 60 80 100 120
r cm

2

4

6

8

q

Fig.5 Safety factor q
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Fig.6 Power density absorption P linabs radial pro�le.

If the ion velocity distribution is Maxwellian the absorbed rf power density, hP i,
averaged on the �ux surface has a Gaussian pro�le within the resonance layer,

P linabs � hP i = P0 exp
"
�(r � a cos �res)

2

2 (4X)2

#
where �res is the poloidal angle corresponding to the central vertical axes of the resonance
layer, a the minor radius and

4X ' R0
kjjvthi
n
ci;0

(28)

We assume the resonance absorption layer is centered near the magnetic axes on the
higher magnetic �eld side (�res = 0:51�) with a maximum value P linabs = 50 W=cm

3 of the
power density absorption (see Fig.6).
In this conditions we plot numerically the function �m1 (r; w) for two values of the

normalized velocity (w = 0:7 and w = 1) of the minority species - see Fig7.
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Fig.7 The deformation factor �m1 (r; w) of the Maxwellian distribution as function of r
for two �xed values of w. (Here �? = 1).

The distribution function for the heated minority species is modi�ed in the region of the
power absorption and is more pronounced with higher w. We note that the validity of
equation (24) is restrictioned by the condition �?w � 1 . So, for lower values of k?
(equivalently �?) we can study for higher values of w.
A value of �m1 (r) > 1 (for given w) leads to a higher value of the distribution function

Fm (r) and so to a higher density nm and density gradient. This situation can not last
because of di¤usion.
For a position well inside the resonance layer ( e.g r = a=6) the factor �m1 (w) increase

monotonically when w is incresing (see Fig.8). An interesting situation appear in the
region with low absoption (at border of the resonance layer) where the factor �m1 (w) has
a non-monotonically variation with a minimum at w � 1 and �m1 < 1 for this spatial
region and �?w . 3=4 - see Fig.9. This also show that the heating develops the high
energetic minority tail.

r = a /6

50 100 150 200
102x w

1.0

1.1

1.2

1.3

1

Fig.8 The factor �m1 (w) for r = a=6 and �? = 1=2.
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r = a /3

r = a /4
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1.000
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1.010
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Fig.9. The factor �m1 (w) for r = a=3 and r = a=4 when �? = 1=2.

The initial condition of isotropy in velocity space will be rapidlly destroyed because of
di¤usion in velocity space and the perpendicular velocity will be increased preferentially
by ICRH. The modi�cation of the distribution function of the minority ion species due
to ICRH in the case of anizotropic velocity space will be analysed in a future paper.
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