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Abstract

A theoretical framework is presented for the description of active transport of
solid particles in turbulent fluids. Active transport exists when large enough particle
concentration is present in the fluid and when the mass of particles is large enough
for inertia effects to be non negligible. In such situations, particles trajectories dif-
fer from fluid flow lines, the reaction forces of particles on the fluid are important
and modify the Navier-Stokes equation, collisions between solid particles are non
negligible and are affected by the turbulent fluctuations of the fluid velocity field.
As a consequence the Navier-Stokes turbulent hierarchy is coupled to an inelastic
Boltzmann-like kinetic equation for the phase-space one particle distribution of the
solid particles. Effects of fluid velocity field fluctuations on binary collisions of par-
ticles are discussed and shown to modify the collision term of the kinetic equation.
Moreover, we show that the Lagrangian equations of motion for the particles in
the fluid are fractional differential equations. This is due to the non-Markovian
character of the hydrodynamical forces acting on particles dispersed in unsteady
flows.
Keywords: fluid, turbulence, solid particles, transport
PACS: 47.55.Kf

1 Introduction

In frequent geophysical, laboratory and industrial processes, transport of solid particles
by fluids can be qualified as passive. This refers to cases where the particles are light
enough so that inertial effects can be neglected, i.e. the trajectories of the particles are
almost identical to the flow lines of the fluid. Moreover, if the particles concentration is
low enough their reactions on the flow can be neglected.
However, when the solid particles have larger mass and are present in the fluid in

large concentration, new phenomena occur [1]. Their trajectories are different from the
flow lines. The force exerted by the fluid on the particles contains memory effects due
to the unsteadiness of the flow of the fluid around the particles. As we show in the
present article, this deeply modifies the structure of the governing equations of that kind
of system. Furthermore, in cases where high enough concentrations are achieved, reaction
of the particles on the fluid in response to the forces exerted by the latter on them
can no longer be neglected. Moreover, in case of high concentrations, collisions between
particles are frequent and induce a time evolution of the particles phase-space distribution.
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Hydrodynamic forces between a particle and the fluid generally depend on the relative
velocity of the particle with respect to the local fluid velocity. Hence, back reaction to these
forces by the particles on the fluid depend on the velocity distribution of the particles, i.e.
on their phase-space distribution (PSD). As shown below, the direct consequence of this is
that the Navier-Stokes equation for the fluid will now depend on the solid particles velocity
distribution and, thus, this equation becomes coupled to the kinetic equation governing
the latter. This structure reflects the difference of levels occuring in this description. The
molecules constituting the fluid are described at the macroscopic resolution level while
the mesoscopic solid particles are described at the kinetic level. This is of course related,
first, to the fact that the average distance between the solid particles in suspension in the
fluid is much larger than the average distance between the molecules of the fluid. Second,
the relaxation time toward local equilibrium is much shorter for the molecules than for
the system of particles due to the fact that there less collisions per time unit among the
latters than among the formers. Hence, the hydrodynamic description is appropriated for
the molecules of the fluid while the solid particles, viewed as a gas, are still in the kinetic
regime.
Generally the fluids in which the solid particles are immersed are in turbulent flow

regimes. This implies the existence of stochastic forces acting on the particles. These are
due to the dependence of the hydrodynamic forces on the relative velocity of the particle
with respect to the local flow velocity which, in turbulent regimes, become random. As a
consequence the motion of the particles becomes a random process driven by two different
sources of stochasticity: interactions with turbulent surrounding fluid and binary collisions
between particles.
As compared to passive transport, the complexity of the description is largely in-

creased due to the coupling of particle dynamics with the turbulent hydrodynamics of the
fluids. Moreover, for high enough concentrations of particles, interactions between them
, i.e. collisions, become important. In such cases, the Langevin description for the indi-
vidual motion of particles is insufficient as it neglects collisions between particles. This
description must be replaced by a kinetic Boltzmann-like equation for the particles and its
coupling with the Navier-Stokes equation. The complexity of these coupled equations is
such that simulations are quite difficult and theoretical insights are, therefore, necessary.
Our purpose in this article is to present a theoretical scheme for the description of

active transport of particles in turbulent flows of neutral fluids. External fields such
as gravitation or electrostatic forces acting on the solid particles are included in the
description.
The plan of the article is the following. The second chapter presents the collisionless

motion equation for the heavy particles in a moving fluid. The integro-differential char-
acter of this equation is discussed and shown to correspond to a fractional differential
equation. Then, in chapter three, the Navier-Stokes equation for the fluid is established
including the reaction terms of the particles on the fluid. The relevance of these terms
is discussed as usually they are not taken into account explicitely. The reaction terms
introduce the phase-space density of the particles in the Navier-Stokes equation and, thus,
couples the latter with the phase-space kinetic equation for the particles.
In the fourth chapter the effect of turbulence on the description is discussed.
Generalization to situations where the neutral fluid is replaced by a plasma can be

envisaged along the same lines of reasoning and is discussed in the conclusions.
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2 Collisionless motion equation for the solid particles

We now describe the dynamics of small solid particles in an incompressible neutral but
otherwise arbitrary fluid. In this chapter we do not analyze the effects of turbulence.
The classical non-relativistic dynamics of each particle of masse mp and density ρp in

a fluid of density ρ is governed by the Newton equation

mp
dv

dt
=
¡
ρp − ρ

¢
Vpg + F(v,u) + Fext

dx

dt
= v (1)

where x(t) and v(t) respectively, are the position and velocity of the particle and u
is the Lagrangian velocity field of the fluid at point x(t). In a more accurate description,
these variables would respectively represent the position and velocity of the particle’s
center of mass and the velocity field of the flow in the vicinity of the surface of the
particle. The equation for the angular momentum of the particle does not appear. This
come from the assumption that the size of the particles is small enough with respect to the
characteristic lengths of the flow so that the particles can be thought as almost point-like.
On the other hand, however, the forces exerted by the fluid on the particles such as the
buoyancy or the drag force depend on their finite volumes. Equation (1) represents, thus,
a hybrid approximation where in some aspects the particles are treated as point-like and
in some others they are supposed to have a non-vanishing volume.
The right-hand side of (1) contains the gravitation and buoyancy force, the total force

F(v,u) exerted by the flow due to the relative motion of the particle with respect to the
fluid. External forces other than gravity such as electrostatic and/or magnetic forces are
globally denoted by Fext. Interactions, i.e. collisions, between particles in the fluid are
omitted in equation (1) and will be introduced latter in the chapter.
A very common approximation of the hydrodynamical force is the Stokes [2] form of

the drag force
F(v,u) = γ(u− v) (2)

where the constant friction coefficient γ is positive and given by 6πμR in which μ is
the dynamical viscosity of the fluid and R is the average radius of the particle.
This approximation is, however, very drastic and in most realistic cases uncorrect. Its

validity domain is limited to fluids at rest, and to very small Reynolds number of the flow
around the particle.
The more accurate form of F(v,u), however, is worth being considered for two rea-

sons. First, it is necessary in the case of flows at higher values of the Reynolds number.
Moreover, from a more mathematical point of view, it leads to one of the very rare oc-
curence where a fractional differential equation is derived from fundamental principles as
has been shown recently [7], [8]. Let us analyse into more details the form of that force.
The study of the motion of a non-ponctual particle embedded in an arbitrary neutral

fluid started with the pioneering work of G.G.Stokes [2] in the 19th century. Formula (2)
results from this work. Nearly thirty years later J.Boussinesq [3] followed three years later
by A.B.Basset [4] showed the existence of three other forces characterizing the action of
an unsteady flow on a finite radius solid particle moving in the fluid. The form of F(v,u)
they obtained is

F(v,u) = γ(u− v) + ρVp
Du

Dt
+

ρVp
2

d (u(x(t),t)− v(t))
dt

+
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γRρ1/2
π1/2μ1/2

Z t

0−

d (u(x(τ),τ)− v(τ))
dτ

1

(t− τ)1/2
dτ (3)

where
Du

Dt
=

∂u

∂t
+ u.∇u

and
du

dt
=

∂u

∂t
+ v.∇u

The second term in the right hand side of equation (3) is due to the acceleration of
the fluid displaced by the particle, the third is the so-called added mass term which corre-
sponds to an effective increase of the inertia of the particle, and the last term corresponds
to the memory or history force also called Basset force -though it has been first found
by Boussinesq. This effect may be roughly described as the reaction on the particle of
streamlines deformations previously produced by the particle on the neighbouring fluid.
The expression (3) is derived [5] by solving the Navier-Stokes equation for the velocity

field u with no-slip boundary conditions at the surface of the moving spherical solid
particle. In this approach the particle is considered as a spherical solid inclusion in the
fluid. Whence u is known, the force exerted by the fluid on the particle is obtained by
calculating the flux of the total constraint tensor of the fluid across the surface of the
particle.
Let us define a Reynolds number Re associated to the flow of the fluid in the vicinity

of the particle

Re =
2Rρ |u− v|

μ
(4)

It has been shown by direct numerical simulations and experiments that the validity
of equation (3) extends to moderate but not very high Reynolds numbers. Another
limitation of equation (3) is the fact that it has been derived with the assuption of weak
spatial inhomogeneity of the flow. A more accurate form of the hydrodynamic force taking
into account stronger inhomogneities in the flow has been obtained by Maxey and Riley
[6]

F(v,u) = γ(u− v+ ρVp
Du

Dt
|x(t)) +

ρVp
2

d
³
u− v+R2

10
∇2u

´
dt

|x(t) +

γRρ1/2
π1/2μ1/2

Z t

0−

d
³
u(x (τ),τ)− v(τ) + R2

6
∇2u

´
dτ

|x(τ)
1

(t− τ)1/2
dτ (5)

Clearly, the terms of equation (3) are modified by the addition of a contribution
representing the curvature of the flow ∇2u.
The general form of the history force as it appears in equations (3) and (5) reveals a

common structure of the integral term in the form of

I =
1

π1/2

Z t

0−

d (Lu− v(τ))
dτ

|x(τ)
1

(t− τ)1/2
dτ (6)

where L is a linear differential operator that may include spatial derivatives terms.
Here, the action of this operator on the fluid velocity field is evaluated at point x(t).
The temporal integral kernel of the above memory force has been shown to correspond to
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the definition of the Riemann-Liouville fractional derivative of order one-half by Mainardi
[7] and by Coimbra and Rangel [8]. This property has been recently rediscovered inde-
pendently by the author of the present article. More precisely, the memory force is the
derivative of order one-half of some functional of u as we now show. Let us recall the
definition of the derivative of fractional order α (>0) of a function f (t) in the sense of
Riemann-Liouville

0Dt
αf(t) =

1

Γ(n− α)

µ
d

dt

¶n Z t

0

f(τ)
1

(t− τ)α+1−n
dτ (7)

where n ∈ N and n-1 < α < n.
Following the same lines of reasoning as Mainardi [7] we get

I = 0Dt
1/2(Lu− v(t)) |x(t) (8)

Thus, the total hydrodynamic force acting on the particle is

F (v,u) = γ

µ
u− v+R

2

6
∇2u |x(t)

¶
+ ρVp

Du

Dt
|x(t) +

ρVp
2

d
³
u− v+R2

6
∇2u |x(t)

´
dt

+
γRρ1/2
π1/2μ1/2

0Dt
1/2(Lu− v(t)) |x(t) (9)

With the above final expression of F(v,u), the Newton equation (1) for the particles
becomes a fractional differential system of equations. When making explicit the random
fluctuations of the velocity field for a turbulent flow in the equation of motion, a random
noise appears and, hence, this equation becomes a fractional differential Langevin equation
as shown below in section 4.
Let us mention that for high values of the Reynolds number corresponding to devel-

opped turbulence, the drag force γ(u − v) must be replaced by a quadratic function of
the relative velocity of the particle with respect to the local fluid velocity. Moreover, for
flows with large vorticities, the Saffman lift force should be introduced, and for rotating
spherical particles the Magnus force should be taken into account in F(v,u) [9] .

3 Navier-Stokes equation with reaction terms

The equation of motion (1) is coupled to the Navier-Stokes equation for the velocity field
of the flow, u. We now study how this coupling affects the latter equation.
For the sake of simplicity we assume here that the fluid obeys the Navier-Stokes

equation for an incompressible flow

∂u

∂t
+ u.∇u=− 1

ρ
∇p+ ν∇2u+ρg+

1

ρ
φ (10)

where ν is the kinematic viscosity of the fluid. Generalization to compressible flow
is straightforward. We assume here that the motion of the fluid is affected by no other
external fields than gravity. However, generalization to charged or polarized fluids in ex-
ternal electric or magnetic fields would not change the fundamental ideas of the discussion
below.
In the last term of the right hand side of equation (10), φ denotes the force density due

to the reaction of the particles on the fluid. This term is generally neglected or omitted in
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works about transport of small solid particles in fluids, though, it is required by the third
Newton’s principle. This approximation is, however, correct for weak concentrations of
particles. More generally, another reason for not introducing this term is the fact that it
can be taken into account via the boundary conditions as we discuss later.
This reaction force density is the vectorial sum of the reaction forces on the molecules

of the fluid due to all the solid particles immersed in the fluid per unit volume. Due to
the inertia of the solid particules, their mutual collisions and the action of the different
external forces, their velocities generally differ from the local velocity of the fluid. More
precisely, there exists a phase-space one-particle distribution, f(r ,v, t), for the particules
from which the probability density for the velocity of a particle can be deduced.
Thus, using the third Newton’s law, the reaction force density of the particles on the

fluid is obtained as minus the average in velocity space over f(r ,v, t) of the buoyancy and
the other hydrodynamic forces in the right-hand side of equation (1)

φ=−
Z

d3v[−ρVpg + F(v,u)]f(r , v, t) (11)

Consequently, the modified Navier-Stokes equation is now

∂u

∂t
+ u.∇u=− 1

ρ
∇p+ ν∇2u+g+Vpg c(r , t)− 1

ρ

Z
d3v F(v,u)f(r , v, t) (12)

where c(r , t) is the particle’s concentration in the fluid

c(r , t) =

Z
d3vf(r ,v, t) (13)

At this level some remarks should be made. First, as already mentioned, in many works
the reaction of the particles does not explicitely appear in the Navier-Stokes equation.
The effect of each particle on the fluid is introduced via the boundary conditions of the
fluid at the surface of the moving particle. This is a tractable approach for a small
number of large particles dispersed in the fluid. However, in situations such as dust
storms in the atmosphere where large concentrations of dust particles are achieved, that
kind of description becomes cumbersome and unpracticable. More generally, when the
transported particles are small with respect to the resolution of the fluid description
and in large concentrations, one would rather adopt a phenomenological description that
assumes almost point-like particles. Consequently, the action of the particles on the fluid
can not be transmitted via the boundary conditions of the fluid at their surface since they
are described as point-like. The only possibility is, thus, to invoke the third Newton’s
principle for point-like particles and introduce this action via reaction forces. This is what
we are doing here leading to the modified Navier-Stokes (12).
Second, obviously, the Navier-Stokes equation (12) becomes a fractional partial dif-

ferential equation due to the occurence of a fractional time derivative of order one-half
in F(v,u) as obtained in equation (9). This modifies deeply the mathematical status of
the Navier-Stokes equation. The study of the consequences of this change is out of the
scope of the present article but it should be carried out more systematically in subsequent
works.
Third, the modified Navier-Stokes depends on the phase-space distribution (PSD)

f(r ,v, t) via two terms. It is, thus, coupled to the kinetic equation

∂

∂t
f(r ,v, t)+v.∇f(r ,v, t)+

1

mp

∂

∂v
.
©£¡

ρp − ρ
¢
Vpg+F(v,u) + Fext

¤
f(r ,v, t)

ª
= K {f, f}

(14)
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where the second and third term in the left-hand side of equation (14) come from
the one-particle Liouville equation associated to equation (1) for non-interacting particles
while the collision term, K{f, f }, describes the interactions between particles. For dilute
neutral particle concentrations it can be thought as the Boltzmann collision term for point-
like particles. For charged particles it could be the Landau or the Balescu-Lenard kinetic
equation. However, for larger concentrations of neutral particles, the effect of excluded
volume become important and K{f, f } should represent the Enskog collision term for non
vanishing radius hard spheres . Moreover, the collisions between macroscopic particles
being generally inelastic, the Boltzmann or Enskog collision terms must be modified to
take into account inelastic collisions [10].
It is useless for our present purpose to give the explicit form of the collision term. The

only property that matters here is that, quite generally, this term contains a gain and
a loss contributions that are both quadratic in the PSD. Indeed, both of them depends
on the product f(r1,v1, t)f(r2,v2, t) where the respective positions and velocities of the
particle 1 and particle 2 are their positions and velocities just before the collision.
We, thus, have built a system of coupled equations (12) and (14) that describes the

interactions between the fluid and the particles and their temporal evolution. Before
closing this chapter, the status of the PSD f(r ,v, t) should be discussed. This function
represents a probability density function for a particle to have its position and velocity
somewhere in a small phase-space volume around the point (r, v). The random character
of these two variables is, at this level, only due to two factors: the lack of knowledge of
the initial position and velocity, and the random character of the binary collisions.
However, once the random nature of the turbulent fluid velocity field is introduced in

the above equations, a further level of stochasticity is introduced and f(r ,v, t) becomes
itself a random function. The consequences of this fact are studied in the next chapter.

4 Effects of turbulence

We now explicit the turbulent character of the flow in which the particles are immersed,
assuming the Reynolds number is large enough. Let us split the random velocity field in
its average U and turbulent fluctuation δu

u=U+δu (15)

This decomposition is inserted in equations (12) and (14) and the average over the
probability density function (PDF) of δu, also called turbulent average, is formally taken.
However, in order to carry this operation out one must first calculate the fluctuation of
f(r ,v, t).
In order to do so, let us insert the splitting (15) in the equations of motion of each

particle in absence of collisions. We get the system

mp
dv

dt
=
¡
ρp − ρ

¢
Vpg + F(v,U+δu) + Fext (16)

and
dr

dt
= v (17)

Clearly, equation (16) contains a random noise, δu. It, thus, becomes a Langevin
equation. The precise probability density (PDF) of the random variable δu is not known.
In the sequel we shall call averages with respect to that PDF, turbulent averages. We shall
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not need immediately the knowledge of that PDF. The main property that will be used
now is that the noise explicitely affects the velocity v(t) through equation (16). Thus,
the velocity of the particle becomes a random variable. This implies, in turn, that the
position of that particle is also random via equation (17). The PSD f(r,v, t) generally
is a function of (r-r(t)) and of (v-v(t)). An example of this is the Dirac distribution
δ(r-r(t))δ(v-v(t)). Hence, through its dependency in v(t), the PSD f(r,v, t) is itself
a random function. Consequently, the PSD can be decomposed into its average plus
fluctuation

f(r,v, t) = P (r,v, t) + δf(r,v, t) (18)

where P (r,v, t) is the average of f(r,v, t) over the turbulent fluctuations δu. This
means that P must be itself a PSD, i.e. non-negative and normalized. Hence, the inte-
gral over the whole phase-space of the fluctuation δf(r,v, t) must vanish. Moreover, the
turbulent average of δf(r,v, t) must also vanish.
Let us now examine the dependency of f(r,v, t) as a functional of v(t) which, in turn,

is itself a functional of u(r(t), t) via (16). First, we determine the functional dependance
of v(t) in u(r(t), t). This requires to express the solution of equation (16) in term of
the fluctuating part of the force F(v,U+δu) . This implies isolating the contribution
of δu in that force by expanding the latter in a Taylor series in power of δu. Then the
terms of that series that depend on δu can be treated as source terms in equation (16)
leading, in turn, to a formal solution of that equation. In practice, this formal solution
is generally quite difficult to obtain as equation (16) for models (3) and (5) is a linear
integro-differential equation for v(t) with time dependent coefficients. For high Reynolds
flows, it becomes even nonlinear as F(v,u)becomes quadratic in u− v. In order to give
a tractable example we now study the case of the particularly simple model (2).
Formal solution of equation (16) with model (2) leads to

v(t) = e−t/τpv(0) +

Z t

0

e−(t−τ)/τp[
1

τ p
U(r(τ), τ)+

¡
ρp − ρ

¢
mp

Vpg+

Fext(r(τ), τ)

mp
]dτ +

1

τ p

Z t

0

e−(t−τ)/τpδu(r(τ), τ)dτ (19)

where
τ p ≡

mp

γ
(20)

is the characteristic relaxation time of the particle’s velocity towards the Stokes limit
velocity.
Let us notice that in equation (16) the external forces Fext have been assumed to be

independent of the velocity of the particle. However, in the case of the Lorentz force, a
similar formal solution could be obtained due to the linearity of that force in the velocity
of the particle.
Relation (19) readily gives the explicit link between the particle velocity fluctuation

δv and the random noise δu that we are looking for

δv=
1

τ p

Z t

0

e−(t−τ)/τpδu(r(τ), τ)dτ (21)

We, thus, have obtained a linear functional relation between δv and δu.
We now must find a relation between δr and δu. This is a more difficult task as we

have to solve the equation (17). Since this equation is expressed in terms of U (r(t),

52



t), Fext(r(t), t) and δu(r(t), t), it is in general highly nonlinear in r(t). In order to
circumvent this difficulty we compute r(t) by iteration and stop at the first order in δu.
This gives us the fluctuation δr(t) since the other terms obtained when performing higher
order steps in the iteration would not vanish in the turbulent average. The iteration is
performed on the integral form of equation (17) for the model (2) and leads to

r(t) = r(0) + τ p(1− e−t/τp)[v(0) +

¡
ρp − ρ

¢
mp

Vpg]+

1

τ p

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τpδu(r(τ), τ) +

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τp [

1

τ p
U(r(τ), τ) +

Fext(r(τ), τ)

mp
]

(22)

However, in the last term of the right hand side of the above equation the iteration
must be still be carried out up to first order in δu. The resulting fluctuation for r(t) is

δr(t) =
1

τ p

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τpδu(r(τ), τ)+Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τp

½
1

τ p
∇U(r(τ), τ) + 1

mp
∇Fexr(r(τ), τ)

¾
.

1

τ p

Z τ

0

dt0
Z t0

0

dτ 0−(t
0−τ 0)/τpδu(r(τ 0), τ 0) (23)

The next step amounts to establish a relation between δf(r, v, t) and δv. Using
the dependence of f(r, v, t) in (r-r(t)) and in (v-v(t)), and the fact that the turbulent
average of δf(r, v, t) must vanish , that is only terms linear in δr(t) and in δv(t) can be
taken into account, one gets

δf (r, v, t) = −δr(t).∂P (r, v, t)
∂r

− δv(t).
∂P (r, v, t)

∂v
(24)

The presence of higher order terms in equation (24) would involve contributions of
δv(t)δv(t), δr(t)δr(t), δr(t)δv(t) and higher powers of δr(t) and δv(t) whose turbulent
averages would, clearly, not vanish. Consequently, δf(r, v, t) would not satisfy the condi-
tion to be a fluctuation and would be contradictory with equation (18). The higher order
terms are, in fact, taken into account in the average PDF P (r, v, t). Remark also that
as defined by equation (24), δf(r, v, t) is normalized to zero as required.
Inserting the relations (21), (23) in equation (24) one gets

δf(r, v, t) = − 1
τ p

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τpδu(r(τ), τ).

∂P (r, v, t)

∂r
+Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τp[

1

τ p
∇U(r(τ), τ) + 1

mp
∇Fext(r(τ), τ)].

1

τ p

Z τ

0

dt0
Z t0

0

dτ 0−(t
0−τ 0)/τpδu(r(τ 0), τ 0).

∂P (r, v, t)

∂r
−

1

τ p

Z t

0

dτe−(t−τ)/τpδu(r(τ), τ).
∂P (r, v, t)

∂v
(25)

Since expression (25) is a linear functional in δu , its average over the turbulent
fluctuations vanishes. This is a necessary condition for the coherence of equation (18).
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Whether relation (25) amounts to use a Gaussian approximation of the turbulent PDF
is not clear. The Gaussian approximation, as given by the Furutsu-Novikov-Donsker
functional relation [11], would lead to a similar expression at the level of the moments
<δu(r ,t)δf(r, v, t)>. However, it is not clear where such an approximation has been
made in our approach. The only condition leading to (25) is the fact that in equation
(24) only terms linear in δr(t) and in δv(t) can be retained. The latter condition seems to
us to be imposed by the necessary coherence with the fact that in equation (18) δf(r, v, t)
must be a fluctuation. Hence, no Gaussian approximation seems to be hidden in equation
(25).
Let us stress at this stage that (25) is expressed in term of the Lagrangian turbulent

fluctuation δu(r(t), t). However, in order to be coherent with the fact that r and v are
independent variables in the kinetic equation (14) and in the Navier-Stokes equation (12),
one has to shift from the Lagrangian to the Eulerian description in equation (25). This
not trivial question is discussed in details by L.I.Zaichik et al. [1] and we adopt here the
approach described in that work to handle this problem.
We are now in position to average the equation (12) over the turbulent fluctuations

δu. This is achieved by, first, introducing in it the decompositions (15), (18). Next, the
functional Taylor expansion of F(v,U+δu)in powers of δu(r , t) is performed and, then,
the average of the equation (12) with respect to the PDF of δu(r, t) is taken. This leads

∂U

∂t
+U.∇U+∇.<δu(r, t)δu(r, t)> = −1

ρ
∇p+ ν∇2U+ VpgC−

1

ρ

Z
d3vF(v,U)P (r,v, t)− 1

ρ

Z
d3v

Z
d3r

0
Z ∞

0

dt
0DF(v,U)

DU(r0 ,t 0)
. < δu(r, t

0
)δf(r,v, t) > −

1

2ρ

Z
d3v

Z
d3r

0
Z ∞

0

dt
0
Z

d3r”
Z ∞

0

dt”
D2F(v,U)

DU(r0 , t 0)DU(r”, t”)
:< δu(r

0
, t

0
)δu(r”, t”) > P (r,v, t)−

1

2ρ

Z
d3v

Z
d3r

0
Z ∞

0

dt
0
Z

d3r”
Z ∞

0

dt”
D2F(v,U)

DU(r0 , t 0)DU(r”, t”)
:< δu(r

0
, t

0
)δu(r”, t”)δf(r,v, t) >

(26)

where D
DU(r,t)

represents the functional derivative with respect to U (r, t). The func-
tional Taylor expansion of F(v,u) in the right hand side of equation (26) stops at the
second order since F(v,u) for the models (2), (3) and (5) is a functional of at most degree
two in u(r, t). This is due to the appearance of the material derivative Du

Dt
in equations

(3) and (5).
Notice that in equation (26) p and C denote respectively the pressure and the con-

centration of particles both averaged on the PDF of δu(r, t) . More precisely, for the
average concentration one has

C (r , t) =

Z
d3vP (r, v, t) (27)

In order to illustrate the above theoretical scheme and to derive an explicit equation
for U, let us consider the case of the simple model (2) where the second order functional
derivatives that appear in (26) vanish identically. We get

∂U

∂t
+U.∇U+∇.<δu(r, t)δu(r, t)>=− 1

ρ
∇p+ ν∇2U+ Vpg C−
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Z t
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γ

ρ

Z
d3v

1

τ p

Z t

0

dt0
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0

dτe−(t
0−τ)/τp < δu(r, t)δu(r(τ), τ) | r> .

∂P (r, v, t)

∂r
+

γ

ρ

Z
d3v

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τp [

1

τ p
∇U(r(τ), τ) + 1

mp
∇Fexr(r(τ), τ)].

1

τ p

Z τ

0

dt0
Z t0

0

dτ 0−(t
0−τ 0)/τp < δu(r, t)δu(r(τ 0), τ 0) | r > .

∂P (r, v, t)

∂r
(28)

where < δu(r, t)δu(r(τ), τ) | r > denotes the Eulerian version of the correlation
< δu(r, t)δu(r(τ), τ) > with the condition that r(t) = r. Using the result established by
L.I.Zaichik [1] one gets

< δu(r, t)δu(r(τ), τ) | r >=< δu(r,
t+ τ

2
)δu(r,

t+ τ

2
) > ΨL(t− τ) (29)

with
ΨL(t− τ) = e−(t−τ)/TL

where TLis the Lagrangian fluid turbulent time scale and is given by

TL = 0.482
k

ε

with
k =

1

2
<δu(r, t)δu(r, t)>

denoting the turbulent kinetic energy, and

ε =
dk

dt

represents the turbulent dissipation rate of the flow.
As said earlier, for model (2), the contribution involving the second order func-

tional derivative D2

DU(r,t)DU(r0 ,t 0)
in the right hand side of equation (26) did not contribute

to (28) since F(v,u) in model (2) is linear in u(r,t). For nonlinear models like (3)
and (5), the second order functional derivative term does not vanish and the moments
<δu(r, t)δu(r

0
, t

0
)δu(r”, t”)> would, in these cases, contribute to the equation.

A last simplification in equation (28) comes from the fact that the fifth term in its
right hand side vanishes. Indeed, the volume integral in velocity space

R
d3v contained

in this term transforms into a surface integral on a surface at the infinity in the velocity
space and P (r, v, t) is supposed to vanish on that surface. Hence, the equation (28)
finally reads in this particular case
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Z
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dt0
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t+ τ

2
)δu(r,

t+ τ

2
) > ΨL(t− τ).

∂P (r, v, t)
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+

γ

ρ

Z
d3v

Z t

0

dt0
Z t0

0

dτe−(t
0−τ)/τp [

1

τ p
∇U(r(τ), τ) + 1

mp
∇Fext(r(τ), τ)].
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1

τ p

Z τ

0

dt0
Z t0

0

dτ 0−(t
0−τ 0)/τp < δu(r,

t+ τ 0

2
)δu(r,

t+ τ 0

2
) > ΨL(t− τ 0).

∂P (r, v, t)

∂r
(30)

This equation is not closed in U and , obviously, is the first equation of an infinite
hierarchy of equations for the higher order turbulent moments of u. An equation for
<δuδu> can be derived in the same way as above. It involves the third order moments
<δuδuδu>and so on. A closure hypothesis must, thus, be applied here in order to close
the hierarchy as is usually the case in developped turbulence.
Let us now turn to the turbulent average of the kinetic equation (14). For the sake of

simplicity, we directly focus on the particular case of model (2). Inserting equations (24),
(25) and (29) in equation (14) and taking the turbulent average, one gets

∂
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D
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(31)

where the operator D
Df(r, v,t)

denotes the functional derivative with respect to f(r, v, t)
and K [P, P] is the collision term for the averaged velocity distribution P (r, v, t). The
explicit form of < δf(r, v, t)δf(r0, v0, t) > is obtained by replacing δf in it by the
expression (25) and calculating the turbulent averages. We do not write it down explicitely
here as it is quite lengthy. The only feature that interests us at this level is that it is
a linear functional of <δu(r, t)δu(r0, t0)> and, consequently, there appears a coupling
between the collisions and the turbulent fluctuations.
In equation (31) the higher order terms after the quadratic term in the functional

Taylor expansion vanish identically for collision terms that are quadratic functionals of
f(r, v, t). This hypothesis is generally fulfilled for binary interactions, in particular for the
Boltzmann term for dilute particles or the Enskog collision term for higher concentrations.

5 Conclusions

The equations (30) and (31) are quite complex. However, they can be simplified in
specific instances in which terms corresponding to certain mechanisms can be neglected.
In frequent situations for atmospheric and oceanic flows, for example, the concentrations
of particles are quite weak and most of the above effects can be neglected. So, the whole
reaction term in the right hand side of equation (30) can be discarded in these situations.
Furthermore, in these cases, the collisions between particles can be neglected. The kinetic
equation (31), thus, becomes a Fokker-Planck equation with a diffusion tensor that is a
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linear functional of <δuδu>. This dependence couples this Fokker-Planck equation to
the turbulent hierarchy of the moments of the flow velocity field.
In other situations like after atmospheric dust storms, the concentrations of particles

can be significantly high while the Reynolds number is small. In those cases, the reaction
terms in (30) and the collisions in (31) must be kept in the equation while the coupling
to the turbulent moments <δu(r, t)δu(r0, t0)> of the different effects is negligeable. The
structure of the reaction term may even depend only on the particles’ concentration if the
velocities of the particles does not differ significantly from the local fluid velocity, that
is when the inertia of the particles is weak and when the collisions between particles are
unfrequent on the time-scales characterizing the variations of the flow. In the other cases,
the Navier-Stokes becomes coupled to the phase-space distribution, that is to the kinetic
equation. This already represents a considerable change in the mathematical structure of
the governing equations.
For higher values of the Reynolds parameter, the coupling of the different terms to the

turbulent moments should be analyzed term by term. In equation (30), the reaction effect
is split into several terms corresponding to different couplings with the turbulent flow.
These terms will be small in the cases where the particle relaxation time τ p is much larger
than the characteristic time of turbulence (Kolmogorov time, tK = (ν/ε)

1/2). Moreover,
the importance of the terms involving the gradients ∇U(r(τ), τ) and ∇Fext(r(τ), τ) de-
pends respectively on the length- or time-scale of the inhomogeneity of the average flow
and of the external force field.
Also, in the kinetic equation, the turbulent corrections to the collision term depend on

the ratio of the duration between two successive collisions and the turbulence time-scale.
In most cases, these corrections can be neglected.
One must also keep in mind that the force term F(v,u) appearing in equations (30)

and (31) corresponds to the simplified model (2), however, for larger Reynolds numbers,
one should at least use the more precise models (3) and (5) or even take into account the
quadratic term in the drag force. This modifies even more radically the structure of the
equations as they become fractional differential equations due to the Boussinesq-Basset
history term.
It now remains to evaluate the importance of these new effects in real flows. This will

be the object of our next work.
Another future extension of the present work is dusty plasmas dynamics. For meso-

scopic charged dust particles embedded in a plasma, one would also have a hybrid,
macroscopic-kinetic description similar to that derived in this article. This coupling would
here also stem from the existence of reaction forces exerted by the dust particles on the
plasma. The macroscopic magneto-hydrodynamic equations for the plasma would, thus,
be coupled to the kinetic equation governing the evolution of the phase-space distribution
of the dust particles. Of course, the nature of the forces and of the collisions would be
very different than for neutral particles.
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