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Abstract

The problem of the stochastic linear stability analysis is treated within the framework of a
model of random walk on the complex affine group. The new feature, related to the stochastic
aspects of the instability analysis, is the occurrence of the heavy tail of stationary probability
density function. We compute the exponent of the heavy tail in the framework of general
complex, one- dimensional, slightly sub critical, continuous time random affine multiplicative
model. In this model the driving multiplicative noise is complex, whose real part is Gaussian,
stationary, with rapid decay of the correlations. The additive noise is complex, nonlinear and is
subjected to restrictions of technical nature.
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I. INTRODUCTION

The large time statistical properties of complex deterministic dynamical systems in
many situations can be approximated by suitable chosen stochastic processes, that in
contrast with the initial non integrable system, it allows an explicit analytic treatment. It
is important to observe that because any nonlinear evolution equation can be reformulated
as an equivalent linear problem in a higher dimensional functional space, the stochastic
version of this linear problem can be approximated as a lower dimensional random walk
in some linear Lie group, or according to the terminology used in the physical literature,
by random multiplicative processes (RMP) The study of the continuous time RMP
is motivated by their connection to the heavy tail (HT) effects [1], by recently found
connection with one-dimensional noise driven on-off intermittency (NOOI) models [2]
and their interpretation as the simplest possible stochastic versions of the linear stability
analysis (SLSA) of dynamical systems (DS).

The first classical examples of the discrete time RMP was the random affine iterated
function systems (RAIFS) [3-5], currently used for image compression [5]. The support
of their stationary probability distribution is a bounded self-similar set of lower fractal
dimension [5].

If the multiplicative term in the one-dimensional RAIF'S is randomly contracting and
dilating with prevailing contractions, then the support of the stationary probability den-
sity function (PDF') extends to infinity and has an inverse power law, or heavy tail asymp-
totic behavior [1, 6-8]. More exactly, the stationary cumulative probability distribution
function (CDF) of the solution z(¢) of the RMP process has the asymptotic behavior
probl|z(t)| > Al = O(A7P) for A — oo, i.e. it is self-similar at large scales, as observed
in self-organized criticality (SOC) related phenomena [9]. The positive exponent 3 is
called the heavy tail exponent (HTE). HT effects were observed in self-organized critical-
ity (SOC) models [9], in experiment in tokamaks [10], condensed matter [1], population
dynamics [11, 12], internet traffic fluctuations [13], mathematical finance models [14],
electronic circuits [15], power grids [16], Monte-Carlo simulations [17]. Extremely low
values for (3, close to zero, was observed in tokamak experiments [10] and in some SOC
models [9].

There exist different explanations for HT effects, not related to the RMP [18, 19].
Nevertheless HT effects related to instability growths were previously explained by over-
damped linear RMP models in discrete time [1, 6, 8, 20], as well as by continuous time
models [2, 15, 21, 22|. The RMP model from [22] correlates two experimentally observed
effects on DIII-D tokamak: the self-similarity of the fluctuations [24] and the very low
value of HT exponent [10].

A rigorous mathematical treatment of a general class discrete time models that include
[1, 6, 7], was given in [25]. In the case of the continuous time models with very general
driving noise we remark that § depends only on the instability threshold and on the zero
frequency component of the additive noise [2, 22|. This dependence is recovered also in
the case of models studied in this work, as well as the simple form of .

Result on the HT effects in particular models, equivalent to higher-dimensional RMP
were obtained in [20]. Partial analytic results were also obtained in linear oscillator model
with multiplicative noise [26]. Infinite-dimensional linear RMP models occurs naturally
in the study of the linear stability study of the solutions of nonlinear partial differential
evolution equation with noise terms [27]. Besides mathematical difficulties, the restriction
of the our study to one-dimensional, real or complex RMP can be justified by the fact
that we can approximate the behavior of the higher-dimensional system by its least stable
eigenmode mode, which is dominating in the large time limit.
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In the framework of one-dimensional continuous time RMP, explicit form for § was
obtained in [22] for a category of linear real SDE, where driving noises are linear combi-
nation of independent colored noises. This result was extended to the case of linear real
SDE with general stationary Gaussian multiplicative noise and constant additive term in
[2], by using rigorous Banach space methods. In this work we generalize the results from
[2, 22]. Compared to the previous studies, the RMP from this work will be described by a
stochastic differential equation (SDE), having the phase space the whole complex plane.
The dominant random linear term contains a complex valued random factor, whose real
part is a stationary Gaussian noise. Because usually the RMP models are linear approx-
imations of nonlinear equations, we will study a class of models with nonlinear additive
term, subjected to restrictions of technical nature. This generalization will be used in the
study of the OOI models and simplified version of SLSA. The possibility to obtain exact
result with the nonlinear additive term extends the range of applicability of RMP models,
because it is possible to approximate nonlinear equations without Taylor expansion.

The heavy tail effects are only the stationary counterpart of a more complex phenomena
related to the noise driven on-of intermittency. Intermittency is a common phenomenon in
fluid dynamics [30] and it was observed also in the plasma turbulence related to controlled
fusion experiments [31-33]. It was predicted on reduced models of profile relaxations [34]
as well by numerical simulations [35-37]. A robust form of the manifestation of the inter-
mittency, different from the generic mechanism given in [38], is the on-off intermittency
(OOI) mechanism [39, 40]. It was discovered in numerical simulations [41-43] and latter
was identified in many physical models and experiments [44-56].

In OOI systems the stationary PDF has a dominating singularity near an invariant
manifold. The period when the system is in the close neighborhood of this manifold
is interpreted as the "laminar phase", so by assuming ergodicity the strength of the
singularity is related to the mean sojourn time in the quiescent state. This singularity
structure is clearly visible in a subclass of NOOI models [2, 21, 28, 29]. One of the
motivation of the present work is to generalize the previous models to obtain a more
general exact result for the singularity exponent A\, because its value give a quantitative
characterization of the statistical aspects of the laminar periods, i.e. it is a measure of
the intermittency itself. We will see that also in the case of the complex phase space the
study of NOOI models can be reduced to complex-valued RMP.

In this article the main technical part is devoted to the large time behavior of the
fractional order moments of the solution Z(t) of a very general one-dimensional complex
valued RMP process, i.e. the function (|Z(¢)["). Despite the mathematical methods are
similar, the full rigorous proof from [2] cannot be extended in this case of complex RMP
under the general assumptions. In the general case we prove that iff the order p is less
then some computable critical value, then (|Z(t)|") is bounded and its infinite time limit
is independent from Z(0). This critical value is just the HTE (3 of the stationary PDF,
if the stationary PDF exists at all. If p > § and |Z(0)| is sufficiently large then {|Z(¢)|")
diverges exponentially. The very existence and non triviality of the stationary PDF, of
the lowest order moments in the large time limit will be proved in a restricted class of
complex RMP models.

The structure of this article is as follows:

In Section II the basic assumptions concerning the new RMP model are presented, as
well as the main result: the exact formula for HTE and large time asymptotic behavior of
the moments (|Z(t)["), for different values of p. In Section III applications of the results
are given. In the Subsection III A the consequences on the stochastic version of the linear
stability analysis are exposed. In the Subsection III B we exemplify our results on some
solvable models and we give a possible hint for the study of the higher-dimensional cases.
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The proof to the main results concerning the bounds on the moments of solution the RMP
(|Z(t)|"), is exposed in the Section IV. These results allow computing the HT exponent if
the existence of stationary PDF is assumed. For the sake of more mathematically oriented
readers we included also an existence proof of the stationary PDF in the Section V. The
proof uses additional restrictions on the additive part of the RMP.

II. THE RMP MODEL AND THE RESULTS
A. The complex weakly nonlinear RMP model

In analogy to the previous continuous time RMP models, our model describes the
instability growth when the multiplicative term is perturbed by some random, stationary
noise. It can be considered as a new step in the modelling of complex DS by studying the
response under stochastic perturbations of the stable eigenmode that is most close to the
instability threshold. If the perturbations of the eigenmodes have comparable amplitudes,
it is expected that the largest response will be provided by this eigenmode and the others
can be neglected or approximated by the additive term.

The phase space of the model is the complex plane and the one-dimensional complex
valued stochastic process Z(t) specifies the time evolution. It obeys the following one-
dimensional complex valued SDE

az(t

U _ ot cyzi + B (1
where a = aj + ias is constant, whose real part Re(a) = a; can be interpreted as an
instability threshold. The instability threshold a; is assumed positive in the cases of
interest, that means that the process is mainly contractive. Nevertheless our intermediate
results on the bounds on the moments of PDF still hold for arbitrary a;. By R(t) we
denoted the random additive term

NE

R(t) = Pr(t) (2)

k=1

and in Egs.(1, 2) by Greek letters we denoted the noises. Real and linear particular
versions of the equation Eq.(1) was studied in [2, 22]. Here ((¢) is the complex driving
multiplicative noise, and R(t) is the driving additive noises. We will suppose that all of the
stochastic processes ((t), R(t) are stationary and has continuous realizations, consequently
the It6 and Stratonovich interpretations of Eq.(1) are identical [57]. This choice of the
SDE allows to extend the main result from [2, 22].
Concerning the driving additive noises, we will suppose only that all of the moments
of integer order of R(t) exists.
(IR@)]") = v <00 (3)

This property from Eq.(3) holds for instance when the stochastic process R(t) is
Gaussian. In addition we suppose that the random processes (;(t) = Re((1(t)) and R(t)
are independent.

This category of SDE, with dominating linear term and bounded additive terms allows
to construct stochastic one-dimensional complex approximations of higher-dimensional
nonlinear dynamical systems with increased domain of validity.

The SDE Eq.(1) is a generalization of the previous continuous time models of RMP
processes related to HT effects [22] . Remark that Eq.(1) can be obtained if we approxi-
mate the behavior of slightly subcritical linear DS by approximating it by the less stable
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linear eigenmode. In order that Eq.(1) be a reliable approximation we suppose that in
the range of the large amplitudes the dominant term is linear.

In this article we will study the problem of the large |Z| asymptotic behavior of the
stationary PDF associated to the SDE Eq.(1).

Remark 1 The additive terms R(t) are mandatory to introduce in Eq.(1), despite their
explicit form do not influence our final results. Indeed, even in the more general case of
Eq.( 1), when Z(t) is a random vector, a is a linear operator, ((t) is a random linear
operator, whose matriz elements are stationary, in the case when R(t) = 0 the equation
is invariant under the group of dilatations Z(t) — «aZ(t). It follows that in the limit
t — oo the stationary PDF of || Z(t)||, if it exists at all, must be self-similar, either of
the form p(||Z|| = const ||Z||™", which is non integrable, or trivial, singular, collapsed to
the origin: p(||Z|| = 6(||Z]|). In the Section V the existence of the large time limit of
(|Z(t)["y is proven, under additional restrictions on the additive noise. We conjecture
that the independence of the additive and multiplicative noise is a sufficient condition for
the non triviality of the stationary PDF.

We will denote by ( ), respectively by () the expectation value of all of the real-
izations of the stochastic processes ((t), respectively R(t), where it is necessary to avoid
confusions. The symbol (.) will denote the averaging with respect to all of the processes
((t), R(t).These subscript will be omitted if no confusion appears. We will consider the
starting position of the solutions of SDE’s fixed.

We suppose in the following only that the real part of noise Re((t) = (i(t) is sta-
tionary, Gaussian and without loss of generality we consider it centered, i.e. ((i(t)) =0,
because a constant term in (; () means a shift of a;. Suppose that the correlation function

(C1(t)¢1(0)) has a rapid decay
[{G®)G(0)] = O[(L +[t)) 7] (4)

where € > 0. The power spectrum of (;(¢) is given by
Puw) = [ (a®a(0) expliwti (5)

Introduce the random walk Y'(t) associated to the real part (;(¢) by the usual definition

y(t) = / Gt (6)

and denote (Y'(¢)?) /2 = d(t). The process Y (t) is a centered Gaussian process with
stationary increments. From the Taylor-Kubo formula, for ¢ — oo we obtain

(Y(t)*) = 2d(t) < P,(0) t = 2Dt (7)

where we introduced the "diffusion constant" D = P;(0)/2. For technical reasons we will
restrict our study to the case when the following condition hold: there exists a constant
k such that for all t > 0 we have

Dt —k <d(t) < Dt+k (8)

The condition Eq.(8) can be justified easily if we postulate Eq.(4).

Explicit form of D in the case when (;(t) is a linear combination of independent
Ornstein-Uhlenbeck processes is given in [22]. It can be verified that in that case Eq.(8)
holds.
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B. The results

The main part of this article is concentrated on the calculation of the HT exponent
B, that specifies the large |Z| behavior of the stationary PDF associated to SDE from
Eq.(1). The exponent [ defined in the previous works [2, 22| by the asymptotic form of
stationary CDF prob(|Z(t| > x) = O( =), will be identified by the critical value p,, of
the fractional power of the moments (|Z(¢)|"), such for p < p.. the moments are bounded
and if p > p,,. they diverges. If the stationary CDF exits then p.. = (.

Under the previous assumptions, we will prove the following results.

Theorem 2 If p < a1/D = pe then for t — oo the fractional moments (|Z(t)[") are
bounded (thus 5 > a1/D). If p > Re(a)/D = per, and |Z(0)| sufficiently large, then for
t — oo the moments (|Z(t)[") diverges (thus 8 < a1/D). If p > a1/D then we have the
asymptotic behavior

(Z2®)) = O{exppt(p —a1)} )

In particular, if ay < 0 then all of the moments diverges.

From this theorem follows the following main Corollary.

Corollary 3 In the limitt — oo, the stationary cumulative probability distribution func-
tion P(x) = prob(|Z(t| > x), when it exists, for x — oo has the asymptotic behavior
characteristic to HT

prob(|Z(t| = @) = O(z™") (10)

where the HTE (3 is given by
B =a1/D = 2a,/P(0) (11)

The explicit formula for 5 from [2, 22] are particular cases of the previous Corollary 3.
Remark that Egs.(9, 10, 11) predicts the importance of the low frequency component of the
driving noise on the evolution of instability. Similar conclusions on related discrete time
NOOI model was reported in [58]. Exactly this low frequency component is amplified
and observed in experiments as the dominant noise, e.g. in the tokamak plasma edge
fluctuation measurements [59]. The power spectrum dependence from Eq.(11) is a hint
that contrary to the linear SDE driven by additive noise, the RMP process filters out the
effects of high frequency components of the multiplicative noise at large scales.

IIT. APPLICATIONS

A. Stochastic instability analysis

In this part we will summarize the implications of the previous result on the problem
of modelling the instability growth in the linear approximations of DS exposed to random
stationary perturbations. We suppose that starting from the high-dimensional linear
approximation of the instability growth we made a further approximation by retaining
the mode that has the highest growth rate. The contribution of the rest of the more
quickly decaying modes, as well a part of the nonlinear term we model by the nonlinear
additive noise. We will see that the results of the stochastic instability analysis, performed
in the overdamped approximation [2] remains correct in this more general case.
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1. The stochastic linear stability analysis, linear system without saturation term.

In this case the driving equation of the evolution of the instabilities under the effects
of the noise is described by the Eq.(1). We consider the following cases:

a. Subcritical linear system perturbed by moise. This system is described by the
Eq.(1) with Re(a) > 0 . In this case according to Theorem 2 and Corollary 3 the
PDF of amplitude of the instabilities in the stationary state has a HT, with exponent
B = Re(a)/D. The large time evolution of the instabilities can be described as follows: If
0 < p < [ then (|Z(¢)|") remain bounded and for p > /3 we have an exponential blow-up
given by Eq.(9). Observe that despite the DS without noise is stable, in the presence
of the noises we have large amplitudes with high probability. In conclusion the linear
approximation of DS is questionable.

b. Supercritical linear system perturbed by moise. This system is described by the
Eq.(1) with Re(a) < 0. In this case we have no stationary state at all and according to
Theorem 2 and Eq.(9) for all p > 0 (|Z(¢)|") diverges exponentially. In other terms, the
solution of the SDE in this case behaves similarly with its deterministic counterpart.

In conclusion, due to the multiplicative noise, the linear approximation of complex
nonlinear DS is questionable. So in order to study the instability growth we need some
mechanism that give rise to saturation.

B. Solvable models and a conjecture

Consider two simple limiting cases of the stochastic process described by SDE Eq.(1),
driven by white noises. Particular cases of the first model was already studied in [15, 21]

dz(t) = [—ardt + odwy(t)] o x(t) + h(x) + g(z)dws(t) (12)

where a1, o are constant, a; > 0 and the functions corresponding to the additive noises
h(x), g(x) are bounded. In the first term we used the Stratonovich multiplication [57],
denoted by o. The processes wi(t) and ws(t) are independent real standard Brownian
motions. According to Egs.( 6 , 8) we have D = ¢%/2. By direct calculation can be
verified that the stationary PDF p(z), the solution of the Fokker-Planck equation has the
following large = asymptotic form: p(z) < 2717# with 3 = a;/D, thus Eq.(10) is verified.
Observe that in this limiting case the Stratonovich prescription give the correct value of
the HTE.
The complex version of Eq.(12) is

dZ(t) = [—adt + odWi(t)] o Z(t) + rdWs(t) (13)

where a = a; +tas , a1 > 0 and 7 is a complex parameter are similar to the case
of the Eq.(12). Again D = ¢2/2. The stochastic processes Wy(t), W;(t) are standard
complex independent Brownian motion (BM), more exactly their real and imaginary parts
are standard real independent BM. Remark that in this model the Stratonovich or It
in the first term of Eq.(13) give the same result. By straightforward calculation we can
verify that the stationary Fokker-Planck equation has a symmetric solution p(|Z]) with
the expected large |Z| asymptotic behavior p(|Z]) < |Z|7277, in accord with Eq.(10).

The problem of the generalization of the previous results stated in Proposition 3 and
Theorem 2 to the high-dimensional models is still an open problem. A possible general-
ization of the Eq.(1) is the following

dZ(t)

=@ dY (t)/dt)Z(t) + R(1) (14)
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where Z(t) is an N-dimensional vector, R(¢) are N-dimensional vector valued func-
tions, whose components are has bounded moments in analogy to the our previous discus-
sions, a is a constant complex N x N matrix, with positive definite Hermitian part and
dY (t)/dt is a complex N x N matrix-valued stationary Gaussian process. Remark that
even in the case when the SDE Eq.(14) is real and two-dimensional, it cannot be reduced

to the previous SDE Eq.(1). Denote by X/f\l(t)its Hermitian part in analogy to Eqs.(6, 7),
whose matrix elements has the following asymptotic form for large ¢

<Y;ﬁj (t)Ymm(t)) = 2Di,i,m,nt (15)

Previous examples suggest a possible route to simplify the study of the asymptotic
properties of the solutions of Eq.(14) by the following

Conjecture 4 The large ||Z|| asymptotic behavior of the stationary PDF of the SDE
Eq.(14) is independent of the nonlinear additive terms. It the same as that of SDE,
defined in Stratonovich sense and obtained from Egq.(14) by replacing the matriz valued

Gaussian process ?(t) with stationary increments, by the matriz-valued Brownian motion
B(t). The matriz elements of B(t) are correlated according to

<Bi,j (t)Bmm(t,» = 2Di,j,m,n min(t, t/) (16)
with identical coefficients D; jmn in Eqs.(15, 16).

The study of higher-dimensional generalizations, applied to discretized versions of lin-
ear noisy reaction-diffusion partial differential equations, relation to Anderson localization
is outside of the scope of the present work.

IV. THE LARGE TIME ASYMPTOTIC BEHAVIOR OF THE MOMENTS OF
PDF

Because the driving noises are classical functions, the integral form of the SDE Eq.(1),
with the initial condition Z(0) = Z is

Z(T) = /TR(Z, t)exp [—a(T —t) = U(T)+ U(t)] dt + Zyexp |[—aT — U(T)] (17)
where we denoted

U(t) = / C(t)dt (18)

Recall that according to Eq.(8) we have Re(U(t)) = Y (t). The fractional order moments,
whose large time asymptotic behavior will be studied, are defined as

M(p,T) =(|Z(T)[") (19)

We denote the random variables
Ay(T) = exp [—aT = U(T)] (20)
Bu(T) = /0 R(Z(), £) exp [—a(T — 1) — U(T) + U(t)] dt (21)

It will be proved that for large T', and for Z, sufficiently large, if p > Re(a)/D then
M(p,T) diverges exponentially. If p < Re(a)/D then M(p,T) is bounded and the limit,
when it exists it is independent of the initial point Zy. Then it follows that the stationary
CDF, if it exists, has a HT Eq.(10), with the HTE given by Eq.(11). The results of the
following subsection, of technical nature, will be used in the final proof of Eq.(11).
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A. The main lemma: bounds on the moments of Ay (7T) and By (T)

In order to study the large time behavior of (|Z(¢)[") we will study first separately the
moments of the terms from Eq.(17). Denote

Ma(p, T) = {JAu(T)I") (22)
Mp(p,T) = {[Bu(T)F) (23)

Observe that (|Ay(T)|") = exp(—paiT) (exp(—pY (T))) and
crexp [—pT'(ar — pD)] < Ma(p,T) < coexp [=pT'(a1 — pD)] (24)

for some fixed constants ¢y, ¢y that are independent of T'. Such constants, independent
of T, will be denoted in the following by c3, ¢4, .... Their exact values are unimportant.
Consequently we obtain for p < p.. = a;/D the large time behavior

My(p, T) = O{exp [-pT(a1 — pD)]} — 0 (25)

From this result we will obtain that for p < Re(a)/D the limiting value of (|Z(¢)|") is
independent of Z(0).

The difficult part of the proof is to obtain bounds on Mg(p,T'). The following main
lemma will be proved.

Lemma 5 The fractional moments Mg(p,T), defined by Eqs.(23, 21) are bounded by
Mp(p,T) = (|Bu(T)[) < clexp [-pT (a1 — pD)] — 1 (26)
for some constant ¢ independent of T.

In order to prove this lemma, the first step is to bound all the complex numbers by
their absolute values in Eq.(21). We use the notation

[R()] "2 f(t) (27)

The stochastic process f(t) introduced in Eq.(27) is stationary, independent relative
to ((t) and has finite fractional moments [see [23] |. By using in Egs.(23, 21,) the obvious
fact |3, a;il” < (30, |ai])” and Eq.(27) then we obtain a more easily tractable form

Mp(p, T) < {(By,;(T))?) =" Ng(p,T) (28)

where the following notations were introduced

By (T / f@)Ey(t,T)d (29)
By (t,T) = exp[—ay (T — t) — Y/(T) + Y (1) (30)

Remark 6 . Because the couple of stochastic processes {Y (t), f(t')} are independent
and Y (t) has stationary increments, it follows that in the mean value calculations, like
((By£(T))P) from Eqs.(28, 29, 30 ) we can substitute everywhere Y (T) =Y (t) by Y (T —t).

In this case the terminology "Y (T') — Y (t) is equal in distribution with Y (T —t)" and the

notation Y (T) = Y (t) £ Y (T — t) is used [57].
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By applying this rule in Eq.(30) and denoting
Hy(t) = exp [—a1t — Y (1)] (31)
from Eqgs.(28, 29, 30, 31) we obtain

Voo ) = (| (T t>dt]p>fy

By the change of the variable t — T — ¢ results
T P
Matp,7) < Mol 7) = { | [0 = 0ytoyie] ) (32)
0 7Y

In order to study the asymptotic behavior of the term Ng(p,T) we will study several
ranges of values p separately.

1. Case 1<p

When p > 1 observe that M(p,T) and Mg(p,T) can be expressed by the Lebesgue
space norms. Define, for any functional F(W, f), depending on some stochastic processes
W(t), f(t), the L? Banach space norm [61]

I W ()5 O, 22 UF W )L FOIPRY (33)

In our case W (t) = U(t) or W(t) =Y(t).
According to Eq.(32) and Eq.(33) we have

My (p. T)]"? < / ST — t)Hy (1)t (34)
0 P
as well as the simple LP bound
T
(Mp(p, T < / VAT = 1) Hy (1)), dt (35)

Because the processes f(.) and Y(.) are independent, the L? norm from 35 factorizes
IA(T =) Hy ()|, = (f(T = )P Hy (t)")y,; = (f(T = 8)"); (Hy (£)")y (36)
Because the stochastic process f(¢) has finite moments p, from 36 results

1f(T = t)Hy ()|} < pp (Hy (t)P)y, which implies, together with Eq.(35) yield

T
Malp. )7 < 7 [ (B (0)7 (37)
0

The quantity from the r.h.s. of Eq.(37) now can be calculated exactly in a straightfor-
ward manner. From Eq.(31) we have

/0 (Hy (077 dt = / exp [—art] {exp [—pY (1)) 7 dt (38)

By using simple Gaussian integration it results (exp [—pY (t)]) = exp[p?d(t)] <
K5 exp(p*Dt) for some constant Ko Combined with Egs.(37 and 38) we obtain the sought
for bound

Mg (p, T)""* < ¢ |exp [~T(ar — pD)] = 1| / a1 — pD| (39)

for some constant c3, independent of 7. This last inequality prove the lemma for p > 1.
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2. Case0<p<1

In order to obtain bounds on Ng(p,T) for large T, we will use a method similar to
[2]. Consider T'= n7, with 7 > 0 and n large. Observe that from Eq.(32) results

Ng(p,nt) <[Z/ f(nT —t)Hy(t )dt] > (40)

From Eq.(40) we obtain the first inequality

Np(p,nt) < kﬁ; < M:;)Tf(m - t)Hy(t)dtr> (41)

In analogy to [2] denote

bi(t') = <[ /( :Tl)Tf (" - t)Hy(t)dt]p> (42)

and rewrite Eq.(41) like

Ns(p,nt) <> bi(n7) (43)

At this stage we use the Proposition [17] respectively the subsequent inequality [12]
from the our work [23]. By summation, for fixed p, a, D, from Eq.( 43) we have

Ng(p,nt) < cqlexp[(n+ 1)mp(pD — a] — 1 (44)

From this inequality and Eq.(32) the lemma for 0 < p < 1 is proved.

B. Determination of the heavy tail exponent /3

We emphasize that in this general setting we will not prove the very existence of the
stationary PDF. We will suppose that at least for some initial condition it exists. A
particular case, when existence of the stationary PDF can be proven, is studied in the
Section V. In the general case the HTE /3 defined in Eq.(10) will be determined from the
following Conditions (7 and 8), on the moments of the solution Z(t) of Eq.(1) or Eq.( 17).

Condition 7 Ifp < 3 then for all initial condition the mean value (|Z(T)|") are bounded
by a constant independent of T and of the initial condition Z(0). If the large T' limit of
(|1Z(T)[") exists than it is also independent of Z(0).

Condition 8 If p > 3 then for |Z(0)| sufficiently large we have {|Z(T)[") — oo.

We will see that the critical value of p from Conditions(78) is Re(a)/D, so we will
obtain = Re(a)/D. If we assume that Corollary (3) and Eq.(10) holds then these
Conditions can be verified easily. In the following we will prove that such a value of 3
exists and is given by Eq.(11).

According to Egs.(17, 20, 21)

(1Z(T)P) = (120 Av(T) + Bu(T)I") (45)

By using Conditions (7, 8) we will prove separately the inequalities 5 > Re(a)/D
respectively 8 < Re(a)/D , which imply our main result Eq.(11).
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1. Demonstration of the inequality 5 > Re(a)/D

Suppose p < Re(a)/D. We will prove that (|Z(T)[") are bounded for " — oc. Then
results that Condition (7) holds and 5 > Re(a)/D.

In the case when p < 1, from Eq.(45) we obtain (|Z(T)|") = (|ZoAv(T) + By(T)|") <
([|ZoAu(T)| + |By(T)|]") and from main lemma from [23] results

(1Z2(T)") < 12Zo]” (|Au(T)I") + (| Bu(T)[") (46)

From Eq.(24)follows that the first term in Eq.(46) vanishes for large 7. From this
inequality and our previous bounds Eqs.(24 and 26) it follows that there exists a constant
¢, independent of Zy and T such that (|Z(T)|") < c.

In a similar manner, in the case p > 1 we will use Eq.(45) and the Minkowski inequality.
We obtain

(1Z(T)"'" = || 2(T)|

Then again from Eq.(24) we obtain that the first term in Eq.(47) goes to zero for large
T — oo. From Eq.(26) we obtain for large 7' the uniform boundedness (|Z(T)|") < ¢,
with ¢ independent of Zy and T', whenever p < Re(a)/D.

It follows at this stage, that independent of the initial conditions, in both cases, if
p < Re(a)/D , then the fractional moments (|Z(T)|") are bounded by some some constant
that is independent of T" and of the initial condition. According to Eq.(7) if the limiting
stationary PDF exists then the HTE is bounded by 8 > Re(a)/D.

< 2ol [[Av (D)l + [|Bu(T) (47)

o I

2. Demonstration of the inequality 8 < Re(a)/D

If p <1 then from Eq.(45) results
|Zol” (| Au(T)[") = {|Bu(T)[") < {|Z(T)[") (48)

From this inequality and our previous bounds Eq.(24) and Eq.(26) it follows that if
p > Re(a)/D, and the initial condition Z, is selected such that

|Zo| > (¢/ex)V/? (49)
then for large T" we have an exponential blow-up of the moments
(1IZ(T)I") = csexp [Tp(pD — a1)] (50)

with ¢5 = |Zp|" ¢1 — ¢, for p < 1.
In a similar manner, if p > 1 we will use Eq.(45) and the Minkowski inequality to
obtain

(1Z(T)")"" (51)

From this inequality and our previous bounds Eq.(24) and Eq.(26) it follows that if p >
Re(a)/D and Zj is selected according to Eq.(49) then for large 7" and we have again
an exponential blow-up of the moments according to Eq.(50). This time we have c¢5 =
[| Zo] ci/ P cl/Pp. Tt follows that there exists initial conditions in both cases, such that
if p > Re(a)/D, then the fractional moments (|Z(T)|") has an exponential blow-up.
According to Eq.(8) if the limiting stationary PDF exists then the HTE is bounded by
B <Re(a)/D.
Finally, from these inequalities for [ results 8 = Re(a)/D.

[ Zol [ Au (D), = 1 Bu(D)l,, < 1Z(T)

o I, =
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V. EXISTENCE OF THE LIMITS

For the convenience of mathematically oriented readers we will give a short proof of the
existence of the limit of the moments, but under more restrictive conditions on additive
noise term in Eq.(1). Consider a particular case of the SDE Eq.(1), with initial condition

dz(t
P — ot c)z) + o0 (52)

where Re(a) > 0, the process ((t) is stationary and Gaussian with the properties Egs.(6,
7, 8). Suppose that the processes ((t) and ¢(t) are independent, ¢(t) is stationary and
symmetric, i.e. the processes ¢(t) respectively the time reversed version ¢ (t) = ¢(—t)
has the same correlation functions. In other terms for all ¢, we have

o(t) = @lto +1) (53)

o(t) < ¢(~1) (54)
Moreover we suppose that for all p > 0 we have

(lo)") = pp < 00 (55)

Remark that any stationary Gaussian noise satisfy Eqs.(53, 54, 55). We will prove the
following

Proposition 9 Under above conditions, if p < 6 = Re(a)/D and T > 0, then the se-

quence (| Z(n7)|") has the Cauchy property (consequently exists its limit for n — oo and
it is finite).

In order to prove Proposition Eq.(9) we observe that from stationarity. and symmetry

of ¢(t) it follows that for a fixed constant ¢y we have the equality in distribution [see also

[57] and Remark(6)]

o(t) = o(to — 1) (56)
Because ¢(t) is independent of the multiplicative noise, Eq.(56) means that in all of the
mean value calculation we can made the simultaneous "change of variables " ¢(t)— >
P(to — ).
Introduce again the function U(t) by Eq.(18). In analogy with Eq.(17), taking into
account Eq.(56), the fact that ¢(¢) and U(t) are independent and U(0) = 0, we obtain
the following integral form of Eq.(52)

2(T) = /0 S(T — t) exp [—a(T — ) — U(T) + U (1)) dt (57)

+ Zoexp [—aT — U(T) + U(0)] (58)

By using the independence of the couple {¢(t), U(t)} and the stationarity. of the

increments of U(t), i.e. U(T) — U(t) il U(T — t), the Eq.(57) can be rewritten in the
T

form Z(T) < / o(T —t)exp |[—at — U(T —t)]dt + Zyexp [—aT — U(T — 0)]. By using

0
Eq.(56) and by performing change of the variable ¢ — T —t in the previous equation, we
obtain a more manageable form

2(T) & /0 6(¢) exp [—at — U(t)] dt + Zo exp [—aT — U(T)] (59)
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In the case 1 < p < Re(a)/D , then the previous Banach space method can be used in
almost straightforward manner. In this case we are interested in the large time behavior of

(\Z(n7)|p>1/p = ||[Z(nT)]|| . Consider the integers n > m and large. From Eq.(59) results

I,

12|, = 120, | < 120mr) — Z(nr)]| (60)

p

We observe that after transforming Z(7") to obtain 59, the r.h.s. from Eq.(60) is more
accessible for estimations. From Egs.(60, 59) and the Minkowski inequality we obtain

127, = 127, | < 1Z0] (A + A2) + Ban (61)
where we denote
Aj, = exp(—ark7) (Jexp [~U (k7)]|P)* (62)

mqb(t) exp(—aqt) exp [-U(t)] dt

mT

Bpm = (63)

p

Recall that Re[U(t)[= Y (¢) and it is Gaussian process. Then the first terms in Eq.(61)

can be rewritten as A, = exp(—aik7) (exp [-pY (k7)])*/? and according to Egs.(20, 22,
24) we have
Ap < csexp(kTD(p — 5)) (64)

The term B, ,, can be bounded as follows

Bn,mﬁ/ le(@)]l,, exp(—ast) [lexp [=Y ($)]]],, di

and the rest of the calculations are standard. Indeed, according to Eq.(55) the
quantity [|¢(¢)||, is bounded. The norm [lexp[-Y (t)][|, = (lexp [—Y(t)]\p>1/p can be
bounded by simple Gaussian integration. By straightforward calculations it results that
12, = 1Z(m)l,
that [[Z(n7)]|, is a Cauchy sequence and consequently has finite limit.

In a similar manner, if we suppose that 0 < p < 1 and p < Re(a)/D, then from Eq.
(59) results

can be made arbitrary small for m, n sufficiently large, that proves

[1Z(n7)") = (| Z(mT)[")| < | Zol” (Ma(p,n7) + Ma(p, mT)) + Vom (65)

In the previous formula the notation Ma(p,t) is defined by Eq.(22) and

Vim = < p> (66)

with Hy (t) defined in Eq.(31).

We will prove that for m,n sufficiently large all of the terms in the r.h.s. of the
inequality Eq.(65) can be made arbitrary small, and consequently (|Z(n7)|") is a Cauchy
sequence and has a limit. By using Eq.(25) it result that

" () By (1)dt

mT

Ma(p, k1) < Kyexp(—pkt(a; — pD)) (67)
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Ma(p,nt)+ Ma(p, mT) vanishes for m,n large. Be using the previously introduced nota-
tion for by(t) in Eq.(42) we obtain

Vil < 3 04(0) (68)

k=m+1

From the exponential bounds for by (0), proved in [23] and Eq.(68) we obtain that for large
m,n the term V,, ,, can be made arbitrary small, if p < a;/D, because

|Vim| < Cexp[—pmT(a; — pD))] (69)

Recollecting the previous estimates Eqgs.(69,68,67,65) we find that the moments {|Z(n7)|")
generate a Cauchy sequence and has a finite limit for n — oo.

So we proved that if p < a;/D then the moments (|Z(n7)|’) has finite limits. By
analytic continuation arguments, similar to [2], it follows that also exists a limiting cumu-
lative probability distribution function of |Z(n7)|. If it is nontrivial, then the PDF has a
HTE given by Proposition (3) and Eq.(11) .

Heuristically, the problem of non-triviality of the stationary PDF in this case can be
deduced from the fact that near Z = 0 the additive term is dominant, consequently the
behavior of the stationary PDF near origin is governed by the statistical properties of the
additive noise.

VI. CONCLUSIONS

Continuous time, slightly sub critical random multiplicative processes, whose phase
space is the complex plane, was studied. The main part of the work is devoted to the
study of the statistical aspects of the large time and large amplitude excursions of the
solution of a large class of stochastic differential equations. This class of equations has
a dominating random linear part and a nonlinear random additive part subjected to
boundedness conditions of technical nature. It arises naturally in the study of the linear
stability when a dynamical systems is perturbed by noise. The one-dimensional approxi-
mation used in this work is admissible whenever we can approximate the study of a full
linear system by the least stable eigenmode.

This process is a natural, nonlinear and complex generalization of the overdamped ran-
dom multiplicative affine processes, used previously in the study of the heavy tail effects.
Under very general assumptions on the driving noises, we obtain a generalized formula for
the heavy tail exponent as well as large time asymptotic results for the fractional order
moments of the solution.

We prove that the study of the singularity of stationary probability density function
of the noisy relaxation oscillations, can be reduced to this model. We computed the
exponent of the singularity of the stationary probability density function on this class of
noise driven on—off intermittent models of the relaxation oscillations.

Remarkable robustness of both of the exponents was proven. They depend only on the
instability threshold and the zero frequency power spectrum of the real part of the driving
noise, and they are not influenced by the nonlinear components. This independence
generates a conjecture that if will be proven, then it simplifies the study of the higher
dimension random multiplicative processes. The fact that the statistical properties of
the large amplitude fluctuations depends only on the low frequency component explains
qualitatively some experimental data on the edge plasma intermittency in tokamaks.

By assuming ergodicity, from our formula it follows that for on-off intermittency system
driven by noise of fixed, moderate intensity but with increasing correlation times, the
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system will spend much of time in the laminar phase. The robustness of this mechanism
of the noise-induced stabilization suggests the existence of similar, computable singularity
structure of the PDF in more complicated intermittent dynamical systems.

The consequences of these results on the stochastic analogue of the linear stability
analysis are discussed.
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