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Abstract

The kinetic theory of incoherent (Thomson) scattering of an electromagnetic field
by a non-equilibrium plasma is derived. We show, that in the non-equilibrium colli-
sional regime the Callen-Welton formula should be revised. Applying the Langevin
approach and the momentum method we show that not only the imaginary part,
but also the derivatives of the real part of the dielectric susceptibility determine
the amplitude and the width of the spectral lines of electrostatic field fluctuations,
as well as the form factor. As a result of inhomogeneity, these properties become
asymmetric with respect to inversion of the sign of the frequency. In the kinetic
regime the form factor is more sensitive to space gradients than to the spectral
function of the electrostatic field fluctuations. This asymmetry of lines can be used
as a new diagnostic tool to measure local gradients in the plasma.

When transverse electromagnetic waves propagate in a plasma, wave scattering, due
to interaction with fluctuational oscillations, occurs, that can be accompanied by a change
of the frequency and wave vector. The intensity of scattered waves depends on both the
intensity of the incident wave and the level of plasma fluctuations. Since the spectrum of
fluctuations exhibits sharp maxima at proper plasma frequencies, the spectrum of scat-
tered waves will also exhibit sharp maxima at frequencies differing from the frequency of
the given wave by the proper plasma frequencies. The interaction of waves, propagating in
the plasma, with flucutation oscillations may also lead to transformation of the waves, for
instance, to transformation of a transverse wave into a longitudinal wave, and vice versa.
The probability of these processes, like the probability of scattering processes, depends on
the spectrum of electron density fluctuations. The shift, width and shape of spectral lines
carry information on such parameters of the plasma as its density, temperature, mean
velocity, ion composition etc. A method of remote probing of a medium, termed Thom-
son, or incoherent, scattering was developed in the sixties of the past century [1], and it
is still successfully applied for remote diagnosis both of laboratory plasma, for example,
in tokomaks, and of ionospheric plasma.
The field of an incident wave interacting with the fluctuation field gives rise to scattered

waves, therefore, when a wave propagates in a plasma, the total electric field can be
represented as follows:

E(r,t) = E0(r,t) + δE(r,t) +E0(r,t) (1)
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where E0(r,t)− is the field of the incident wave, δE(r,t)− is the fluctuation field and
E0(r,t)− is the field of the scattered wave.
The field of the scattered wave is determined by Maxwell’s equation:

∇× (∇×E0)+ 1
c2
∂2E0

∂t2
= −4π

c2
∂J0

∂t
(2)

where J0− is the density of the current, giving rise to the scattered field E0, and is
related to the deviation of the distribution function f

0
a (a = e, i), which is caused by the

scattered wave, by the following relationship:

J0 =
X
a

ea

Z
vf

0
adv (3)

The deviation of the distribution function is determined by the following linearized
kinetic equation:

∂

∂t
f
0
a + v·

∂

∂r
f
0
a +

ea
ma
(E0 +

1

c
[v×B0

]) · ∂

∂v
f
0
aE+

+
ea
ma
(E0 +

1

c
[v×B0]) · ∂

∂v
δfa +

ea
ma
(δE+

1

c
[v× δB]) · ∂

∂v
f0a = 0 (4)

where f0a− is the deviation of the distribution function due to the incident wave, δfa−
is the fluctuation of the distribution function, B0 and B

0
− represent the magntic fields

of the incident and scattered waves, respectively, δB− is the fluctuation magnetic field.
The functions f0a and δfa− are determined by the following equations:

∂

∂t
f0a + v·

∂

∂r
f0a +

ea
ma
(E0 +

1

c
[v×B0]) · ∂

∂v
f0a = 0 (5)

[
∂

∂t
+v· ∂

∂r
+

ea
ma
(E0+

1

c
[v×B0]) · ∂

∂v
]δfa+

ea
ma
(δE+

1

c
[v×δB]) · ∂

∂v
f0a = δIaδfa+ya (6)

where δIaδfa− is the linearized collision integral, and ya - represents a randomLangevin
force.
Under certain assumptions the set of equations (3-5) can be resolved, and the expres-

sion for the current density J0 can be represented as follows:

J0k0ω0 = −iω
εl(k

0ω0)− 1
4π

E0k0ω0−

−i
X
a

e2a
ma

Z
dv

v

ω − k0v{(E
0+
1

c
[v×B0]) · ∂

∂v
](δfa)q∆ω+(δEq∆ω+

1

c
[v×δBq∆ω]) ·

∂

∂v
f0a

(7)
where q = k− k0,∆ω = ω0−ω.
Applying Maxwell’s equations we obtain the differential scattering cross section of

electromagnetic waves dΞ, within an elementary solid angle dθ0 and for a frequency interval
dω0:

dΞ =
1

4π
(

e2

mec2
)2
ω
02

ω2

s
ε(ω0)

ε(ω)
(1 + cos2 θ)(δneδne)q∆ωdθ

0dω0. (8)
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Thus, the problem reduces to finding the spectral characteristics of electron density
fluctuations (electron form factor). Due to the Poisson equation, the electron form factor
in the spatially homogeneous system is directly linked to the electrostatic field fluctua-
tions. In thermodynamic equilibrium, the electrostatic field fluctuations satisfy the famous
Callen-Welton fluctuation-dissipation theorem [2], linking their intensity to the imaginary
part of the dielectric function and to the temperature.

(δEδE)ω,k =
8π T Im ε(ω,k)

ω |ε(ω,k)|2
(9)

For local equilibrium case one used

(δEδE)ω,k =
X
a

8π Ta Imχa(ω,k)

(ω − kVa) |ε(ω,k)|2
(10)

where χa(ω,k)− is the dielectric susceptibility of the a component.
The matter becomes more delicate in the local-equilibrium case. We have indeed

shown, that in the collisional regime the Callen-Welton formula should be revised [3].
There then appear new terms explicitly displaying dissipative nonequilibrium contribu-
tions and containing the interparticle collision frequency, the differences in the tempera-
tures and the velocities, and also functions of the real parts of the dielectric susceptibilities:

(δEδE)ω,k =
8π Te Imχe(ω,k)

(ω − kVe) |ε(ω,k)|2
+

8π Ti Imχi(ω,k)

(ω − kVi) |ε(ω,k)|2
+

+νei(Te − Ti)Φ1(Re ε(ω,k)) + νei(kVe − kVi)Φ2(Re ε(ω,k)) (11)

The non-equilibrium correction in (11) can be amounted to 10% for the intensity of
the ion-acoustic line.
However, it is not evident that the plasma parameters can be kept constant in both

space and time. Inhomogeneities in space and time of these quantities will certainly
also contribute to the fluctuations. In this paper, using the Langevin approach and
the time-space multiscale technique, we show that not only the imaginary part but also
the derivatives of the real part of the dielectric susceptibility determine the amplitude
and the width of the spectral lines of the electrostatic field fluctuations, as well as the
form factor. As a result of the inhomogeneity, these properties become asymmetric with
respect to the inversion of the sign of the frequency. In the kinetic regime the form factor
is more sensitive to space gradients than the spectral function of the electrostatic field
fluctuations. Note that for simple fluids and gases a general theory of hydrodynamic
fluctuations for nonequilibrium stationary inhomogeneous states has been developed in a
series of publications [4]. In particular, it has been found that there exist an asymmetry
of the spectrum for Brillouin scattering from a fluid in a shear flow or in a temperature
gradient. The situation for the plasma problem we are considering is, however, quite
different.
To treat the problem, a kinetic approach is required, especially when the wavelength

of the fluctuations is larger than the Debye wavelength. To derive nonlocal expressions
for the spectral function of the electrostatic field fluctuation and for the electron form
factor we use the Langevin approach to describe kinetic fluctuations [5]. The starting
point of our procedure is the same as in [6]. A kinetic equation for the fluctuation δfa
of the one-particle distribution function (DF) with respect to the reference state fa is
considered. In the general case the reference state is a none-equilibrium DF which varies
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in space and time both on the kinetic scale (mean free path lei and interparticle collision
time νei−1) and on the larger hydrodynamic scales. These scales are much larger than
the characteristic fluctuation time ω−1. In the non-equilibrium case we can therefore
introduce a small parameter μ = νei/ω, which allows us to describe fluctuations on the
basis of a multiple space and time scale analysis. Obviously, the fluctuations vary on both
the ”fast” (r, t) and the ”slow” (μr, μt) time and space scales: δfa(x,t) = δfa(x, t, μt, μr)
and fa(x,t) = fa(p, μt, μr). Here x stands for the phase-space coordinates (r,p). The
Langevin kinetic equation for δfa has the form [6]

bLaxt(δfa(x,t)− δfSa (x,t)) = −eaδE(r, t)·
∂fa(x,t)

∂p
(12)

where ea is the charge of the particle of specie a, δE - electrostatic field fluctuation, and
the operator bLaxt is defined by

bLaxt =
∂

∂t
+ v · ∂

∂r
+ bΓa(x,t) (13)

bΓa(x,t) = eaE·
∂

∂p
− δbIa (14)

and δbIa is the linearized collision operator. The Langevin source δfSa in Eq. (12) is
determined by the following equation [6]:

bLaxtδfa(x,t)δfb(x0,t0)
S
= δabδ(t− t0)δ(x− x0)fb(x0,t0) (15)

The solution of Eq. (12) has the form

δfa(x,t) = δfSa (x,t)−

−
X
b

Z
dx0

tZ
−∞

dt0Gab(x,t,x
0,t0)ebδE(r

0, t0)·∂fb(x
0,t0)

∂p0
(16)

where the Green function Gab(x,t,x
0,t0) of the operator bLaxt is determined by

bLaxtGab(x,t,x
0,t0) = δabδ(x− x0)δ(t− t0) (17)

with the causality condition:

Gab(x,t,x
0,t0) = 0 (18)

when t < t0.
Thus, δfa(x,t)δfb(x0,t0)

S
and Gab(x,t,x

0,t0) are connected by the relation:

δfa(x,t)δfb(x0,t0)
S
= Gab(x,t,x

0,t0)fb(x
0,t0), t > t0 (19)

For stationary and spatially uniform systems, the DF fa and the operator bΓa do not
depend on time and space. In this case, the dependence on time and space of the Green
function Gab(x,t,x

0,t0) appears only through the differences t − t0 and r − r0. However,
when the DF fa(p,μr,μt) and bΓa(p,μr,μt) are slowly varying quantities in time and space,
and when nonlocal effects are considered, the time and space dependence of Gab(x,t,x

0,t0)
is more subtle:
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Gab(x,t,x
0,t0) = Gab(p,p

0, r− r0,t−t0, μr0,μt0) (20)

For the homogeneous case this non-trivial result was obtained for the first time in our
previous work [7]. This result was extended to inhomogeneous systems [8]. Here we want
to stress that the nonlocal effects appear due to the slow time and space dependences μr0

and μt0.
Relationship (20) is directly linked with the constitutive relation between the electric

displacement and the electric field

Di(r, t) =

Z
dr0

tZ
−∞

dt0εij(r, r
0, t, t0)Ej(r

0, t0) (21)

Previously two kinds of constitutive relations were proposed phenomenologically for a
weakly inhomogeneous and slowly time-varying medium. Kadomtsev [9] formulated the
so-called symmetrized constitutive relation

Di(r, t) =

Z
dr0

tZ
−∞

dt0εij(r− r0, t− t0, μ
r+ r0

2
, μ

t+ t0

2
)Ej(r

0, t0) (22)

Rukhadze and Silin [10] proposed a nonsymmetrized constitutive relation

Di(r, t) =

Z
dr0

tZ
−∞

dt0εij(r− r0, t− t0, μr, μt)Ej(r
0, t0) (23)

Both phenomenological formulations are unsatisfactory. The correct expression should
be

Di(r, t) =

Z
dr0

tZ
−∞

dt0εij(r− r0, t− t0, μr0, μt0)Ej(r
0, t0) (24)

At first order, the expansion with respect to μ, Eq. (16) leads to

δfa(x, t) = δfSa (x, t)−
X
b

eb

Z
dp0dρ

∞Z
0

dτ(1− μτ
∂

∂μt
− μρ · ∂

∂μr
)×

×Gab(ρ, τ ,p,p
0, μt, μr)δE(r− ρ, t− τ) · ∂fb(p

0, μt, μr)

∂p0
(25)

with ρ = r− r0 and τ = t− t0.
From the Poisson equation

δE(r, t) = − ∂

∂r

X
b

eb

Z
1

|r− r0|δfb(x
0, t)dx0 (26)

and performing the Fourier-Laplace transformation for the fast variables

δE(k, ω) =

∞Z
0

dt

Z
drδE(r, t) exp(−∆t+ iωt− ik · r) (27)
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we have

δE(k,ω, t, r) = δEs(k,ω)+

+
X
a

4πie2a

Z
dp(1 + i

∂

∂ω

∂

∂t
− i

∂

∂k
· ∂
∂r
)
k

k2
bL−1aωkδE(k, ω, r, t) · ∂fa(p, r,t)∂p

(28)

Here and in the following for simplicity we omit μ, keeping in mind that derivatives
over coordinates and time are taken with respect to the slowly varying variables. The
resolvent bL−1aωk in Eq. (28) is determined by the following relation:

bL−1aωkδabδ(p− p0) = Z dρ

∞Z
0

dτ exp(−∆τ + iωτ − ik · ρ)Gab(ρ, τ ,p,p
0,μt, μr) (29)

One should bear in mind that the derivatives ∂
∂ω
and ∂

∂k
in Eq. (28) act only on the

operator k
k2
bL−1aωk. The approximation in which Eq. (28) was derived corresponds to the

geometric optics approximation [13]. At first-order and after some manipulations, one
obtains from Eq. (28) the transport equation in the geometric optics approximation,
which is not considered in the present paper, and the equation for the spectral function
of the electrostatic field fluctuations:

Re ε(ω,k)[(δEδE)ω,k −
1

|eε(ω,k)|2 (δEδE)Sω,k] = 0 (30)

where we introduced

eε(ω,k) = 1 +X
a

eχa(ω,k); ε(ω,k) = 1 +
X
a

χa(ω,k) (31)

eχa(ω,k) = (1 + i
∂

∂ω

∂

∂t
− i

∂

∂r
· ∂

∂k
)χa(ω,k, t, r) (32)

and where

χa(ω,k, t, r) = −
4πie2a
k2

Z
dpbL−1aωkk · ∂

∂p
fa(p,t, r) (33)

is the susceptibility for a collisional plasma.
In the same approximation the spectral function of the Langevin source (δEδE)Sω,k

takes the form

(δEδE)Sω,k = 32π
2
X
a

e2aRe

Z
dp(1 + i

∂

∂ω

∂

∂t
− i

∂

∂k
· ∂
∂r
)
1

k2
bL−1aωkfa(p, r, t) (34)

If Re ε(ω,k) 6= 0, it follows from Eqs. (30) and (34) that the spectral function of the
nonequilibrium electrostatic field fluctuations is determined by the expression:

(δEδE)ω,k =

32π2
P
a

e2aRe
R
dp(1 + i ∂

∂ω
∂
∂t
− i ∂

∂k
· ∂
∂r
) 1
k2
bL−1aωkfa(p, r, t)

|eε(ω,k)|2 (35)

The effective dielectric function eε(ω,k) in the denominator of Eq. (35) determines the
spectral properties of the electrostatic field fluctuations and its imaginary part
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Imeε(ω,k) = Im ε(ω,k) +
∂

∂ω

∂

∂t
Re ε(ω,k, t, r)− ∂

∂k
· ∂
∂r
Re ε(ω,k, t, r) (36)

determines the width of the spectral lines near the resonance. Note that when expanding
the Green function in Eq. (25) in terms of the small parameter μ, there appear additional
terms at first order. It is important to note that the imaginary part of the dielectric
susceptibility is now replaced by the real part, which is greater than imaginary part by
the factor μ−1. Therefore, the second and third terms in Eq. (36) in the kinetic regime
have an effect comparable to that of the first term. At second order in the expansion in
μ the corrections appear only in the imaginary part of the susceptibility, and they can
reasonably be neglected. It is therefore sufficient to retain the first order corrections to
solve the problem.
For the local equilibrium case where the reference state fa is Maxwellian, we have the

identity: Z
dp(1 + i

∂

∂ω

∂

∂t
− i

∂

∂k
· ∂
∂r
)
1

k2
bL−1aωkfa(p, t, r) =

=
i

ωa

Z
dpfa(p, t, r)−

iTa
ωa4πe2a

eχa(ω,k) (37)

where (ωa = ω−k ·Va, and Ta is the temperature in energy units) and Eq.(35) takes
the form

(δEδE)ω,k =
X
a

8π Ta

ωa |eε(ω,k)|2 Im eχa(ω,k) (38)

In this case the small parameter μ is determined on the slower hydrodynamic scale.
For the case of equal temperatures and Va = 0 one obtains a generalized expression for
the Callen-Welton formula:

(δEδE)ω,k =
8π T Imeε(ω,k)
ω |eε(ω,k)|2 (39)

To calculate explicitly (δEδE)ω,k we will restrict our analysis to the vicinity of the
resonance, i.e. ω = ±ω0, where Re ε(ω0,k) = 0. We can develop

eε(ω,k) = (ω − ω0sgnω)
∂Re ε

∂ω
bω=ω0sgnω+i[Im ε+ (

∂2

∂ω∂t
− ∂

∂k
· ∂
∂r
)Re ε]bω=ω0sgnω (40)

Thus

(δEδE)ω,k =
eγ

(ω − ω0sgnω)2 + eγ2 8πT

ω∂Reε/∂ω
bω=ω0, (41)

where eγ = [Im ε+
∂2

∂ω∂t
Re ε− ∂

∂k
· ∂
∂r
Re ε]/

∂Re ε

∂ω
bω=ω0sgnω (42)

is the effective damping decrement. For the case where the system parameters are homo-
geneous in space but vary in time, the correction is still symmetric with respect to the
change of sign of ω, but the intensities and broadening are different, and the intensity
integrated over the frequencies remains the same as in the stationary case. However, when
the plasma parameters are space dependent this symmetry is lost. In the same manner
as for simple fluids and gases [4] the spectral asymmetry is related to the appearance of
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space anisotropy in inhomogeneous systems. The real part of the susceptibility Re ε is an
even function of ω. This property implies that the contribution of the third term to the
expression of the damping decrement (42) is an odd function of ω. Moreover this term
gives rise to an anisotropy in k space. Let us estimate this correction for the plasma mode
(ω0 = ωL)

Re ε = 1− ω2L
ω2
(1 + 3

k2T

mω2
) (43)

Im ε =
ω2L
ω2

νei
ω
, ω2L =

4πne2

m
=

Tk2D
m

(44)

and eγ = [νei + 2
n

∂n

∂t
+ 6

ωL

nk2D
k·∂n
∂r

sgnω]/2 (45)

On the hydrodynamic scale ¯̄̄̄
2

n

∂n

∂t

¯̄̄̄
,

¯̄̄̄
6ωL

nk2D
k·∂n
∂r

¯̄̄̄
< νei (46)

and eγ > 0.

Figure 1: The electron form factor (δneδne)ω,k ( solid line) and the spectral function of
electrostatic field fluctuations (δEδE)ω,k (dashed line) as a function of frequency. k·∂n∂r =
νeink2D
54ωL

; kD
k
= 6
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For the spatially homogeneous case there is no difference between the spectral prop-
erties of the longitudinal electric field and of the electron density. They are connected by
the Poisson equation. This statement is no longer valid when considering an inhomoge-
neous plasma. Indeed the longitudinal electric field is linked to the particle density by the
nonlocal Poisson relation (26). In the latter case, an analysis similar to that made above
can also be performed for the particle density. From Eq. (16) there follows

δna(k,ω, r,t) = δnSa (k,ω, r,t) +
X
b

4πikebea
k2

Z
dp(1+

+i
∂

∂ω

∂

∂t
− i

∂

∂k
· ∂
∂r
)bL−1aωkδnb(k, ω, r, t) · ∂fa(p, r, t)∂p

(47)

One should remember that now the derivatives ∂
∂ω
and ∂

∂k
in Eq. (47) act only on the

operator bL−1aωk. At the first order approximation and after some manipulations, one obtains
the following expression for the electron form factor for a two-component (a = e, i) plasma:

(δneδne)ω,k =
2nek

2

ωek2D

¯̄̄̄
¯̄̄1 +

z}|{
χ
i
(ω,k)z}|{

ε (ω,k)

¯̄̄̄
¯̄̄
2

Im
z}|{
χ
e
(ω,k)

+

¯̄̄̄
¯̄̄
z}|{
χ
e
(ω,k)z}|{

ε (ω,k)

¯̄̄̄
¯̄̄
2

Ti
Te

2nek
2

ωik2D
Im
z}|{
χ
i
(ω,k) (48)

where we used for local equilibrium the following expression for the ”source”

(δnaδnb)
S
ω,k = δab

Ta
ωa

k2

2πe2a
Im
z}|{
χ
a
(ω,k) (49)

and z}|{
ε (ω,k) = 1 +

X
a

z}|{
χ
a
(ω,k) (50)

z}|{
χ
a
(ω,k) = (1 + i

∂

∂ω

∂

∂t
− i

1

k2
∂

∂ri
kj

∂

∂ki
kj)χa(ω,k, t, r) (51)

As above we can expand
z}|{
ε (ω,k) near the plasma resonance ω = ωL. Thus, for the

electron line,

(δneδne)ω,k =

z}|{
γ

(ω − signωL)2 + (
z}|{
γ )2

2nek
2

ωk2D∂Reε/∂ω
bω=ωL (52)

where z}|{
γ = [Im ε+

∂2Re ε

∂t∂ω
− 1

k2
∂

∂ri
kj

∂

∂ki
kj Re ε]/

∂Re ε

∂ω
bω=ωLsgnω (53)

is the effective damping decrement for the electron form factor. At this stage of calcula-
tion, let us note that the damping decrements for the electrostatic field fluctuations [Eq.
(42)] and for the electron density fluctuations [Eq. (53)] are not the same. The origin
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of this difference is that the Green function for electrostatic field fluctuation and density
particle fluctuations are not the same. This property holds only in the inhomogeneous
situation. An estimation for the plasma mode is then:z}|{

γ = [νei +
2

n

∂n

∂t
+

ωL

nk2
k·∂n
∂r
(1 +

6k2

k2D
)sgnω]/2. (54)

From this equation we see that the inhomogeneous correction in Eq.(54) is greater than
the one in Eq. (45) by the factor 1+ k2D/6k

2. For the same inhomogeneity; i.e., the same
gradient of the density, we plot the form factor (δneδne)ω,k together with the (δEδE)ω,k
as functions of frequency [11] (Fig. 1). This figure shows that the asymmetry of the
spectral lines is present both for (δneδne)ω,k and (δEδE)ω,k. However, this effect is more
pronounced in (δneδne)ω,k than in (δEδE)ω,k. We have shown that the amplitude and the
width of the spectral lines of the electrostatic field fluctuations and form factor are affected
by new non-local dispersive terms. They are not related to Joule dissipation and appear
because of an additional phase shift between the vectors of induction and electric field [12].
This phase shift results from the finite time needed to set the polarization in the plasma
with dispersion [13]. Such a phase shift in the plasma with space dispersion appears
due to the medium inhomogeneity. These results are important for the understanding
and the classification of the various phenomena that may be observed in applications;
in particular, the asymmetry of lines can be used as a diagnostic tool to measure local
gradients in the plasma.
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