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Abstract

Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two space-time derivatives of the fields, we investigate the
consistent cross-couplings that can be added between a collection of massless tensor
fields with the mixed symmetry (3, 1) and a Pauli-Fierz field. The computations are
done with the help of the deformation theory based on a cohomological approach,
in the context of the antifield-BRST formalism. Our final result is that no cross-
couplings are possible.

PACS number: 11.10.Ef

During the last years tensor fields in exotic representations of the Lorentz group [1]-[7]
have been extensively employed in many interesting problems, like the dual formulation of
field theories of spin two or higher [8]-[14], the impossibility of consistent cross-interactions
in the dual formulation of linearized gravity [15], or the derivation of some exotic gravita-
tional interactions [16, 17]. An important matter related to mixed symmetry type tensor
fields is the study of their consistent interactions, among themselves as well as with
higher-spin gauge theories [18]-[26]. The most efficient approach to this problem is the
cohomological one, based on the deformation of the solution to the master equation [27].

The purpose of this paper is to investigate the consistent cross-couplings between a
collection of massless tensor gauge fields with the mixed symmetry (3, 1) and a Pauli-Fierz
field. Our analysis relies on the deformation of the solution to the master equation by
means of cohomological techniques with the help of the local BRST cohomology, whose
component for a collection of (3,1) fields has been considered in [28] and in the Pauli-
Fierz sector has been investigated in [29]. Under the hypotheses of analyticity in the
coupling constant, locality, Lorentz covariance, and Poincaré invariance of the deforma-
tions, combined with the requirement that the maximum number of derivatives in each
interaction vertex is equal to two, we find that no cross-couplings can be added to the
original Lagrangian action.

The starting point is given by the Lagrangian action for a finite collection of free,
massless tensor fields with the mixed symmetry (3, 1) and for a Pauli-Fierz field in D > 5

SO [tfuﬂa? hMV] = SO [tfuu\a} + SéDF [hl“’] ) (1)
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where

St |:t/\uu\o¢j| /{ 8”25)““"0‘) (aptfuu\a) <a thIa) (aﬁt/\ij)]
3
2

Ka t’\“”|a) (04 ,10) + (aptj(‘) (aptfu)}
[(a tW'Q) (On2) + (9,%) (aAtfu)} } Pz, 2)

Sl = [ {5 1@0) @) — @) @,0)
(0,h°) (*ha,) — (0°h) (9ha,) ) P 3)

Everywhere in this paper we employ the flat Minkowski metric of ‘mostly plus’ signature
o" =0, = (—++++---). The uppercase indices A, B, etc. stand for the collection
indices and are assumed to take discrete values 1, 2, ..., N. They are lowered with a
symmetric, constant, and invertible matrix, of elements k4, and are raised with the help
of the elements k47 of its inverse. Each field tfwj‘a is completely antisymmetric in its first
three (Lorentz) indices and satisfies the identity té\w‘a] = 0. The notation t5, from (2)
{ V|a, defined by tfﬂ ovotd
antisymmetric tensor, ¢4 = tf}/\. The Pauli-Fierz field h,, is symmetric and h denotes
its trace. A generating set of gauge transformations for action (1) can be chosen of the
form

signifies the trace of ¢4 The trace components define an

Apv|a”

A A A
Oc Xt/\;w\oz 38046)411/ + 8[)\ € o + a[)\ X uv]|a
= _33[)\ Eﬁya] + 48[/\ Eﬁy]a + 8[/\ Xﬁy]\a? (4)

Schy = D€y (5)

where all the gauge parameters are arbitrary and bosonic, with e/\ , completely anti-
symmetric and X Jja With the mixed symmetry (2,1). The generating set (4) and (5) is
off-shell reducible of order two and the associated gauge algebra is Abelian. Consequently,
the Cauchy order of this linear gauge theory is equal to four.

The most general quantities, invariant under the gauge transformations (4), are given
by the components of the curvature tensors of mixed symmetry (4, 2) associated with each
field from the collection

F}:\MVE\aﬁ — 5o thE — 9B t#l/f

: (6)

of the linearized Riemann tensor
1
KhvleB — ) (8"8‘%”6 — QYO hMB — OHPP R + 8”85h’w‘) , (7)

together with their space-time derivatives.
The construction of the BRST symmetry for the free model under study debuts with
the identification of the algebra on which the BRST differential s acts. The ghost spectrum

comprises the fermionic ghosts {nfw,, gfy‘a,nu} respectively associated with the gauge

parameters {efw, Xﬁula’ Eu} from (4) and (5), the bosonic ghosts for ghosts {C.,, Go,
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due to the first-order reducibility, and the fermionic ghosts for ghosts for ghosts C4 cor-
responding to the maximum reducibility order (two). We ask that 77)\ , and CA
completely antisymmetric, g/j‘m exhibit the mixed symmetry (2, 1), and GA are symmet—

*AUV | h*uy

ric. The antifield spectrum comprises the antifields {t } associated with the

original fields and those corresponding to the ghosts, { G Yo 77*“} {C, Gvey,
and C%

Since both the gauge generators and reducibility functions for this model are field-
independent, it follows that the BRST differential s simply reduces to s = § + 7, where
0 represents the Koszul-Tate differential and v stands for the exterior longitudinal differ-
ential. According to the standard rules of the BRST method, the corresponding degrees
of the generators from the BRST complex are valued like

pgh (th,10) = 0 =pgh (hyu)
pgh (n3,,) = pgh (QW\@) pgh (1,) = 1,
pgh (C;,) = pgh (GJ,) =2, pgh(C)) =3,
pgh (anticampuri) = 0 = agh (campuri/ghosturi) ,
agh ( *’\’“’la) =1 =agh (h*""),
agh ( )"“’) = agh ( *’“’M) =2,
agh (C7/") = agh (G/*) = agh (C’ )

The actions of 0 and v on the generators from the BRST complex are given by

Tila = =300 Tva) + 400 M0 + 00 Ginjas (8)
7hm/ = 5(u77u), 777§‘W = 8 Cp,u]? (9)
fyg,fum = 28[#0 38[# Cl/]a + a[#Gu]om VM = 07 (10)
VCh, =0, Ch, Gy = —30u,Chy, 1Ci = (11)
AE = A = Y = G = = 0, (12)
VO =G =4CY =0, (13)
5tA,uu\oz - 5h,U«V - 577)411/ - 5g,uu|a - 577“ = 07 (14)
A _ sA A
5CA = 5G4, =50 =0, (15)
SN = T S = 2 Sy = A0, (16)
5GTY = _9, (375”;5“”‘0‘ - tjf"““) Sy = —20, B (17)
* UV 1 *AUV *VQ *ulvia

SCH = 30, (g“'A 5l AA“), SGHe = 9,G7 ) (18)

* * v 1 * v
5C =60, (G“ —gcA“>, (19)

where T)"1* = —055/0t3, 10 and H,, = —(1/2)3Sg™ /6h* represent the components of
the hnearlzed Einstein tensor. We note that the action of the Koszul-Tate differential
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on the antifields with the antighost number equal to two and respectively three gains a
simpler expression if we perform the changes of variables

*urv|o *uv|o 1 *Uro *vQ *VQ *ra
Gy = G i, G = G - O, (20)
namely
G — _3pyre sGe = 20,65 5O = 60,G1 (21)

The same observation is valid with respect to ~ if we make the changes
gp,u|a guu|o¢ + 477,:?1/047 G,A GA - 3CI/AO¢> (22)

in terms of which we can write
1
Mwla = = 790G w10 T 0 Finjar 1Giie = O Gl vl = —60,C5. (23)

The transformed variables (20) and (22) form pairs that are conjugated in the antibracket.
The solution to the classical master equation for the free model under study reduces
to the sum between the solutions in the two sectors

S =S+ st (24)

where

St = SS [tfyﬂa] +/ |: *)\“V‘a (360177)\;w + a[)\ nuu e} + a[)\ g;u/ \a)

1 xuv|a
B 577A “”3 CA + Gy | (ancCA a[uC + a[/‘Gl’]Q)
—i—CZWa[u C SG*yaa w Cé)] le,7 (25)

Sh = SEF [hm,] + /h*“”(‘?(unl,)dDa;. (26)

The reformulation of the problem of consistent deformations of a given action and of
its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution S
to the master equation for the initial theory can be deformed into the solution S of the
master equation for the interacting theory

S — S =54¢S1+¢*S+ ¢S5+ ¢*Sy + - - -, (27)
(5,5)=0— (5,5) =0. (28)

The projection of (28) for S on the various powers of the coupling constant induces the
following tower of equations:

g°:(S,9) =0, (29)
g :(5,5) =0, (30)
G (S, 8) + % (S1,S1) =0, (31)
93 . (Sg, S) + (Sl, Sg) O, (32)
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In the sequel we compute all consistent interactions that can be added to the free action (2)
by solving the deformation equations (30)—(32), etc., by means of specific cohomological
techniques, under the general hypotheses mentioned in the introductory paragraph.

In order to analyze equation (30) (that governs the first-order deformation) we make
the notation S = [ adPz and write this equation in its local form and in dual notations,
sa = 0,m". It is convenient to split the first-order deformation into

a=a"+a" +a™, (33)

where a" denotes the part responsible for the self-interactions of the Pauli-Fierz field, a'
is related to the deformations of the tensor fields tﬁu|aﬁ’ and a™ signifies the component
that describes only the cross-interactions between A, and t;‘y‘a 5- Then, a" is completely

known (for a detailed analysis, see for instance [29])

a" = af + a} + ay, (34)

where
ay = 00" Oa, (35)
@ = P Dby + Db — Dby, (36)

and af is the cubic vertex of the Einstein—Hilbert Lagrangian plus a cosmological term.
The piece a* has been computed in [28] and is given by

a® =0, (37)

In order to ensure the space-time locality of the deformations, from now on we work
in the algebra of local differential forms with coefficients that are polynomial functions
in the fields, ghosts, antifields, and their space-time derivatives (algebra of local forms),
meaning that the non-integrated density of the first-order deformation, a, is a polynomial
function in all these variables (algebra of local functions). Inserting (33) into the equation
sa = 0,m* and using the fact that the first two components already obey the equations
sa® = 9,ml and sa® = 0, it follows that only a™ is unknown, being subject to the
equation

sa™ = §,ml (38)

int*
By taking into account the splitting s = § + v of the BRST differential, equation (38)

becomes equivalent to a tower of local equations, corresponding to the different decreasing
values of the antighost number

va =0, I1>0 (39)
int int (I—l)“
oar” +yarty = 0, m (40)
E—1)H

int

s 4 yat, =0, %) T—1>k>1, (41)

int»

k)M L
where <m~ ) are some local currents, with agh ((m)int> = k. In conclusion, for / > 0
k=0,I

int

we have that ai"* € H* (v).

We have seen that the solution to equation (39) belongs to the cohomology of the
exterior longitudinal differential computed in the algebra of local functions, such that
we need to compute H* () in order to construct the component of highest antighost
number from the first-order deformation. We will see that we also need to compute the
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characteristic cohomology HP (§]d) (the local cohomology of the Koszul-Tate differential
0 in antighost number I and in maximum form degree, computed in the algebra of local
forms with the pure ghost number equal to zero).

Due to the fact that the exterior longitudinal differential v splits as

v =%+ (42)

where v, acts non-trivially only in the (3,1) sector and 7y, does the same, but in the
Pauli-Fierz sector, Kiinneth’s Theorem for cohomologies ensure that

H* () = H" () ©@ H" (1) - (43)

Combining the results from [28] and [29] on H* (7;) and respectively on H* (), it follows
that the general solution to (39) reads

ai[nt = oy ([W*@] ) [Fﬁtuélaﬁ} ) [Km/\aﬂ]) ¢! (77#7 a[#””]’ 0;4’ fflﬂ/a) ’ (44)

where 7*© is a collective notation for all the antifields. The notation f([q]) means that f

depends on ¢ and its derivatives up to a finite order, while e/ denotes the elements of pure
ghost number [ (and antighost number zero) of a basis in the space of polynomials in
Mus Oy F /\Aum and C#, which is finite dimensional since these variables anticommute.
The objects a; (obviously non-trivial in H° (+)) were taken to have a bounded number
of derivatives, and therefore they are polynomials in the antifields 7*©, in the curvature
tensors F ,ng\aﬁ and K a3, as well as in their derivatives. They are nothing but the
invariant polynomials of the theory (1) in form degree equal to zero.

Replacing solution (44) into equation (40) and taking into account definitions (8)—(19),
we remark that a necessary (but not sufficient) condition for the existence of (non-trivial)
solutions @', is that the invariant polynomials o; generate (non-trivial) objects from the
characteristic cohomology HP (8|d) in antighost number I > 0, maximum form degree,
and pure ghost number equal to zero, a;d”z € HP (6|d). As the free model under study
is a linear gauge theory of Cauchy order equal to four, the general results from [30] ensure
that the entire characteristic cohomology is trivial in antighost numbers strictly greater
than its Cauchy order

HP (8|d) =0, I>4. (45)

Moreover, it is possible to show that the above result remains valid also in the algebra of

invariant polynomials .
H™P (§|d) =0, >4, (46)

where H™P (§|d) is known as the invariant characteristic cohomology. On account of the
general results from [28] and [29] on the invariant characteristic cohomology, we are able
to identify the non-trivial representatives of (Hy (6|d)) as well as of (H™P (8]d))

>2
under the form

>2’

agh  HP (6|d) and H™P (§|d)

I>4 —
I=4 fACvdPx : (47)
I=3 e GiredPr

=9 < fyagxuu\a "‘f/ﬂ?*“) dPr

where all the coefficients denoted by f define some constant, non-derivative tensors. We

remark that in (HP (0]d)),., and (H™P (6|d)) ., there is no non-trivial element that

1>2 I>2
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effectively involves the curvatures F /Cwaaﬁ or K,,os and/or their derivatives, and the

same stands for the quantities that are more than linear in the antifields and /or depend on

their derivatives. In contrast to the groups (Hp (d|d)),., and (H}™P (|d)),.,, which are

finite-dimensional, the cohomology HP (§|d) at pure ghost number zero, that is related to
global symmetries and ordinary conservation laws, is infinite-dimensional since the theory
is free.

The previous results on HP (6|d) and H™P (§|d) are important because they control
the obstructions to removing the antifields from the first-order deformation. Indeed, due
o (46), it follows that we can successively eliminate all the pieces with I > 4 from
the non-integrated density of the first-order deformation by adding only trivial terms, so
we can take, without loss of non-trivial objects, the condition I < 4 in the first-order
deformation. The last representative is of the form (44), where the invariant polynomials
necessarily generate non-trivial objects from H™P (§]d) if I = 2,3,4 and respectively
from HP (8]d) if I = 1.

For I = 4, the first-order deformation becomes

int t int int int int
a™ = af™ + a™ + ay* + af* + i, (48)

with the y-non-trivial part of ai"® of the form (44) for I = 4 and the invariant polyno-
mial aydPx a non-trivial object from H™P (§|d). We maintain the requirement on the
maximum derivative order of ai™ being equal to two and observe that, according to (47),
ay can only be linear in the undifferentiated antifields C}’. Consequently, we must select
from the elements e* only those having at most one space-time derivative and at least one
ghost field from the Pauli-Fierz sector

eligible €* : (170170 111,000 111,
MM F sty s Cot, Ct 011 (49)
which then yield
1nt C [77#771177/) < /\uupang + fA,uVParaanT + fA/wp)\ wv'p J':' it p)
+Ci! (fiﬁfénu + f?ﬁl”@[uwﬂ + 7bs. (50)

All the coefficients denoted by f must be constant (neither derivative nor depending on
the space-time co-ordinates). Recalling that we work in D > 5 space-time dimensions, we
find the following admitted representatives:

D=5, a"=™ = ;g CE By . + 0, (51)
D =6, aleze’)im = 0235’\"”’”70 NuMpOie 1+ + 7b (D= 6) (52)
D — 8, agD:S)int _ CgBAgprNWV,plC npnunpf)\’u’y’p’ + ’7[)4 = ), (53)

D in *
D>5, ™ = PN (humnn O + Span 1 Fil,
D
el g A OO ) + 05 (54)

Direct computation shows that the terms containing at least one undifferentiated Pauli—
Fierz ghost cannot produce a consistent component of antighost number three in (48),
irrespective of the y-exact contribution from (51)—(54), and hence we must set

/ /
C1B = (2B = C3BA = Cyp = C3p4 = 0, (55)
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which leaves us with a single candidate, namely,
alft = cfp O PXCM I n 4 + Yba. (56)
We will now show that (56) is not consistent at antighost number two, i.e., the equation

int int 3)#
day" +yaz" = o,m , (57)
possesses non-trivial solutions with respect to a, while the next equation

int int 2)M
dag" + yay" = o,m , (58)

exhibits no non-zero solutions for aiP*. It is convenient (in order to simplify later devel-

opments) to fix the y-exact term in (56) to the value
by = s, C* P CH Ry, (59)

which further gives
mt = QCE)BACMB/\OAMa M- (60)

Inserting (60) in (57), straightforward calculations produce
aft = 25 G (G O,m, + 30 (O by — Ouha)] (61)
and thus we then get
saft = 0, [~4c,gaG" P (G2 20N, + 30 (O huyy — Ophiv)) ]
+ [—2chAg’*BW'* (g/A PO\, + G’#A P (8@\ Ry — a,,hw)ﬂ

pv|

—12¢ 34 G K s C7, (62)

with K, |qs the linearized Riemann tensor (7) and the prime variables defined in (20) and
(22). Comparing (58) with (62), we can state that (58) admits solutions for ai* if and
only if

o
126, 4GB I 15 CAP = by + 011 (63)
nw
for some by and 572"2 with the properties
(2" 2)“
agh (by) =2=agh(m |, pgh(b)=2, pgh =3. (64)

The left-hand side of (63) is a non-trivial element from H? () of antighost number two,
with the accompanying invariant polynomial of the form

/ 1+ Buv|a
—12¢554G"7 | Kyvjas,

such that we must set by = 0, while the same expression cannot be written like a diver-
2\M

gence, so we also have that 57"2 = 0. The above observations lead to the conclusion that

(63) holds if and only if

chA =0, (65)

which further implies, via (60),
a® = 0. (66)
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Consequently, the first-order deformation that describes the cross-interactions between
the Pauli—Fierz field and the mixed symmetry-type tensors t’;‘#y'a can be taken to stop at
an antighost number I < 3.

Assuming now that I = 3, we have that the first-order deformation reduces to

int t int int int
a™ = af™ + a™ + ay* + ai*, (67)

where the last representative is of the form (44) for I = 3, with a3 non-trivial in
HivP (§]d). We apply the result from (47), according to which « is linear in the antifields
G% f , such that the elements €3 that can be used to construct an ai'* with the desired prop-
erties (fulfilling the derivative order assumption and providing effective cross-interactions
between the two types of tensor fields) are spanned by

eligible €* : (17,70, 11,010 117); nynpf)’f}u,y,p,) , (68)

so we obtain that

1n * Auvpo A\uvpot AuvpX p'v
t(%fmm( 8 e + 358 Ouna + fipa WFMW)+7%- (69)

All the coefficients denoted by f are restricted, as everywhere before, to be constant. By
organizing the emerging acceptable (Lorentz-covariant and Poincaré-invariant) combina-
tions according to the space-time dimension, we consequently arrive at:

D— 57 agD:S)int _ ClBg)\MVpUGl;fnunpna 4+ ’yb(D 5) (70)

D=6, af ™" = Cape PTG N0l 1) + W70, (71)

D — 8, aéD:B)int _ CgBAgAuup)\/,wy/p/G,;MBnynpr 4+ ,ng = )7 (72)

wv'p

D>5, af?™ =GN (o 10 ) F ot Oy
D
+C§’>BA77 n F)\W/p) + 'sz(; ) (73)

Straightforward computation shows that (70)—(73) cannot be lifted to antighost number

2H
two, i.e., there are no solutions al'* to the equation da + yal* = 8,}7% , irrespective of
what ’y—exa,ct contributions we take in their right-hand sides, so we must set

/ i /
C1B = C2B = C3BA = Cyp = Cop = C3pa = 0, (74)

which leads to
1nt — 0 (75)

and so the first-order deformation a™ cannot end at antighost number three either.
The next possible maximum value of the antighost number in ™ is I = 2, in which
case a™™ reads
a™ = ag* + a + aj*, (76)
where a® of the form (44) for I = 2 and ay is a non-trivial object from HI™P (4|d).
According to (47) that HP (§|d) is spanned by the antifields G;**'* and 5*. This is
actually the first place where the Pauli-Fierz theory brings non-trivial contributions to
the local cohomology of the Koszul-Tate differential. Taking into account the actions of ¢
on these antifields, we observe that e? cannot include more than one space-time derivative
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in order to ensure an ai with at most two derivatives. Meanwhile, for a™ to describe

cross-interactions, the terms proportional with G il must involve at least one of the
combinations 7, or dj,1,), while those linear in ** are required to depend on F \war The

above considerations render the eligible €? like

eligible e? : (771,77,0,771,6[,)770], nyfj\%u,y,p,) , (77)

which, appended to the general assumptions of Lorentz covariance and Poincaré invari-
ance, then yield

1nt 1%B Apavp nowpo Apav N p'v' ' A
g)\,u|a77V ( 1B P + f2 a[pntf] + 3BA F 'u'v! !

YN,

e T iy Vb2, (78)

where all the f’s are constant. Structuring the independent possibilities like in the above,
according to the space-time dimension, we get:

D =5, agDZE’)int c B5MOWQIAZBJ7V% + ’}/bgDZS), (79)

D=6, ay """ = cpeM G m, 00

+ cqqe A 77“]-},# vy T ’yb (D= 6) (80)

4+ b7 (81)

. (D=8)int __ Apav N u'v' o' ~1xB A
D = 8, Qg = C3BAE g)\,u\anl/f)\/,u’u "p

D >5, aéD)int = gl*B/\Ma (6/2377048[)\ Ny + C/2/B‘7pa77pa[>\ Nyl
v D
+CZ/SBA77 f)\uau) + f}/bg ) (82)

Due to the presence in all the previous representatives of H? (y) of at least one undiffer-
entiated Pauli-Fierz ghost, it results that they cannot be appropriately lifted to a™ as

int

1M
solution to the equation dai'® + val"® = 8ug”r2 , such that we are obliged to take

/ /! /
C1B = C2B = C44 = C3BA = Cyp = Cop = C3pa = 0, (83)

which further produces
1nt — 0 (8 4)

so we conclude that the first-order deformation a™ can only stop at I < 1. Thus, there are

no non-trivial cross-interactions between the tensor fields tfuvla and the Pauli-Fierz field
complying with all the above mentioned requirements that modify the original Abelian
gauge algebra.

For I = 1, the first-order deformation a™

reduces to
int int int
a™ = ap" + al", (85)

with @l of the form(44) for I = 1 and a; necessarily an element from HP (§|d), such that

Q1 = Qg ([t?w/'a] ) [h*/ﬂ’] ’ [F;jw&locﬁ] ) [KAWWB}) ) (5041 = aﬂtu' (86)
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The elements of pure ghost number equal to one of a basis in the space of polynomials in
N> Oy and Fy,,,, are spanned by

"t (s 0 Frpwa) (87)

while the invariant polynomial a1d”z € HP (6]d) is linear in the antifields ¢5"'*, h** and

in their derivatives up to some finite orders, as these are the only generators of antlghost
number equal to one from the BRST complex. The assumption on the maximum deriv-
ative order of ai being equal to two restricts «; not to depend on either the curvatures
or their derivatives. Along the same line, a; cannot contain more that the first-order
derivatives of the antifields. Regarding the terms including the first-order derivatives of
the antifields, we can always make (by an integration by parts in the corresponding func-
tional) the derivative to act on e!, and therefore they can be taken to be linear in the
undifferentiated antifields. As the ﬁrst order derivatives of d;,7,) and F3, \wa are y-exact,
the corresponding terms in a!™ can be discarded since they are 7-trivial. The piece dis-
playing the first-order derivatives of 7, can always be made proportional with 9y, 7, by
adding irrelevant, y-exact objects, so it can be taken to depend only on the undifferenti-
ated antifields. In consequence, the dependence of a; on the first-order derivatives of the
antifields can be removed. Accordingly, we can write that

a1 = Q1lin ( e h*W> (77/“ O f)\uua) + 1. (88)

Selecting only the non-trivial terms that potentially lead to cross-couplings among the
two types of tensor fields, we arrive at

1nt t)\uy|a< /\,Lwozp _’_f)\,uuapoapna]> +prupaa f,ﬁ,m-i—’ybl, (89)

where all the coefficients denoted by f are required to be constant. Taking into account
the identity t[/\ o] = 0, it follows that any solution containing Levi—Civita symbols
contracted on all the indices of this antifield vanish. Invoking in addition the symmetry
of the Pauli-Fierz antifield, we remain with a single candidate in all D > 5 dimensions

™ = cAtZ)‘“@[A M) (90)

For convenience, we took b; = 0 in (89). We observe that dai™ can be written under a
divergence-like form

Sa™ =0, (2CA77)\T2M> , (91)
so the corresponding al'* can be taken equal to zero
ag® =0, (92)

so we obtain that the first-order deformation (85) reduces to its antighost number one
component

a™ = a = MO - (93)
This solution presents a strange behavior. It modifies the gauge transformations of the
tensor fields tfu o at order one in the coupling constant by elements involving the Pauli—
Fierz gauge parameter, but adds no coupling terms with the Pauli-Fierz field to the
deformed Lagrangian action. Actually, solution (93) is purely trivial in H%? (s|d)

ot — <__g’*‘“’|0‘ mnu) + 9, (—20%?“%\) : (94)
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such that it can be safely removed from the first-order deformation. In conclusion, the
deformation procedure allows no non-trivial cross-couplings that change the original gauge
transformations.

We are now left with one more case, where the first-order deformation a™ coincides
with its antighost number zero component (I = 0)

aint - a%)nt ([tfpﬂa] ) [hMV]) ) (95)

with
int (O)H
vag = o,m (96)

being understood that we discard the divergence-like solutions. There appear two different

0
situations. The first one is associated with gn) = 01in (96) and its solutions are constructed
from the gauge-invariant quantities, which are the curvatures and their derivatives

inf in in A
However, the cross-coupling component with the minimum number of derivatives from ag™
is of order four in the space-time derivatives, being proportional with F/{L l/§|a,6’K W ol B
and therefore the solutions (97) are not eligible, as they disagree with the assumption on

the maximum derivative order of the interacting Lagrangian being equal to two.
-
The second situation corresponds to (n% # 0 in (96). Denoting the Euler-Lagrange

derivatives of al® by

5aint 6aint
By = 30—, Dm == (98)
A J5WN R
equation (96) further implies the necessary conditions
0aBY"" =0, 9BY"" =0, 9,D" =0. (99)

Auv|a

The tensors B 4

\uvla and DM is symmetric.

have the same mixed symmetry like ¢

Moreover, B YI* and D" must involve at least one Pauli-Fierz field, respectively, one

tensor field tfwla in order to provide cross-couplings. The general solutions to equations
(99) are of the type

5a%)nt — pAuv|a 5 uvélaf 5a%)nt — v Fuelvs
Ao v

where ®Y*¢*” and ®#¥# depend only on the undifferentiated fields h,,, and t5 o (Oth-

erwise, the corresponding ai™ would be more than second-order in the derivatives), with

éi“ v$1°8 having the mixed symmetry of the curvature tensors Fj{” vE08 and dHalv that of
the linearized Riemann tensor. We introduce a derivation on the algebra of non-integrated
densities depending on tfw‘a, h,, and on their derivatives, that counts the powers of the
fields and their derivatives

_ %) 9
N = Z (8M1~~-untf/w|a) (a A > + (6u1..-unh#l/) a(aul---u h/w) ’
# n

n>0 1-~~Mnt)\/w\o¢

(101)
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and observe that the action of N on an arbitrary non-integrated density @ is

A ou h ou
Auvla Ve
w 5tf,uu|a : 6hMV

Nu + O, (102)

where du/ &fWIa and 0u/0h,,, denote the variational derivatives of 4. In the case where @
is an homogeneous polynomial of order p > 0 in the fields and their derivatives, we have

that Na = pu, and so
1 ou ou 1
= t + hypy— O, [ -r" ). 103
P </\;u1|045tA i 6huy> + “w (p'r > ( )

Apv|a

I

As ag can always be decomposed as a sum of homogeneous polynomials of various orders,
it is enough to analyze the equation (96) for a fixed value of p. Putting @ = ai'* in (103)
and inserting (100) in the associated relation, we can write

1 - _
i = = (0D Y + B a0 ) 4 9 (104)

Integrating twice by parts in (104) and recalling the mixed symmetries of 7" vElef and

PrelvB e infer that
A = by FS e ap @0 4 koK s @ + 0,00, (105)

with k; = 1/8p and k; = —1/2p. By computing the action of v on (105), we obtain that
PAElal and PHelVP are precisely of the type

q)/\uug\aﬂ k/BcI)/\WE\aB Jralvs — g/ pralvs (106)

where k5 and k” are real constants, while ®)****? and ®#el"# are the tensors that define
the free field equations. Accordingly, the admitted value of p is fixed to p = 2. Replacing
(106) in (104) for p = 2, we finally arrive at

k'B K"

m A _ )\ l/‘a v —

0t ([tAMV\a} J [hlw]) D) t/\uu\aT SRS 7hw,H“ + 8”7““. (107)
The solution (107) is not eligible since it gives no cross-couplings between the two types
of investigated tensor fields. Therefore, we can always discard it from the first-order
deformation

mt (|:t>\;,LV|Oé] ) [h‘#l/]) = 0. (108)

In consequence, there are no cross-couplings invariant under the original gauge transfor-
mations (4) and (5) that can be added to the free action (1).
Putting together the results contained in this section, we can state that

Simt — ), (109)

and so
Sy = Sh, (110)

where S} is the first-order deformation of the solution to the master equation for the
Pauli-Fierz theory. The consistency of the deformed solution to the master equation
at the second order in the coupling constant is governed by the equation (31), where
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(Sp, Si) =0 = (S, S, but (S}, SF) # 0, and thus we have that S = 0, while S}
is highly non-trivial and is known to describe the quartic vertex of the Einstein—Hilbert
action, as well as the second-order contributions to the gauge transformations and to the
associated non-Abelian gauge algebra. The vanishing of S and S further leads, via
the equations that stipulate the higher-order deformation equations, to the result that

S =0, k>1. (111)

The main conclusion of this paper is that, under the general conditions of analyticity
in the coupling constant, space-time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-trivial cross-couplings between
the Pauli—Fierz field and a collection of massless tensor fields with the mixed symmetry
(3,1). The only pieces that can be added to action (1) are given by the self-interactions
of the Pauli-Fierz field, which produce the Einstein—Hilbert action, invariant under dif-
feomorphisms.
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