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Abstract
Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré

invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two space-time derivatives of the fields, we investigate the
consistent cross-couplings that can be added between a collection of massless tensor
fields with the mixed symmetry (3, 1) and a Pauli—Fierz field. The computations are
done with the help of the deformation theory based on a cohomological approach,
in the context of the antifield-BRST formalism. Our final result is that no cross-
couplings are possible.
PACS number: 11.10.Ef

During the last years tensor fields in exotic representations of the Lorentz group [1]—[7]
have been extensively employed in many interesting problems, like the dual formulation of
field theories of spin two or higher [8]—[14], the impossibility of consistent cross-interactions
in the dual formulation of linearized gravity [15], or the derivation of some exotic gravita-
tional interactions [16, 17]. An important matter related to mixed symmetry type tensor
fields is the study of their consistent interactions, among themselves as well as with
higher-spin gauge theories [18]—[26]. The most efficient approach to this problem is the
cohomological one, based on the deformation of the solution to the master equation [27].
The purpose of this paper is to investigate the consistent cross-couplings between a

collection of massless tensor gauge fields with the mixed symmetry (3, 1) and a Pauli—Fierz
field. Our analysis relies on the deformation of the solution to the master equation by
means of cohomological techniques with the help of the local BRST cohomology, whose
component for a collection of (3, 1) fields has been considered in [28] and in the Pauli—
Fierz sector has been investigated in [29]. Under the hypotheses of analyticity in the
coupling constant, locality, Lorentz covariance, and Poincaré invariance of the deforma-
tions, combined with the requirement that the maximum number of derivatives in each
interaction vertex is equal to two, we find that no cross-couplings can be added to the
original Lagrangian action.
The starting point is given by the Lagrangian action for a finite collection of free,

massless tensor fields with the mixed symmetry (3, 1) and for a Pauli—Fierz field in D ≥ 5

S0
£
tAλμν|α, hμν

¤
= S0

£
tAλμν|α

¤
+ SPF0 [hμν] , (1)
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where

St0
£
tAλμν|α

¤
=

Z ½
1

2

h³
∂ρt

λμν|α
A

´ ¡
∂ρt

A
λμν|α

¢
−
³
∂αt

λμν|α
A

´ ¡
∂βtAλμν|β

¢i
− 3
2

h³
∂λt

λμν|α
A

´ ¡
∂ρtAρμν|α

¢
+
³
∂ρtλμA

´ ¡
∂ρt

A
λμ

¢i
+3
h³

∂αt
λμν|α
A

´ ¡
∂λt

A
μν

¢
+ (∂ρt

ρμ
A )
¡
∂λtAλμ

¢io
dDx, (2)

SPF0 [hμν] =

Z ½
−1
2
[(∂ρhμν) (∂ρhμν)− (∂ρh) (∂ρh)]

(∂ρh
ρμ)
¡
∂λhλμ

¢
− (∂ρh)

¡
∂λhλρ

¢ª
dDx. (3)

Everywhere in this paper we employ the flat Minkowski metric of ‘mostly plus’ signature
σμν = σμν = (−++++ · · · ). The uppercase indices A, B, etc. stand for the collection
indices and are assumed to take discrete values 1, 2, . . ., N . They are lowered with a
symmetric, constant, and invertible matrix, of elements kAB, and are raised with the help
of the elements kAB of its inverse. Each field tAλμν|α is completely antisymmetric in its first
three (Lorentz) indices and satisfies the identity tA[λμν|α] ≡ 0. The notation tAλμ from (2)
signifies the trace of tAλμν|α, defined by tAλμ = σναtAλμν|α. The trace components define an
antisymmetric tensor, tAλμ = −tAμλ. The Pauli—Fierz field hμν is symmetric and h denotes
its trace. A generating set of gauge transformations for action (1) can be chosen of the
form

δ�,χt
A
λμν|α = 3∂α�

A
λμν + ∂[λ �

A
μν]α + ∂[λχ

A
μν]|α

= −3∂[λ �Aμνα] + 4∂[λ �Aμν]α + ∂[λχ
A
μν]|α, (4)

δ�hμν = ∂(μ �ν), (5)

where all the gauge parameters are arbitrary and bosonic, with �Aλμν completely anti-
symmetric and χAμν|α with the mixed symmetry (2, 1). The generating set (4) and (5) is
off-shell reducible of order two and the associated gauge algebra is Abelian. Consequently,
the Cauchy order of this linear gauge theory is equal to four.
The most general quantities, invariant under the gauge transformations (4), are given

by the components of the curvature tensors of mixed symmetry (4, 2) associated with each
field from the collection

F
λμνξ|αβ
A = ∂α∂[λ t

μνξ]|β
A − ∂β∂[λ t

μνξ]|α
A , (6)

of the linearized Riemann tensor

Kμν|αβ = −1
2

¡
∂μ∂αhνβ − ∂ν∂αhμβ − ∂μ∂βhνα + ∂ν∂βhμα

¢
, (7)

together with their space-time derivatives.
The construction of the BRST symmetry for the free model under study debuts with

the identification of the algebra on which the BRST differential s acts. The ghost spectrum
comprises the fermionic ghosts

n
ηAλμν,GAμν|α, ημ

o
respectively associated with the gauge

parameters
n
�Aλμν, χ

A
μν|α, �μ

o
from (4) and (5), the bosonic ghosts for ghosts

©
CA
μν , G

A
να

ª
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due to the first-order reducibility, and the fermionic ghosts for ghosts for ghosts CA
ν cor-

responding to the maximum reducibility order (two). We ask that ηAλμν and CA
μν are

completely antisymmetric, GAμν|α exhibit the mixed symmetry (2, 1), and GA
να are symmet-

ric. The antifield spectrum comprises the antifields
n
t
∗λμν|α
A , h∗μν

o
associated with the

original fields and those corresponding to the ghosts,
n
η∗λμνA ,G∗μν|αA , η∗μ

o
, {C∗μνA , G∗ναA },

and C∗νA .
Since both the gauge generators and reducibility functions for this model are field-

independent, it follows that the BRST differential s simply reduces to s = δ + γ, where
δ represents the Koszul—Tate differential and γ stands for the exterior longitudinal differ-
ential. According to the standard rules of the BRST method, the corresponding degrees
of the generators from the BRST complex are valued like

pgh
¡
tAλμν|α

¢
= 0 = pgh (hμν) ,

pgh
¡
ηAλμν

¢
= pgh

¡
GAμν|α

¢
= pgh (ημ) = 1,

pgh
¡
CA
μν

¢
= pgh

¡
GA
να

¢
= 2, pgh

¡
CA
ν

¢
= 3,

pgh (anticampuri) = 0 = agh (campuri/ghosturi) ,

agh
³
t
∗λμν|α
A

´
= 1 = agh (h∗μν) ,

agh
³
η∗λμνA

´
= agh

³
G∗μν|αA

´
= agh (η∗μ) = 2,

agh (C∗μνA ) = agh (G∗ναA ) = 3, agh (C∗νA ) = 4.

The actions of δ and γ on the generators from the BRST complex are given by

γtAλμν|α = −3∂[ληAμνα] + 4∂[ληAμν]α + ∂[λGAμν]|α, (8)

γhμν = ∂(μην), γηAλμν = −
1

2
∂[λC

A
μν], (9)

γGAμν|α = 2∂[μCA
να] − 3∂[μCA

ν]α + ∂[μG
A
ν]α, γημ = 0, (10)

γCA
μν = ∂[μC

A
ν], γGA

να = −3∂(νCA
α), γCA

ν = 0, (11)

γt
∗λμν|α
A = γh∗μν = γη∗λμνA = γG∗μν|αA = γη∗μ = 0, (12)

γC∗μνA = γG∗ναA = γC∗νA = 0, (13)

δtAλμν|α = δhμν = δηAλμν = δGAμν|α = δημ = 0, (14)

δCA
μν = δGA

να = δCA
ν = 0, (15)

δt
∗λμν|α
A = T

λμν|α
A , δh∗μν = 2Hμν, δη∗λμνA = −4∂αt∗λμν|αA , (16)

δG∗μν|αA = −∂λ
³
3t
∗λμν|α
A − t

∗μνα|λ
A

´
, δη∗μ = −2∂νh∗νμ, (17)

δC∗μνA = 3∂λ

µ
G∗μν|λA − 1

2
η∗λμνA

¶
, δG∗ναA = ∂μG∗μ(ν|α)A , (18)

δC∗νA = 6∂μ

µ
G∗μνA − 1

3
C∗μνA

¶
, (19)

where T λμν|α
A = −δSt0/δtAλμν|α and Hμν = −(1/2)δSPF0 /δhμν represent the components of

the linearized Einstein tensor. We note that the action of the Koszul—Tate differential
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on the antifields with the antighost number equal to two and respectively three gains a
simpler expression if we perform the changes of variables

G0∗μν|αA = G∗μν|αA +
1

4
η∗μναA , G0∗να

A = G∗ναA − 1
3
C∗ναA , (20)

namely
δG0∗μν|αA = −3∂λt∗λμν|αA , δG0∗να

A = 2∂μG0∗μν|αA , δC∗νA = 6∂μG
0∗μν
A . (21)

The same observation is valid with respect to γ if we make the changes

G0Aμν|α = GAμν|α + 4ηAμνα, G0A
να = GA

να − 3CA
να, (22)

in terms of which we can write

γtAλμν|α = −
1

4
∂[λG0Aμν|α] + ∂[λG0Aμν]|α, γG0Aμν|α = ∂[μG

0A
ν]α, γG

0A
να = −6∂νCA

α . (23)

The transformed variables (20) and (22) form pairs that are conjugated in the antibracket.
The solution to the classical master equation for the free model under study reduces

to the sum between the solutions in the two sectors

S = St + Sh, (24)

where

St = St0
£
tAλμν|α

¤
+

Z h
t
∗λμν|α
A

¡
3∂αη

A
λμν + ∂[λη

A
μν]α + ∂[λGAμν]|α

¢
− 1
2
η∗λμνA ∂[λC

A
μν] + G

∗μν|α
A

¡
2∂αC

A
μν − ∂[μC

A
ν]α + ∂[μG

A
ν]α

¢
+C∗μνA ∂[μC

A
ν] − 3G∗ναA ∂(νC

A
α)

¤
dDx, (25)

Sh = SPF0 [hμν] +

Z
h∗μν∂(μην)d

Dx. (26)

The reformulation of the problem of consistent deformations of a given action and of
its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution S
to the master equation for the initial theory can be deformed into the solution S̄ of the
master equation for the interacting theory

S −→ S̄ = S + gS1 + g2S2 + g3S3 + g4S4 + · · · , (27)

(S, S) = 0 −→
¡
S̄, S̄

¢
= 0. (28)

The projection of (28) for S̄ on the various powers of the coupling constant induces the
following tower of equations:

g0 : (S, S) = 0, (29)

g1 : (S1, S) = 0, (30)

g2 : (S2, S) +
1

2
(S1, S1) = 0, (31)

g3 : (S3, S) + (S1, S2) = 0, (32)
...
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In the sequel we compute all consistent interactions that can be added to the free action (2)
by solving the deformation equations (30)—(32), etc., by means of specific cohomological
techniques, under the general hypotheses mentioned in the introductory paragraph.
In order to analyze equation (30) (that governs the first-order deformation) we make

the notation S1 =
R
adDx and write this equation in its local form and in dual notations,

sa = ∂μm
μ. It is convenient to split the first-order deformation into

a = ah + at + aint, (33)

where ah denotes the part responsible for the self-interactions of the Pauli—Fierz field, at

is related to the deformations of the tensor fields tAμν|αβ, and aint signifies the component
that describes only the cross-interactions between hμν and tAμν|αβ. Then, a

h is completely
known (for a detailed analysis, see for instance [29])

ah = ah0 + ah1 + ah2, (34)

where
ah2 = η∗μηα∂μηα, (35)

ah1 = −h∗μνηα (∂μhνα + ∂νhμα − ∂αhμν) , (36)

and ah0 is the cubic vertex of the Einstein—Hilbert Lagrangian plus a cosmological term.
The piece at has been computed in [28] and is given by

at = 0, (37)

In order to ensure the space-time locality of the deformations, from now on we work
in the algebra of local differential forms with coefficients that are polynomial functions
in the fields, ghosts, antifields, and their space-time derivatives (algebra of local forms),
meaning that the non-integrated density of the first-order deformation, a, is a polynomial
function in all these variables (algebra of local functions). Inserting (33) into the equation
sa = ∂μm

μ and using the fact that the first two components already obey the equations
sah = ∂μm

μ
h and sat = 0, it follows that only aint is unknown, being subject to the

equation
saint = ∂μm

μ
int. (38)

By taking into account the splitting s = δ + γ of the BRST differential, equation (38)
becomes equivalent to a tower of local equations, corresponding to the different decreasing
values of the antighost number

γaintI = 0, I > 0 (39)

δaintI + γaintI−1 = ∂μ
(I−1)
m

μ

int, (40)

δaintk + γaintk−1 = ∂μ
(k−1)
m

μ

int, I − 1 ≥ k ≥ 1, (41)

where
µ
(k)
m

μ

int

¶
k=0,I

are some local currents, with agh
µ
(k)
m

μ

int

¶
= k. In conclusion, for I > 0

we have that aintI ∈ H∗ (γ).
We have seen that the solution to equation (39) belongs to the cohomology of the

exterior longitudinal differential computed in the algebra of local functions, such that
we need to compute H∗ (γ) in order to construct the component of highest antighost
number from the first-order deformation. We will see that we also need to compute the
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characteristic cohomology HD
I (δ|d) (the local cohomology of the Koszul—Tate differential

δ in antighost number I and in maximum form degree, computed in the algebra of local
forms with the pure ghost number equal to zero).
Due to the fact that the exterior longitudinal differential γ splits as

γ = γt + γh, (42)

where γt acts non-trivially only in the (3, 1) sector and γh does the same, but in the
Pauli—Fierz sector, Künneth’s Theorem for cohomologies ensure that

H∗ (γ) = H∗ (γt)⊗H∗ (γh) . (43)

Combining the results from [28] and [29] on H∗ (γt) and respectively on H∗ (γh), it follows
that the general solution to (39) reads

aintI = αI

¡£
π∗Θ

¤
,
£
FA
λμνξ|αβ

¤
,
£
Kμν|αβ

¤¢
eI
¡
ημ, ∂[μην], C

A
ν ,FA

λμνα

¢
, (44)

where π∗Θ is a collective notation for all the antifields. The notation f([q]) means that f
depends on q and its derivatives up to a finite order, while eI denotes the elements of pure
ghost number I (and antighost number zero) of a basis in the space of polynomials in
ημ, ∂[μην], FA

λμνα and CA
ν , which is finite dimensional since these variables anticommute.

The objects αI (obviously non-trivial in H0 (γ)) were taken to have a bounded number
of derivatives, and therefore they are polynomials in the antifields π∗Θ, in the curvature
tensors FA

λμνξ|αβ and Kμν|αβ, as well as in their derivatives. They are nothing but the
invariant polynomials of the theory (1) in form degree equal to zero.
Replacing solution (44) into equation (40) and taking into account definitions (8)—(19),

we remark that a necessary (but not sufficient) condition for the existence of (non-trivial)
solutions aintI−1 is that the invariant polynomials αI generate (non-trivial) objects from the
characteristic cohomology HD

I (δ|d) in antighost number I > 0, maximum form degree,
and pure ghost number equal to zero, αId

Dx ∈ HD
I (δ|d). As the free model under study

is a linear gauge theory of Cauchy order equal to four, the general results from [30] ensure
that the entire characteristic cohomology is trivial in antighost numbers strictly greater
than its Cauchy order

HD
I (δ|d) = 0, I > 4. (45)

Moreover, it is possible to show that the above result remains valid also in the algebra of
invariant polynomials

H invD
I (δ|d) = 0, I > 4, (46)

where H invD
I (δ|d) is known as the invariant characteristic cohomology. On account of the

general results from [28] and [29] on the invariant characteristic cohomology, we are able
to identify the non-trivial representatives of

¡
HD

I (δ|d)
¢
I≥2, as well as of

¡
H invD

I (δ|d)
¢
I≥2,

under the form
agh HD

I (δ|d) and H invD
I (δ|d)

I > 4 −
I = 4 fAν C

∗ν
A dDx

I = 3 fAναG
0∗να
A dDx

I = 2
³
fAμναG

0∗μν|α
A + fμη

∗μ
´
dDx

, (47)

where all the coefficients denoted by f define some constant, non-derivative tensors. We
remark that in

¡
HD

I (δ|d)
¢
I≥2 and

¡
H invD

I (δ|d)
¢
I≥2 there is no non-trivial element that
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effectively involves the curvatures FA
λμνξ|αβ or Kμν|αβ and/or their derivatives, and the

same stands for the quantities that are more than linear in the antifields and/or depend on
their derivatives. In contrast to the groups

¡
HD

I (δ|d)
¢
I≥2 and

¡
H invD

I (δ|d)
¢
I≥2, which are

finite-dimensional, the cohomology HD
1 (δ|d) at pure ghost number zero, that is related to

global symmetries and ordinary conservation laws, is infinite-dimensional since the theory
is free.
The previous results on HD

I (δ|d) and H invD
I (δ|d) are important because they control

the obstructions to removing the antifields from the first-order deformation. Indeed, due
to (46), it follows that we can successively eliminate all the pieces with I > 4 from
the non-integrated density of the first-order deformation by adding only trivial terms, so
we can take, without loss of non-trivial objects, the condition I ≤ 4 in the first-order
deformation. The last representative is of the form (44), where the invariant polynomials
necessarily generate non-trivial objects from H invD

I (δ|d) if I = 2, 3, 4 and respectively
from HD

1 (δ|d) if I = 1.
For I = 4, the first-order deformation becomes

aint = aint0 + aint1 + aint2 + aint3 + aint4 , (48)

with the γ-non-trivial part of aint4 of the form (44) for I = 4 and the invariant polyno-
mial α4dDx a non-trivial object from H invD

4 (δ|d). We maintain the requirement on the
maximum derivative order of aint0 being equal to two and observe that, according to (47),
α4 can only be linear in the undifferentiated antifields C∗νB . Consequently, we must select
from the elements e4 only those having at most one space-time derivative and at least one
ghost field from the Pauli—Fierz sector

eligible e4 :
¡
ημηνηρησ, ημηνηρ∂[σ η τ ],

ημηνηρFA
λ0μ0ν0ρ0 , C

A
μ ην , C

A
μ ∂[ν ηρ]

¢
, (49)

which then yield

aint4 = C∗Bλ

h
ημηνηρ

³
fλμνρσ1B ησ + fλμνρστ2B ∂[σ η τ ] + fλμνρλ

0μ0ν0ρ0

3BA FA
λ0μ0ν0ρ0

´
+CA

μ

³
fλμν4BAην + fλμνρ5BA ∂[ν ηρ]

´i
+ γb4. (50)

All the coefficients denoted by f must be constant (neither derivative nor depending on
the space-time co-ordinates). Recalling that we work in D ≥ 5 space-time dimensions, we
find the following admitted representatives:

D = 5, a
(D=5)int
4 = c1Bε

λμνρσC∗Bλ ημηνηρησ + γb
(D=5)
4 , (51)

D = 6, a
(D=6)int
4 = c2Bε

λμνρστC∗Bλ ημηνηρ∂[σ η τ ] + γb
(D=6)
4 , (52)

D = 8, a
(D=8)int
4 = c3BAε

λμνρλ0μ0ν0ρ0C∗Bλ ημηνηρFA
λ0μ0ν0ρ0 + γb

(D=8)
4 , (53)

D ≥ 5, a
(D)int
4 = C∗Bλ

¡
c02Bηλη

σητ∂[σ η τ ] + c03BAη
μηνηρFA

λμνρ

+c05BAC
Aμ∂[λημ]

¢
+ γb

(D)
4 . (54)

Direct computation shows that the terms containing at least one undifferentiated Pauli—
Fierz ghost cannot produce a consistent component of antighost number three in (48),
irrespective of the γ-exact contribution from (51)—(54), and hence we must set

c1B = c2B = c3BA = c02B = c03BA = 0, (55)
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which leaves us with a single candidate, namely,

aint4 = c05BAC
∗BλCAμ∂[λημ] + γb4. (56)

We will now show that (56) is not consistent at antighost number two, i.e., the equation

δaint4 + γaint3 = ∂μ
(3)
m

μ

, (57)

possesses non-trivial solutions with respect to aint3 , while the next equation

δaint3 + γaint2 = ∂μ
(2)
m

μ

, (58)

exhibits no non-zero solutions for aint2 . It is convenient (in order to simplify later devel-
opments) to fix the γ-exact term in (56) to the value

b4 = c05BAC
∗BλCAμhλμ, (59)

which further gives
aint4 = 2c05BAC

∗BλCAμ∂λημ. (60)

Inserting (60) in (57), straightforward calculations produce

aint3 = 2c05BAG
0∗Bλμ £G0A ν

λ ∂μην + 3C
Aν
¡
∂(λhμ)ν − ∂νhλμ

¢¤
, (61)

and thus we then get

δaint3 = ∂μ
£
−4c05BAG0∗Bμν|λ

¡
G0A ρ
ν ∂ληρ + 3C

Aρ
¡
∂(λhν)ρ − ∂ρhλν

¢¢¤
+ γ

h
−2c05BAG0∗Bμν|λ

³
G0A ρ
μν| ∂ληρ +G0A ρ

μ

¡
∂(λhν)ρ − ∂ρhλν

¢´i
− 12c05BAG0∗Bμν|αKμν|αβC

Aβ, (62)

with Kμν|αβ the linearized Riemann tensor (7) and the prime variables defined in (20) and
(22). Comparing (58) with (62), we can state that (58) admits solutions for aint2 if and
only if

−12c05BAG0∗Bμν|αKμν|αβC
Aβ = γb2 + ∂μ

(2)
m

μ

, (63)

for some b2 and
(2)
m

μ

with the properties

agh (b2) = 2 = agh

µ
(2)
m

μ
¶
, pgh (b2) = 2, pgh

µ
(2)
m

μ
¶
= 3. (64)

The left-hand side of (63) is a non-trivial element from H3 (γ) of antighost number two,
with the accompanying invariant polynomial of the form

−12c05BAG0∗Bμν|αKμν|αβ,

such that we must set b2 = 0, while the same expression cannot be written like a diver-

gence, so we also have that
(2)
m

μ

= 0. The above observations lead to the conclusion that
(63) holds if and only if

c05BA = 0, (65)

which further implies, via (60),
aint4 = 0. (66)
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Consequently, the first-order deformation that describes the cross-interactions between
the Pauli—Fierz field and the mixed symmetry-type tensors tAλμν|α can be taken to stop at
an antighost number I ≤ 3.
Assuming now that I = 3, we have that the first-order deformation reduces to

aint = aint0 + aint1 + aint2 + aint3 , (67)

where the last representative is of the form (44) for I = 3, with α3 non-trivial in
H invD
3 (δ|d). We apply the result from (47), according to which α3 is linear in the antifields

G0∗B
λμ , such that the elements e

3 that can be used to construct an aint3 with the desired prop-
erties (fulfilling the derivative order assumption and providing effective cross-interactions
between the two types of tensor fields) are spanned by

eligible e3 :
¡
ηνηρησ, ηνηρ∂[σ η τ ], ηνηρFA

λ0μ0ν0ρ0
¢
, (68)

so we obtain that

aint3 = G0∗B
λμ ηνηρ

³
fλμνρσ1B ησ + fλμνρστ2B ∂[σ η τ ] + fλμνρλ

0μ0ν0ρ0

3BA FA
λ0μ0ν0ρ0

´
+ γb3. (69)

All the coefficients denoted by f are restricted, as everywhere before, to be constant. By
organizing the emerging acceptable (Lorentz-covariant and Poincaré-invariant) combina-
tions according to the space-time dimension, we consequently arrive at:

D = 5, a
(D=5)int
3 = c1Bε

λμνρσG0∗B
λμ ηνηρησ + γb

(D=5)
3 , (70)

D = 6, a
(D=6)int
3 = c2Bε

λμνρστG0∗B
λμ ηνηρ∂[σ η τ ] + γb

(D=6)
3 , (71)

D = 8, a
(D=8)int
3 = c3BAε

λμνρλ0μ0ν0ρ0G0∗B
λμ ηνηρFA

λ0μ0ν0ρ0 + γb
(D=8)
3 , (72)

D ≥ 5, a
(D)int
3 = G0∗Bλμ ¡c02Bσλμηνηρ∂[ν ηρ] + c002Bηλη

ν∂[μην]

+c03BAη
νηρFA

λμνρ

¢
+ γb

(D)
3 . (73)

Straightforward computation shows that (70)—(73) cannot be lifted to antighost number

two, i.e., there are no solutions aint2 to the equation δaint3 + γaint2 = ∂μ
(2)
m

μ

, irrespective of
what γ-exact contributions we take in their right-hand sides, so we must set

c1B = c2B = c3BA = c02B = c002B = c03BA = 0, (74)

which leads to
aint3 = 0, (75)

and so the first-order deformation aint cannot end at antighost number three either.
The next possible maximum value of the antighost number in aint is I = 2, in which

case aint reads
aint = aint0 + aint1 + aint2 , (76)

where aint2 of the form (44) for I = 2 and α2 is a non-trivial object from H invD
2 (δ|d).

According to (47) that H invD
2 (δ|d) is spanned by the antifields G0∗μν|αA and η∗μ. This is

actually the first place where the Pauli—Fierz theory brings non-trivial contributions to
the local cohomology of the Koszul—Tate differential. Taking into account the actions of δ
on these antifields, we observe that e2 cannot include more than one space-time derivative

100



in order to ensure an aint0 with at most two derivatives. Meanwhile, for aint to describe
cross-interactions, the terms proportional with G0∗μν|αB must involve at least one of the
combinations ημ or ∂[μην], while those linear in η∗μ are required to depend on FA

λμνα. The
above considerations render the eligible e2 like

eligible e2 :
¡
ηνηρ, ην∂[ρησ], ηνFA

λ0μ0ν0ρ0
¢
, (77)

which, appended to the general assumptions of Lorentz covariance and Poincaré invari-
ance, then yield

aint2 = G0∗Bλμ|αην
³
fλμανρ1B ηρ + fλμανρσ2B ∂[ρησ] + fλμανλ

0μ0ν0ρ0

3BA FA
λ0μ0ν0ρ0

´
+ fλμλ

0μ0ν0ρ0

4A η∗λημFA
λ0μ0ν0ρ0 + γb2, (78)

where all the f ’s are constant. Structuring the independent possibilities like in the above,
according to the space-time dimension, we get:

D = 5, a
(D=5)int
2 = c1Bε

λμανρG0∗Bλμ|αηνηρ + γb
(D=5)
2 , (79)

D = 6, a
(D=6)int
2 = c2Bε

λμανρσG0∗Bλμ|αην∂[ρησ]

+ c4Aε
λμλ0μ0ν0ρ0η∗λημFA

λ0μ0ν0ρ0 + γb
(D=6)
2 , (80)

D = 8, a
(D=8)int
2 = c3BAε

λμανλ0μ0ν0ρ0G0∗Bλμ|αηνFA
λ0μ0ν0ρ0 + γb

(D=8)
2 , (81)

D ≥ 5, a
(D)int
2 = G0∗Bλμ|α

¡
c02Bηα∂[λημ] + c002Bσραη

ρ∂[λημ]

+c03BAη
νFA

λμαν

¢
+ γb

(D)
2 . (82)

Due to the presence in all the previous representatives of H2 (γ) of at least one undiffer-
entiated Pauli—Fierz ghost, it results that they cannot be appropriately lifted to aint1 as

solution to the equation δaint2 + γaint1 = ∂μ
(1)
m

μ

, such that we are obliged to take

c1B = c2B = c4A = c3BA = c02B = c002B = c03BA = 0, (83)

which further produces
aint2 = 0, (84)

so we conclude that the first-order deformation aint can only stop at I ≤ 1. Thus, there are
no non-trivial cross-interactions between the tensor fields tAλμν|α and the Pauli—Fierz field
complying with all the above mentioned requirements that modify the original Abelian
gauge algebra.
For I = 1, the first-order deformation aint reduces to

aint = aint0 + aint1 , (85)

with aint1 of the form(44) for I = 1 and α1 necessarily an element from HD
1 (δ|d), such that

α1 = α1
³h

t
∗λμν|α
A

i
, [h∗μν ] ,

£
FA
λμνξ|αβ

¤
,
£
Kμν|αβ

¤´
, δα1 = ∂μt

μ. (86)
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The elements of pure ghost number equal to one of a basis in the space of polynomials in
ημ, ∂[μην] and FA

λμνα are spanned by

e1 :
¡
ημ, ∂[μην],FA

λμνα

¢
, (87)

while the invariant polynomial α1dDx ∈ HD
1 (δ|d) is linear in the antifields t

∗λμν|α
B , h∗μν and

in their derivatives up to some finite orders, as these are the only generators of antighost
number equal to one from the BRST complex. The assumption on the maximum deriv-
ative order of aint0 being equal to two restricts α1 not to depend on either the curvatures
or their derivatives. Along the same line, α1 cannot contain more that the first-order
derivatives of the antifields. Regarding the terms including the first-order derivatives of
the antifields, we can always make (by an integration by parts in the corresponding func-
tional) the derivative to act on e1, and therefore they can be taken to be linear in the
undifferentiated antifields. As the first-order derivatives of ∂[μην] and FA

λμνα are γ-exact,
the corresponding terms in aint1 can be discarded since they are γ-trivial. The piece dis-
playing the first-order derivatives of ημ can always be made proportional with ∂[μην] by
adding irrelevant, γ-exact objects, so it can be taken to depend only on the undifferenti-
ated antifields. In consequence, the dependence of α1 on the first-order derivatives of the
antifields can be removed. Accordingly, we can write that

a1 = α1lin
³
t
∗λμν|α
A , h∗μν

´
e1
¡
ημ, ∂[μην],FA

λμνα

¢
+ γb1. (88)

Selecting only the non-trivial terms that potentially lead to cross-couplings among the
two types of tensor fields, we arrive at

aint1 = t∗Aλμν|α

³
fλμναρ1A ηρ + fλμναρσ2A ∂[ρησ]

´
+ fλμνρσα3A h∗λμFA

νρσα + γb1, (89)

where all the coefficients denoted by f are required to be constant. Taking into account
the identity t∗A[λμν|α] ≡ 0, it follows that any solution containing Levi—Civita symbols
contracted on all the indices of this antifield vanish. Invoking in addition the symmetry
of the Pauli—Fierz antifield, we remain with a single candidate in all D ≥ 5 dimensions

aint1 = cAt∗λμA ∂[λημ]. (90)

For convenience, we took b1 = 0 in (89). We observe that δaint1 can be written under a
divergence-like form

δaint1 = ∂μ
³
2cAηλT

λμ
A

´
, (91)

so the corresponding aint0 can be taken equal to zero

aint0 = 0, (92)

so we obtain that the first-order deformation (85) reduces to its antighost number one
component

aint = aint1 = cAt∗λμA ∂[λημ]. (93)

This solution presents a strange behavior. It modifies the gauge transformations of the
tensor fields tAλμν|α at order one in the coupling constant by elements involving the Pauli—
Fierz gauge parameter, but adds no coupling terms with the Pauli—Fierz field to the
deformed Lagrangian action. Actually, solution (93) is purely trivial in H0,D (s|d)

aint = s

µ
−2c

A

3
G0∗μν|αA σναημ

¶
+ ∂μ

³
−2cAt∗λμA ηλ

´
, (94)
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such that it can be safely removed from the first-order deformation. In conclusion, the
deformation procedure allows no non-trivial cross-couplings that change the original gauge
transformations.
We are now left with one more case, where the first-order deformation aint coincides

with its antighost number zero component (I = 0)

aint = aint0
¡£
tAλμν|α

¤
, [hμν]

¢
, (95)

with
γaint0 = ∂μ

(0)
m

μ

, (96)

being understood that we discard the divergence-like solutions. There appear two different

situations. The first one is associated with
(0)
m

μ

= 0 in (96) and its solutions are constructed
from the gauge-invariant quantities, which are the curvatures and their derivatives

γa0int0 = 0⇒ a0int0 = a0int0

¡£
FA
λμνξ|αβ

¤
,
£
Kμν|αβ

¤¢
. (97)

However, the cross-coupling component with the minimum number of derivatives from a0int0

is of order four in the space-time derivatives, being proportional with FA
λμνξ|αβKμ0ν0|α0β0,

and therefore the solutions (97) are not eligible, as they disagree with the assumption on
the maximum derivative order of the interacting Lagrangian being equal to two.

The second situation corresponds to
(0)
m

μ

6= 0 in (96). Denoting the Euler—Lagrange
derivatives of aint0 by

B
λμν|α
A ≡ δaint0

δtAλμν|α
, Dμν ≡ δaint0

δhμν
, (98)

equation (96) further implies the necessary conditions

∂αB
λμν|α
A = 0, ∂λB

λμν|α
A = 0, ∂μD

μν = 0. (99)

The tensors Bλμν|α
A have the same mixed symmetry like tAλμν|α and Dμν is symmetric.

Moreover, Bλμν|α
A and Dμν must involve at least one Pauli—Fierz field, respectively, one

tensor field tAλμν|α in order to provide cross-couplings. The general solutions to equations
(99) are of the type

δaint0
δtAλμν|α

≡ B
λμν|α
A = ∂ξ∂βΦ̃

λμνξ|αβ
A ,

δaint0
δhμν

≡ Dμν = ∂α∂βΦ̄
μα|νβ, (100)

where Φ̃λμνξ|αβ
A and Φ̄μα|νβ depend only on the undifferentiated fields hμν and tBλμν|α (oth-

erwise, the corresponding aint0 would be more than second-order in the derivatives), with
Φ̃
λμνξ|αβ
A having the mixed symmetry of the curvature tensors F λμνξ|αβ

A and Φ̄μα|νβ that of
the linearized Riemann tensor. We introduce a derivation on the algebra of non-integrated
densities depending on tAλμν|α, hμν and on their derivatives, that counts the powers of the
fields and their derivatives

N̄ =
X
n≥0

⎡⎣¡∂μ1...μntAλμν|α¢ ∂

∂
³
∂μ1...μnt

A
λμν|α

´ + (∂μ1...μnhμν) ∂

∂ (∂μ1...μnhμν)

⎤⎦ , (101)
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and observe that the action of N̄ on an arbitrary non-integrated density ū is

Nū = tAλμν|α
δū

δtAλμν|α
+ hμν

δū

δhμν
+ ∂μr

μ, (102)

where δū/δtAλμν|α and δū/δhμν denote the variational derivatives of ū. In the case where ū
is an homogeneous polynomial of order p > 0 in the fields and their derivatives, we have
that N̄ū = pū, and so

ū =
1

p

Ã
tAλμν|α

δū

δtAλμν|α
+ hμν

δū

δhμν

!
+ ∂μ

µ
1

p
rμ
¶
. (103)

As a0 can always be decomposed as a sum of homogeneous polynomials of various orders,
it is enough to analyze the equation (96) for a fixed value of p. Putting ū = aint0 in (103)
and inserting (100) in the associated relation, we can write

aint0 =
1

p

³
tAλμν|α∂ξ∂βΦ̃

λμνξ|αβ
A + hμν∂α∂βΦ̄

μα|νβ
´
+ ∂μr̄

μ. (104)

Integrating twice by parts in (104) and recalling the mixed symmetries of Φ̃λμνξ|αβ
A and

Φ̄μα|νβ, we infer that

aint0 = k1F
A
λμνξ|αβΦ̃

λμνξ|αβ
A + k2Kμα|νβΦ̄

μα|νβ + ∂μl̄
μ, (105)

with k1 = 1/8p and k2 = −1/2p. By computing the action of γ on (105), we obtain that
Φ̃λμνξ|αβ and Φ̄μα|νβ are precisely of the type

Φ̃
λμνξ|αβ
A = k0BA Φ

λμνξ|αβ
B , Φ̄μα|νβ = k00Φμα|νβ, (106)

where k0BA and k00 are real constants, while Φλμνξ|αβ
B and Φμα|νβ are the tensors that define

the free field equations. Accordingly, the admitted value of p is fixed to p = 2. Replacing
(106) in (104) for p = 2, we finally arrive at

aint0
¡£
tAλμν|α

¤
, [hμν]

¢
=

k0BA
2
tAλμν|αT

λμν|α
B +

k00

2
hμνH

μν + ∂μr̄
μ. (107)

The solution (107) is not eligible since it gives no cross-couplings between the two types
of investigated tensor fields. Therefore, we can always discard it from the first-order
deformation

aint0
¡£
tAλμν|α

¤
, [hμν ]

¢
= 0. (108)

In consequence, there are no cross-couplings invariant under the original gauge transfor-
mations (4) and (5) that can be added to the free action (1).
Putting together the results contained in this section, we can state that

Sint1 = 0, (109)

and so
S1 = Sh1 , (110)

where Sh1 is the first-order deformation of the solution to the master equation for the
Pauli—Fierz theory. The consistency of the deformed solution to the master equation
at the second order in the coupling constant is governed by the equation (31), where
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¡
Sh1 , S

int
1

¢
= 0 =

¡
Sint1 , Sint1

¢
, but

¡
Sh1 , S

h
1

¢
6= 0, and thus we have that Sint2 = 0, while Sh2

is highly non-trivial and is known to describe the quartic vertex of the Einstein—Hilbert
action, as well as the second-order contributions to the gauge transformations and to the
associated non-Abelian gauge algebra. The vanishing of Sint1 and Sint2 further leads, via
the equations that stipulate the higher-order deformation equations, to the result that

Sintk = 0, k ≥ 1. (111)

The main conclusion of this paper is that, under the general conditions of analyticity
in the coupling constant, space-time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-trivial cross-couplings between
the Pauli—Fierz field and a collection of massless tensor fields with the mixed symmetry
(3, 1). The only pieces that can be added to action (1) are given by the self-interactions
of the Pauli—Fierz field, which produce the Einstein—Hilbert action, invariant under dif-
feomorphisms.
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