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Abstract
Massive 4-forms are analyzed from the point of view of the Hamiltonian quanti-

zation using the gauge-unfixing approach. This method finally output the manifestly
Lorentz covariant path integral for 3- and 4-forms with Stückelberg coupling.

PACS number: 11.10.Ef

1 Introduction

Antisymmetric tensor fields of various orders (p-form gauge fields) has been intensively
studied as they play an important role in modern theories like string and superstring
theory, supergravity and the gauge theory of gravity [1]—[5]. Particulary they are included
within the supergravity multiplets of many supergravity theories [3]—[4]. Moreover, p-
forms have a special place in the theory of p-branes [5], where (p+1)-forms couple naturally
to p-branes. In fact, it is known that the configuration space for closed p-branes is nothing
but the space of all closed p-manifolds embedded in space-time, in which background rank-
(p+1) antisymmetric tensor fields should be analyzed in connection with their geometric
aspects.
The main aim of this paper is to quantize massive 4-forms using gauge-unfixing method

[6]—[7]. This approach relies on separating the second-class constraints into two subsets,
one of them being first-class and the other providing some canonical gauge conditions
for the first-class subset. Starting from the canonical Hamiltonian of the original second-
class system, one constructs a first-class Hamiltonian with respect to the first-class subset
through an operator that projects any smooth function defined on the phase-space into
a function that is in strong involution with the first-class subset. A systematic BRST
treatment of the gauge-unfixed method has been realized in [8]—[9].
This paper is organized in four sections. In Section 2 we start from a bosonic second-

class constrained system and briefly expose the above mentioned method of constructing
first-class system equivalent with the original theory. In Section 3 we apply the gauge-
unfixed method to massive 4-forms and meanwhile obtain the path integral corresponding
to the first-class system associated with this model. After integrating out the auxil-
iary fields and performing some field redefinitions, we obtain nothing but the manifestly
Lorentz covariant path integral corresponding to the Lagrangian formulation of the first-
class system, which reduce to the Lagrangian path integral for Stückelberg-coupled 3- and
4-forms. Section 4 ends the paper with the main conclusions.
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2 Gauge unfixing (GU) method

The starting point is a bosonic dynamic systemwith the phase-space locally parameterized
by n canonical pairs za = (qi, pi), endowed with the canonical Hamiltonian Hc, and
subject to the purely second-class constraints

χα0 (z
a) ≈ 0, α0 = 1, 2M0. (1)

Assume that one can split the second-class constraint set (1) into two subsets

χα0 (z
a) ≡

³
Gᾱ0 (z

a) , C β̄0 (za)
´
≈ 0, ᾱ0, β̄0 = 1,M0, (2)

such that £
Gᾱ0, Gβ̄0

¤
= D

γ̄0
ᾱ0β̄0

Gγ̄0 . (3)

Relations (3) yield the subset
Gᾱ0 (z

a) ≈ 0 (4)

to be first-class. The second-class behaviour of the overall constraint set ensures that

Cᾱ0 (za) ≈ 0 (5)

may be regarded as some gauge-fixing conditions for first-class set (4).
We introduce an operator X̂ [10]-[11] that associates with every smooth function F

on the original phase-space an application X̂F , which is in strong involution with the
functions Gᾱ0 ,

X̂F = F − Cᾱ0 [Gᾱ0 , F ] +
1

2
Cᾱ0C β̄0

£
Gᾱ0 ,

£
Gβ̄0

, F
¤¤
− · · · , (6)h

X̂F,Gᾱ0

i
= 0. (7)

With the help of this operator we construct a first-class (with respect to the constraints
(4)) Hamiltonian X̂Hc starting from canonical Hamiltonian Hc.
If we denote by SO and SGU the original and respectively the gauge-unfixed system,

then they are classically equivalent since they possess the same number of physical degrees
of freedom

NO =
1

2
(2n− 2M0) = NGU (8)

and the corresponding algebras of classical observables are isomorphic

Phys (SO) = Phys (SGU) . (9)

Consequently, the two systems become also equivalent at the level of the path integral
quantization, and we can to replace the Hamiltonian path integral of the original second-
class theory

ZO =

Z
D (za, λα0) det

³h
Gᾱ0 , C

β̄0

i´
×

exp

∙
i

Z
dt
¡
q̇ipi −Hc − λα0χα0

¢¸
, (10)

with the Hamiltonian path integral of the gauge-unfixed first-class system

ZGU =

Z
D
¡
za, λᾱ0

¢ÃY
ᾱ0

δ (Cᾱ0)

!³
det

³h
Gᾱ0, C

β̄0

i´´
×

× exp
∙
i

Z
dt
³
q̇ipi − X̂Hc − λᾱ0Gᾱ0

´¸
. (11)
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3 Massive 4-forms

We start from the Lagrangian action of massive 4-forms in D ≥ 5 [12]—[13]

SL
0 [Aμνρλ] =

Z
dDx

µ
− 1

2 · 5!FμνρλσF
μνρλσ − m2

2 · 4!AμνρλA
μνρλ

¶
. (12)

with m the mass of Aμνρλ and Fμνρλσ the field strength of the 4-form, defined in the
standard manner as Fμνρλσ = ∂[μAνρλσ]. Everywhere in this paper the notation [μν . . . ρ]
signifies complete antisymmetry with respect to the (Lorentz) indices between brackets,
with the conventions that the minimum number of terms is always used and the result
is never divided by the number of terms. We work with the Minkowski metric tensor of
‘mostly minus’ signature σμν = σμν = diag (+− . . .−). In the sequel we denote by πμνρλ
the canonical momenta respectively conjugated with Aμνρλ. The canonical analysis of this
model [14]—[15] provides the constraints

χ
(1)
ijk ≡ π0ijk ≈ 0, (13)

χ(2)ijk ≡ 4∂lπ
lijk − m2

3!
A0ijk ≈ 0, (14)

and the canonical Hamiltonian

Hc(x
0) =

Z
dD−1x

µ
−12πijklπijkl +

1

2 · 5!FijklF
ijkl

+
m2

2 · 4!AμνρλA
μνρλ − 4A0ijk∂lπlijk

¶
. (15)

The matrix of the Poisson brackets among the above constraints is expressed by

¡£
χα0, χβ0

¤¢
=

m2

3!

Ã
0 1

3!
δl[iδ

p
jδ

q
k]

− 1
3!
δi[lδ

j
pδ

k
q] 0

!
(16)

and is easy to see that it is invertible. In consequence, the constraints (13) and (14) are
second-class and irreducible [16].
According to the GU method we consider (14) as the first-class constraint set and the

remaining constraints (13) as the corresponding canonical gauge conditions and redefine
the first-class constraints as

Gijk ≡ − 1

m2

µ
4∂lπ

lijk − m2

3!
A0ijk

¶
≈ 0. (17)

The other choice, (13) as the first-class constraint set and the remaining constraints (14)
as the corresponding canonical gauge conditions yields a path integral that cannot be
written in a manifestly covariant form [17]—[18]. The first-class Hamiltonian with respect
to (17) follows from relation (6) where Hc(y

0) is displayed in (15)

X̂Hc(y
0) = Hc(y

0)−
Z

dD−1yχ
(1)
ijk (y)

£
Gijk (y) , Hc(y

0)
¤

+
1

2

Z
dD−1ydD−1zχ

(1)
ijk (y)χ

(1)
lqp

¡
y0, z

¢
×

×
£
Gijk (y)

£
Glqp

¡
y0, z

¢
,Hc

¡
y0
¢¤¤
− · · ·

3



= Hc(y
0)−

Z
dD−1y

∙
1

4!
∂[iπjkl]0A

ijkl − 1

m2

1

2 · 4!∂[iπjkl]0∂
[iπjkl]0

¸
. (18)

In order to obtain an manifestly Lorentz covariant path integral we pass to another first-
class system equivalent with the original, second-class one at both classical and path
integral levels. It is well known that any irreducible set of constraints can always be
replaced by a reducible one by introducing constraints that are consequences of the ones
already at hand [16]. In view of this, we supplement (17) with Gij ≡ −m2

3!
∂kG

kij ≈ 0,
such that the new constraint set

Gijk ≡ − 1

m2

µ
4∂lπ

lijk − m2

3!
A0ijk

¶
≈ 0, (19)

Gij ≡ −m
2

3!
∂kA

0kij ≈ 0, (20)

remains first-class and, moreover, becomes off-shell third-order reducible, with first-order
reducibility relations

Zlq
ijkG

ijk + Zlq
ijG

ij = 0, Z l
ijG

ij = 0, (21)

the second-order ones

Zp
lqZ

lq
ijk = 0, Zp

lqZ
lq
ij + Zp

l Z
l
ij = 0, ZlZ

l
ij = 0, (22)

and respectively third-order reducibility relations

ZpZ
p
lq = 0, ZpZ

p
l + ZZl = 0. (23)

The reducibility functions reads as

Z lq
ijk =

1

3!
δl[iδ

q
j∂k], Z lq

ij =
1

2m2
δl[iδ

q
j], Z lq

ij =
1

2
δl[i∂j], (24)

Zp
l = −

1

m2
δpl , Zl = ∂l, Z =

1

m2
. (25)

This procedure preserves the classical equivalence with the first-class theory from the GU
method since the number of physical degrees of freedom or the algebra classical observables
does not change, and keeps the first-class Hamiltonian, such that the evolution is not
affected. The GU and third-order reducible first-class systems remain equivalent also at
the level of the Hamiltonian path integral quantization. This further implies, given the
established equivalence between the GU first-class system and the original second-class
theory, that the third-order reducible first-class system is completely equivalent with the
original second-class theory.
At this stage, it is useful to make the canonical transformation

A0ijk −→ − 1

m2
Πijk, π0ijk −→ m2Bijk. (26)

The constraints (19) and (20) become

Gij ≡ − 1

m2

µ
4∂lπ

lijk +
1

3!
Πijk

¶
≈ 0, (27)

Gi ≡ 1

3!
∂kΠ

kij ≈ 0, (28)
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and remain first-class and third-order reducible, while the first-class Hamiltonian (18)
takes the form

HGU(y
0) =

Z
dD−1y

∙
−12πijklπijkl +

1

2 · 5!FijklqF
ijklq +

m2

2 · 4!AijklA
ijkl

+
m2

4!
Aijkl∂

[iBjkl] +
m2

2 · 4!∂[iBjkl]∂
[iBjkl]

− 1

m2

1

2 · 3!ΠijkΠ
ijk +

1

m2
Πijk

µ
4∂lπ

lijk +
1

3!
Πijk

¶¸
. (29)

Due to the equivalence between the third-order reducible first-class system and the
original second-class theory, one can replace the Hamiltonian path integral of massive
4-forms with that associated with the reducible first-class system. The argument of the
exponential from the Hamiltonian path integral of the reducible first-class system read as

SGU =

Z
dDx

£
(∂0Aijkl)π

ijkl + (∂0Bijk)Π
ijk

+12πijklπ
ijkl − 1

2 · 5!FijklqF
ijklq − m2

2 · 4!AijklA
ijkl

−m
2

4!
Aijkl∂

[iBjkl] − m2

2 · 4!∂[iBjkl]∂
[iBjkl]

+
1

m2

1

2 · 3!ΠijkΠ
ijk − 1

m2
Πijk

µ
4∂lπ

lijk +
1

3!
Πijk

¶
+
1

m2
λijk

µ
4∂lπ

lijk +
1

3!
Πijk

¶
− 1

3!
λij
¡
∂kΠ

kij
¢¸

. (30)

If we perform the transformation

Πijk −→ Πijk, λijk −→ λ̄ijk = λijk −Πijk (31)

in the path integral, the argument of the exponential becomes

S0GU =

Z
dDx

£
(∂0Aijkl)π

ijkl + (∂0Bijk)Π
ijk

+12πijklπ
ijkl − 1

2 · 5!FijklqF
ijklq − m2

2 · 4!AijklA
ijkl

−m
2

4!
Aijkl∂

[iBjkl] − m2

2 · 4!∂[iBjkl]∂
[iBjkl] +

1

m2

1

2 · 3!ΠijkΠ
ijk

+
1

m2
λ̄ijk

µ
4∂lπ

lijk +
1

3!
Πijk

¶
− 1

3!
λij
¡
∂kΠ

kij
¢¸

. (32)

The reducible first-class system constructed in the above display the Hamiltonian path
integral

ZGU =

Z
D (fields)μ ([Aijkl], [Bijk]) exp (iS

0
GU) , (33)

where by ‘fields’ we denoted the present fields, the associated momenta and the Lagrange
multipliers, and by ‘μ ([Aijkl], [Bijk])’ the integration measure associated with the model
subject to the reducible first-class constraints (19) and (20).
In order to infer from (33) a path integral that leads, after integrating out the auxiliary

variables, a manifestly Lorentz covariant functional in its exponential, we enlarge the
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original phase-space with the Lagrange multipliers λ̄ijk and λij respectively associated
with the first-class constraints (19) and (20) [16] and with their canonical momenta pijk

and pij. In order to preserve the number of degrees of freedom we add the constraints

pijk ≈ 0, pij ≈ 0. (34)

The argument of the exponential from the Hamiltonian path integral for the first-class
theory with the phase-space locally parameterized by {Aijkl, Bijk, λ̄ijk, λij, π

ijkl, Πijk,
pijk, pij} and subject to the first-class constraints (27), (28), and (34) reads as

S00GU =

Z
dDx

£
(∂0Aijkl)π

ijkl + (∂0Bijk)Π
ijk + 12πijklπ

ijkl

− 1

2 · 5!FijklqF
ijklq − m2

2 · 4!AijklA
ijkl

−m
2

4!
Aijkl∂

[iBjkl] − m2

2 · 4!∂[iBjkl]∂
[iBjkl]

+
1

m2

1

2 · 3!ΠijkΠ
ijk +

1

m2
λ̄ijk

µ
4∂lπ

lijk +
1

3!
Πijk

¶
− 1
3!
λij
¡
∂kΠ

kij
¢
− Λijkp

ijk − Λijp
ij

¸
. (35)

Performing in (35) the integration over {πijkl, Πijk, pijk, pij, Λijk, Λij} and making the
notations

1

m2
λ̄ijk ≡ −Āijk0,

1

3 · 3!λij ≡ −Bij0 (36)

then (35) can be written as

S000GU =

Z
dDx

∙
− 1

2 · 5!FijklqF
ijklq − 1

2 · 4!
¡
∂0Aijkl + ∂[iĀjkl]0

¢
×

×
¡
∂0Aijkl + ∂[iĀjkl]0

¢
− 3m2

¡
∂0Bijk − ∂[iBjk]0

¢ ¡
∂0Bijk − ∂[iBjk]0

¢
− m2

2 · 3!Āijk0Ā
ijk0 +m2

¡
∂0Bijk − ∂[iBjk]0

¢
Āijk0

− m2

2 · 4!AijklA
ijkl − m2

4!
Aijkl∂

[iBjkl] − m2

2 · 4!∂[iBjkl]∂
[iBjkl]

¸
. (37)

or, equivalently, as

S000GU =

Z
dDx

∙
− 1

2 · 5!FijklqF
ijklq − 1

2 · 4! F̄0ijklF̄
0ijkl

− m2

2 · 4!FijklF
ijkl − m2

2 · 3!F0ijkF
0ijk − m2

2 · 4!AijklA
ijkl

− m2

2 · 3!Āijk0Ā
ijk0 +

m2

3!
F0ijkĀ

0ijk +
m2

4!
AijklF

ijkl

¸
. (38)

where

F̄0ijkl = ∂0Aijkl + ∂[iĀjkl]0, (39)

Fijkl = −∂[iBjkl], F0ijk = −
1

3!

¡
∂0Bijk − ∂[iBjk]0

¢
. (40)
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The functional (38) associated with the reducible first-class system can be written in
a manifestly Lorentz covariant form

S000GU
£
B̄μνρ, Āμνρλ

¤
=

Z
dDx

∙
− 1

2 · 5! F̄μνρλσF̄
μνρλσ

− 1

2 · 4!
¡
Fμνρλ −mĀμνρλ

¢ ¡
F μνρλ −mĀμνρλ

¢¸
, (41)

with

Āμνρλ ≡
¡
Ā0ijk, Aijkl

¢
, F̄μνρλσ = ∂[μĀνρλσ], (42)

B̄μνρ =
1

m
Bμνρ, Fμνρλ = ∂[μB̄νρλ], (43)

and describes precisely the (Lagrangian) Stückelberg [19] coupling between the 3-form
B̄μνρ and 4-form Āμνρλ.

4 Conclusion

In this paper we analyzed massive 4-form fields from the point of view of gauge-unfixing
method. This approach (GU) relies on separating the (independent) second-class con-
straints into two subsets, of which one is first-class and the other a set of canonical gauge
conditions. Starting from the original canonical Hamiltonian, we generated a first-class
Hamiltonian with respect to the first-class constraint subset. Finally, we built the Hamil-
tonian path integral of the GU first-class system and then eliminated the auxiliary fields
and performed some variable redefinitions such that the path integral finally takes a man-
ifestly Lorentz covariant form. It is interesting to remark that this approaches require an
appropriate extension of the phase-space in order to render a manifestly covariant path
integral. The gauge-unfixed method allowed the identification of the Lagrangian path
integral for Stückelberg-coupled 3- and 4-forms.
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