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Abstract

Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two spatiotemporal derivatives of the fields, we investigate
the consistent selfinteractions that can be added to a collection of massless tensor
fields with the mixed symmetry (3, 1) and respectively (2, 2). The computations are
done with the help of the deformation theory based on a cohomological approach, in
the context of the antifield-BRST formalism. Our result is that no selfinteractions
that deform the original gauge transformations emerge. In the case of the collection
of (2, 2) tensor fields it is possible to add a sum of cosmological terms to the free
Lagrangian.
PACS number: 11.10.Ef

1 Introduction

Tensor fields in “exotic” representations of the Lorentz group, characterized by a mixed
Young symmetry type [1, 2, 3, 4, 5, 6, 7], held the attention lately on some important
issues, like the dual formulation of field theories of spin two or higher [8, 9, 10, 11, 12, 13,
14], the impossibility of consistent cross-interactions in the dual formulation of linearized
gravity [15], a Lagrangian first-order approach [16, 17] to some classes of massless or
partially massive mixed symmetry type tensor gauge fields, suggestively resembling to
the tetrad formalism of General Relativity, or the derivation of some exotic gravitational
interactions [18, 19]. An important matter related to mixed symmetry type tensor fields
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is the study of their consistent interactions, among themselves as well as with higher-spin
gauge theories [20, 21, 22, 23, 24, 25, 26, 27, 28]. The most efficient approach to this
problem is the cohomological one, based on the deformation of the solution to the master
equation [29].
The purpose of this paper is to investigate the consistent selfinteractions in a collection

of massless tensor gauge fields with the mixed symmetry of a two-column Young diagram
of the type (3, 1), and respectively a collection of massless tensor gauge fields with the
mixed symmetry (2, 2). It is worth mentioning the duality of a free massless tensor gauge
field with the mixed symmetry (3, 1) to the Pauli—Fierz theory in D = 6 dimensions and,
in this respect, some developments concerning the dual formulations of linearized gravity
from the perspective of M-theory [30, 31, 32]. Our analysis relies on the deformation of
the solution to the master equation by means of cohomological techniques with the help of
the local BRST cohomology, whose component in a single (3, 1) sector has been reported
in detail in [33], while in a single (2, 2) sector has been considered in [34, 35]. Under
the hypotheses of analyticity in the coupling constant, locality, Lorentz covariance, and
Poincaré invariance of the deformations, combined with the preservation of the number
of derivatives on each field, we find that no selfinteractions that deform the original gauge
transformations emerge. In the case of the collection of (2, 2) tensor fields it is possible
to add a sum of cosmological terms to the free Lagrangian.

2 Brief review of the deformation procedure

There are three main types of consistent interactions that can be added to a given gauge
theory: (i) the first type deforms only the Lagrangian action, but not its gauge transfor-
mations, (ii) the second kind modifies both the action and its transformations, but not
the gauge algebra, and (iii) the third, and certainly most interesting category, changes
everything, namely, the action, its gauge symmetries and the accompanying algebra.
The reformulation of the problem of consistent deformations of a given action and of

its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution S
to the master equation for the initial theory can be deformed into the solution S̄ to the
master equation for the interacting theory

S −→ S̄ = S + gS1 + g2S2 + g3S3 + g4S4 + · · · , (1)

(S, S) = 0 −→
¡
S̄, S̄

¢
= 0. (2)

The projection of (2) for S̄ on the various powers of the coupling constant induces the
following tower of equations:

g0 : (S, S) = 0, (3)

g1 : (S1, S) = 0, (4)

g2 : (S2, S) +
1

2
(S1, S1) = 0, (5)

g3 : (S3, S) + (S1, S2) = 0, (6)

g4 : (S4, S) + (S1, S3) +
1

2
(S2, S2) = 0, (7)

...
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The first equation is satisfied by hypothesis. The second one governs the first-order
deformation of the solution to the master equation, S1, and it expresses the fact that S1 is
a BRST co-cycle, sS1 = 0, and hence it exists and is local. The remaining equations are
responsible for the higher-order deformations of the solution to the master equation. No
obstructions arise in finding solutions to them as long as no further restrictions, such as
spatiotemporal locality, are imposed. Obviously, only non-trivial first-order deformations
should be considered, since trivial ones (S1 = sB) lead to trivial deformations of the
initial theory, and can be eliminated by convenient redefinitions of the fields. Ignoring
the trivial deformations, it follows that S1 is a non-trivial BRST-observable, S1 ∈ H0 (s)
(where H0 (s) denotes the cohomology space of the BRST differential in ghost number
zero). Once the deformation equations ((4)—(7), etc.) have been solved by means of
specific cohomological techniques, from the consistent non-trivial deformed solution to
the master equation one can extract all the information on the gauge structure of the
resulting interacting theory.

3 Selfinteractions for a collection of massless tensor
fields with the mixed symmetry (3, 1)

3.1 Free model: Lagrangian formulation and BRST symmetry

The starting point is given by the Lagrangian action for a collection of free, massless
tensor fields with the mixed symmetry (3, 1)

St0
£
tAλμν|α

¤
=

Z ½
1

2

h³
∂ρt

λμν|α
A

´ ¡
∂ρt

A
λμν|α

¢
−
³
∂αt

λμν|α
A

´ ¡
∂βtAλμν|β

¢i
−3
2

h³
∂λt

λμν|α
A

´ ¡
∂ρtAρμν|α

¢
+
³
∂ρtλμA

´ ¡
∂ρt

A
λμ

¢i
+3
h³

∂αt
λμν|α
A

´ ¡
∂λt

A
μν

¢
+ (∂ρt

ρμ
A )
¡
∂λtAλμ

¢io
dDx, (8)

in a Minkowski space-time of dimension D ≥ 5. Everywhere in this paper we employ
the flat Minkowski metric of ‘mostly plus’ signature σμν = σμν = (− + + + + · · · ).
The uppercase indices A, B, etc. stand for the collection indices and are assumed to
take discrete values 1, 2, . . ., N . They are lowered with a symmetric, constant, and
invertible matrix, of elements kAB, and are raised with the help of the elements kAB

of its inverse. Each field tAλμν|α is completely antisymmetric in its first three (Lorentz)
indices and satisfies the identity tA[λμν|α] ≡ 0. Here and in the sequel the notation [λ · · ·α]
signifies complete antisymmetry with respect to the (Lorentz) indices between brackets,
with the conventions that the minimum number of terms is always used and the result
is never divided by the number of terms. The notation tAλμ from (8) signifies the trace of
tAλμν|α, defined by t

A
λμ = σναtAλμν|α. The trace components define an antisymmetric tensor,

tAλμ = −tAμλ. A generating set of gauge transformations for action (8) can be chosen of the
form

δ�,χt
A
λμν|α = 3∂α�

A
λμν + ∂[λ �

A
μν]α + ∂[λχ

A
μν]|α

= −3∂[λ �Aμνα] + 4∂[λ �Aμν]α + ∂[λχ
A
μν]|α, (9)

where the gauge parameters �Aλμν are completely antisymmetric, and the gauge parameters
χAμν|α (also bosonic) define a collection of tensor fields with the mixed symmetry (2, 1). It
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can be shown [33] that the generating set (9) is off-shell reducible of order two and the
associated gauge algebra is Abelian. Consequently, the Cauchy order of this linear gauge
theory is equal to four.
The most general quantities, invariant under the gauge transformations (9), are given

by the components of the curvature tensors associated with each field from the collection

K
λμνξ|αβ
A = ∂α∂[λ t

μνξ]|β
A − ∂β∂[λ t

μνξ]|α
A (10)

together with their space-time derivatives. It is easy to check that they display the mixed
symmetry (4, 2).
The construction of the BRST symmetry for the free model under study debuts with

the identification of the algebra on which the BRST differential s acts. The ghost spec-
trum comprises the fermionic ghosts

n
ηAλμν ,GAμν|α

o
respectively associated with the gauge

parameters
n
�Aλμν, χ

A
μν|α

o
from (9), the bosonic ghosts for ghosts

©
CA
μν, G

A
να

ª
due to the

first-order reducibility, and the fermionic ghosts for ghosts for ghosts CA
ν corresponding

to the maximum reducibility order (two). We ask that ηAλμν and CA
μν are completely

antisymmetric, GAμν|α exhibit the mixed symmetry (2, 1), and GA
να are symmetric. The

antifield spectrum comprises the antifields t∗λμν|αA associated with the original fields and

those corresponding to the ghosts,
n
η∗λμνA ,G∗μν|αA

o
, {C∗μνA , G∗ναA }, and C∗νA .

Since both the gauge generators and reducibility functions for this model are field-
independent, it follows that the BRST differential s simply reduces to s = δ + γ, where
δ represents the Koszul—Tate differential, graded by the antighost number agh (agh (δ) =
−1), and γ stands for the exterior longitudinal differential, whose degree is named pure
ghost number pgh (pgh (γ) = 1). These two degrees do not interfere (agh (γ) = 0,
pgh (δ) = 0). The overall degree that grades the BRST complex is known as the ghost
number (gh) and is defined like the difference between the pure ghost number and the
antighost number, such that gh (s) = gh (δ) = gh (γ) = 1. According to the standard
rules of the BRST method, the corresponding degrees of the generators from the BRST
complex are valued like

pgh
¡
tAλμν|α

¢
= 0, pgh

¡
ηAλμν

¢
= pgh

¡
GAμν|α

¢
= 1,

pgh
¡
CA
μν

¢
= pgh

¡
GA
να

¢
= 2,

pgh
³
t
∗λμν|α
A

´
= pgh

³
η∗λμνA

´
= pgh

³
G∗μν|αA

´
= pgh (C∗μνA ) = pgh (G∗ναA ) = 0,

agh
¡
tAλμν|α

¢
= agh

¡
ηAλμν

¢
= agh

¡
GAμν|α

¢
= agh

¡
CA
μν

¢
= agh

¡
GA
να

¢
= 0,

agh
³
t
∗λμν|α
A

´
= 1, agh

³
η∗λμνA

´
= agh

³
G∗μν|αA

´
= 2,

agh (C∗μνA ) = agh (G∗ναA ) = 3.

The Koszul—Tate differential is imposed to realize a homological resolution of the algebra
of smooth functions defined on the stationary surface of field equations, while the exterior
longitudinal differential is related to the gauge symmetries (see relations (9)) of action
(8) through its cohomology at pure ghost number zero computed in the cohomology of
δ, which is required to be the algebra of physical observables for the free model under
consideration. The actions of δ and γ on the generators from the BRST complex, which
enforce all the above mentioned properties, are given by

γtAλμν|α = −3∂[ληAμνα] + 4∂[ληAμν]α + ∂[λGAμν]|α, (11)
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γηAλμν = −
1

2
∂[λC

A
μν], (12)

γGAμν|α = 2∂[μCA
να] − 3∂[μCA

ν]α + ∂[μG
A
ν]α, (13)

γCA
μν = ∂[μC

A
ν], γGA

να = −3∂(νCA
α), γCA

ν = 0, (14)

γt
∗λμν|α
A = γη∗λμνA = γG∗μν|αA = γC∗μνA = γG∗ναA = γC∗νA = 0, (15)

δtAλμν|α = δηAλμν = δGAμν|α = δCA
μν = δGA

να = δCA
ν = 0, (16)

δt
∗λμν|α
A = T

λμν|α
A , δη∗λμνA = −4∂αt∗λμν|αA , (17)

δG∗μν|αA = −∂λ
³
3t
∗λμν|α
A − t

∗μνα|λ
A

´
, (18)

δC∗μνA = 3∂λ

µ
G∗μν|λA − 1

2
η∗λμνA

¶
, δG∗ναA = ∂μG∗μ(ν|α)A , (19)

δC∗νA = 6∂μ

µ
G∗μνA − 1

3
C∗μνA

¶
, (20)

where T λμν|α
A = −δSt0/δtAλμν|α reads

T
λμν|α
A = ¤tλμν|αA − ∂ρ

³
∂[λ t

μν]ρ|α
A + ∂αt

λμν|ρ
A

´
+ ∂α∂[λ t

μν]
A

+σα[λ
³
∂ρ
³
∂βt

μν]ρ|β
A − ∂μt

ν]ρ
A

´
−¤tμν]A

´
. (21)

By convention, we take δ and γ to act like right derivations. We note that the action of
the Koszul—Tate differential on the antifields with the antighost number equal to two and
respectively three gains a simpler expression if we perform the changes of variables

G0∗μν|αA = G∗μν|αA +
1

4
η∗μναA , G0∗να

A = G∗ναA − 1
3
C∗ναA . (22)

The antifields G0∗μν|αA are still antisymmetric in their first two indices, but do not fulfill the
identity G0∗[μν|α]A ≡ 0, and G0∗να

A have no definite symmetry or antisymmetry properties.
With the help of relations (17)—(20), we find that δ acts on the transformed antifields
through the relations

δG0∗μν|αA = −3∂λt∗λμν|αA , δG0∗να
A = 2∂μG0∗μν|αA , δC∗νA = 6∂μG

0∗μν
A . (23)

The same observation is valid with respect to γ if we make the changes

G0Aμν|α = GAμν|α + 4ηAμνα, G0A
να = GA

να − 3CA
να, (24)

in terms of which we can write

γtAλμν|α = −
1

4
∂[λG0Aμν|α] + ∂[λG0Aμν]|α, γG0Aμν|α = ∂[μG

0A
ν]α, γG

0A
να = −6∂νCA

α . (25)

Again, G0Aμν|α are antisymmetric in their first two indices, but do not satisfy the identity
G0A[μν|α] ≡ 0, while G0A

να have no definite symmetry or antisymmetry. We have deliberately
chosen the same notations for the transformed variables (22) and (24) since they actually
form pairs that are conjugated in the antibracket³

G0Aμν|α,G
0∗μ1ν1|α1
B

´
=

1

2
δABδ

[μ1
μ δ ν1]ν δα1α ,
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¡
G0A
να, G

0∗ν1α1
B

¢
= δABδ

ν1
ν δα1α .

The Lagrangian BRST differential admits a canonical action in a structure named
antibracket and defined by decreeing the fields/ghosts conjugated with the corresponding
antifields, s· = (·, S), where (, ) signifies the antibracket and S denotes the canonical gen-
erator of the BRST symmetry. It is a bosonic functional of ghost number zero, involving
both field/ghost and antifield spectra, that obeys the master equation (S, S) = 0. The
master equation is equivalent with the second-order nilpotency of s, where its solution S
encodes the entire gauge structure of the associated theory. Taking into account formulas
(11)—(20) as well as the standard actions of δ and γ in canonical form, we find that the
complete solution to the master equation for the free model under study is given by

St = St0
£
tAλμν|α

¤
+

Z ³
t
∗λμν|α
A

¡
3∂αη

A
λμν + ∂[λη

A
μν]α + ∂[λGAμν]|α

¢
−1
2
η∗λμνA ∂[λC

A
μν] + G

∗μν|α
A

¡
2∂αC

A
μν − ∂[μC

A
ν]α + ∂[μG

A
ν]α

¢
+C∗μνA ∂[μC

A
ν] − 3G∗ναA ∂(νC

A
α)

¢
dDx. (26)

3.2 Computation of basic cohomologies

In order to analyze equation (4) (that governs the first-order deformation) we make the
notation S1 =

R
atdDx and write this equation in its local form and in dual notations,

sat = ∂μm
μ
t . Now, we approach the last equation in a standard manner, namely, we

develop at according to the antighost number and assume that this expansion contains a
finite number of terms, of maximum antighost number I. In order to ensure the space-
time locality of the deformations, from now on we work in the algebra of local differential
forms with coefficients that are polynomial functions in the fields, ghosts, antifields, and
their space-time derivatives (algebra of local forms). This means that we assume the
non-integrated density of the first-order deformation, at, to be a polynomial function in
all these variables (algebra of local functions).
By taking into account the splitting s = δ + γ of the BRST differential, the equa-

tion sat = ∂μm
μ
t becomes equivalent to a tower of local equations, corresponding to the

different decreasing values of the antighost number

γatI = ∂μ
(I)
m

μ

t , (27)

δatI + γatI−1 = ∂μ
(I−1)
m

μ

t , (28)

δatk + γatk−1 = ∂μ
(k−1)
m

μ

t , I − 1 ≥ k ≥ 1, (29)

where
µ
(k)
m

μ

t

¶
k=0,I

are some local currents, with agh
µ
(k)
m

μ

t

¶
= k. It can be proved that we

can replace equation (27) at strictly positive antighost numbers with the homogeneous
equation

γatI = 0, I > 0. (30)

The proof can be done like in the Appendix A, Corollary 1, from [33]. In conclusion,
under the assumption that I > 0, the representative of highest antighost number from
the non-integrated density of the first-order deformation can always be taken to be γ-
closed, such that equation sat = ∂μm

μ
t , associated with the local form of the first-order
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deformation equation, is completely equivalent to the tower of equations given by (30)
and (28)—(29).
Before proceeding to the analysis of the solutions to the first-order deformation equa-

tion, let us briefly comment on the uniqueness and triviality of such solutions. Due to the
second-order nilpotency of γ (γ2 = 0), the solution to the top equation, (30), is clearly
unique up to γ-exact contributions, atI → atI + γbI . Meanwhile, if atI reduces to γ-exact
terms only, atI = γbI , then it can be made to vanish, atI = 0. In other words, the non-
triviality of the first-order deformation at is translated at its highest antighost number
component into the requirement that atI ∈ HI (γ), where HI (γ) denotes the cohomology
of the exterior longitudinal differential γ in pure ghost number equal to I computed in the
algebra of local functions. At the same time, the general condition on the non-integrated
density of the first-order deformation to generate an element atdDx from a non-trivial
cohomological class of H0,D (s|d) (the local cohomology of the BRST differential s –
where d means the exterior space-time differential – in ghost number zero and in max-
imum form degree, computed in the algebra of local forms) shows on the one hand that
the solution to equation sat = ∂μm

μ
t is unique up to s-exact pieces plus total derivatives

and, on the other hand, that if the general solution to this equation is completely trivial,
at = sb+ ∂μn

μ, then it can be made to vanish, at = 0.
We have seen that the solution to equation (30) belongs to the cohomology of the

exterior longitudinal differential computed in the algebra of local functions, such that
we need to compute H∗ (γ) in order to construct the component of highest antighost
number from the first-order deformation. We will see that we also need to compute the
characteristic cohomology HD

I (δ|d) (the local cohomology of the Koszul—Tate differential
δ in antighost number I and in maximum form degree, computed in the algebra of local
forms with the pure ghost number equal to zero).
Acting like in [33], it is easy to see that H∗ (γ) is generated by the quantities

pgh BRST generator non− trivial objects from H∗ (γ)

0

½
Π∗∆, ∂Π∗∆, . . .

tAλμν|α, ∂t
A
λμν|α, . . .

½
Π∗∆, ∂Π∗∆, . . .

KA
λμνξ|αβ, ∂K

A
λμνξ|αβ, . . .

1

½
ηAλμν, ∂η

A
λμν, . . .

GAμν|α, ∂GAμν|α, . . .
FA
λμνα = ∂[λη

A
μνα],

2

½
CA
μν , ∂C

A
μν , . . .

GA
να, ∂G

A
να, . . .

−

3 CA
ν , ∂C

A
ν , . . . CA

ν

, (31)

where Π∗∆ is a generic notation for all the antifields. So, the most general, non-trivial
solution to the equation (30) (up to trivial, γ-exact contributions) reads

atI = αI

¡£
Π∗∆

¤
,
£
KA

λμνξ|αβ
¤¢
ωI
¡
FA
λμνα, C

A
ν

¢
. (32)

The notation f([q]) means that f depends on q and its derivatives up to a finite order,
while ωI denotes the elements of pure ghost number I (and antighost number zero) of a
basis in the space of polynomials in FA

λμνα and C
A
ν , which is finite dimensional since these

variables anticommute. The objects αI (obviously non-trivial in H0 (γ)) were taken to
have a bounded number of derivatives, and therefore they are polynomials in the antifields
Θ∗∆, in the curvature tensors KA

λμνξ|αβ, as well as in their derivatives. They are nothing
but the invariant polynomials of the theory described by formulas (8)—(9) in form degree
equal to zero. At zero antighost number, the invariant polynomials are polynomials in
the curvature tensors KA

λμνξ|αβ and in their derivatives.
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Replacing solution (32) into equation (28) and taking into account definitions (16)—
(20), we remark that a necessary (but not sufficient) condition for the existence of (non-
trivial) solutions atI−1 is that the invariant polynomials αI generate (non-trivial) objects
from the characteristic cohomology HD

I (δ|d) in antighost number I > 0, maximum form
degree, and pure ghost number equal to zero1, αId

Dx ∈ HD
I (δ|d). As the free model

under study is a linear gauge theory of Cauchy order equal to four, the general results
from [36] ensure that the entire characteristic cohomology is trivial in antighost numbers
strictly greater than its Cauchy order

HD
I (δ|d) = 0, I > 4. (33)

Moreover, it is possible to show that the above result remains valid also in the algebra of
invariant polynomials

H invD
I (δ|d) = 0, I > 4, (34)

where H invD
I (δ|d) is known as the invariant characteristic cohomology. Looking at the

definitions (23) involving the transformed antifields (22), we can organize the non-trivial,
Poincaré-invariant representatives of HD

I (δ|d) and H invD
I (δ|d) (for I ≥ 2) like:

agh HD
I (δ|d) and H invD

I (δ|d)
I > 4 −
I = 4 fAν C

∗ν
A dDx

I = 3 fAναG
0∗να
A dDx

I = 2 fAμναG
0∗μν|α
A dDx

, (35)

where all the coefficients denoted by f define some constant, non-derivative tensors. We
remark that in

¡
HD

I (δ|d)
¢
I≥2 and

¡
H invD

I (δ|d)
¢
I≥2 there is no non-trivial element that

effectively involves the curvatures KA
λμνξ|αβ and/or their derivatives, and the same stands

for the quantities that are more than linear in the antifields and/or depend on their deriv-
atives. In principle, one can construct from the above elements in (35) other non-trivial
invariant polynomials from HD

I (δ|d) or H invD
I (δ|d), that depend on the space-time co-

ordinates. For instance, it can be checked by direct computation that G0∗μν|αA fAμναρx
ρdDx,

with fAμναρ some completely antisymmetric and constant tensors, generate non-trivial rep-
resentatives from both HD

2 (δ|d) and H invD
2 (δ|d). However, we will discard such candi-

dates as they would break the Poincaré invariance of the deformations. In contrast to the
groups

¡
HD

I (δ|d)
¢
I≥2 and

¡
H invD

I (δ|d)
¢
I≥2, which are finite-dimensional, the cohomology

HD
1 (δ|d) at pure ghost number zero, that is related to global symmetries and ordinary

conservation laws, is infinite-dimensional since the theory is free.
The previous results on HD

I (δ|d) and H invD
I (δ|d) are important because they control

the obstructions to removing the antifields from the first-order deformation. Indeed, due
to (34), it follows that we can successively eliminate all the pieces with I > 4 from the non-
integrated density of the first-order deformation by adding only trivial terms (the proof
is similar to that from the Appendix C in [33]), so we can take, without loss of non-trivial
objects, the condition I ≤ 4 in the first-order deformation. The last representative is of
the form (32), where the invariant polynomials necessarily generate non-trivial objects
from H invD

I (δ|d) if I = 2, 3, 4 and respectively from HD
1 (δ|d) if I = 1.

1We recall that the local cohomology HD
∗ (δ|d) is completely trivial at both strictly positive antighost

and pure ghost numbers (for instance, see [36], Theorem 5.4 and [37]).
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3.3 Cohomological analysis of selfinteractions

Assuming I = 4, the non-integrated density of the first-order deformation becomes

at = at0 + at1 + at2 + at3 + at4, (36)

with at4 (γa
t
4 = 0) a non-trivial element from H4 (γ), and hence of the form (see (32))

at4 = α4ω
4
¡
FA
λμνα, C

A
ν

¢
, (37)

and α4dDx a non-trivial object from H invD
4 (δ|d). Since the elements of pure ghost number

equal to four from the basis in the space of polynomials in FA
λμνα and C

A
ν are spanned by

the combinations

ω4 :
³
FB
λμναC

C
β ,FB

λμναFC
λ1μ1ν1α1

FD
λ2μ2ν2α2

FE
λ3μ3ν3α3

´
, (38)

with FA
λμνα given in (31), and the non-trivial representatives of the space H

invD
4 (δ|d) are

generated by the antifields C∗Aρ (see (35)), we obtain that the general form of the last
term from the first-order deformation in the case I = 4 reads

at4 = C∗Aρ

³
f
ρλμναλ1μ1ν1α1λ2μ2ν2α2λ3μ3ν3α3
1ABCDE FB

λμναFC
λ1μ1ν1α1

FD
λ2μ2ν2α2

FE
λ3μ3ν3α3

+fρλμναβ2ABC FB
λμναC

C
β

´
, (39)

where the coefficients denoted by f are some non-derivative constant tensors. The first
term from the right-hand side of (39) (those containing homogeneous polynomials of de-
gree four in the ghosts FA

λμνα), even if consistent, would lead to interaction vertices (in the
corresponding at0) of order five in the space-time derivatives of the fields, which disagrees
with the hypothesis on the maximum derivative order of the interacting Lagrangian to be
equal to two. For this reason, we eliminate this term from at4 by setting the associated
coefficient to be equal to zero

f
ρλμναλ1μ1ν1α1λ2μ2ν2α2λ3μ3ν3α3
1ABCDE = 0, (40)

such that
at4 = fρλμναβ2ABC C∗Aρ FB

λμναC
C
β . (41)

The requirements that the deformations are manifestly covariant and Poincaré invariant,
the fact that we work in space-time dimensions D ≥ 5, and the complete antisymmetry
of FB

λμνα, provide a single non-trivial candidate, namely

D = 6, fρλμναβ2ABC = cABCε
ρλμναβ, (42)

with cABC some real, arbitrary constants and ερλμναβ the six-dimensional Levi—Civita
symbol. As a consequence, we obtain

at4 = cABCε
ρλμναβC∗Aρ FB

λμναC
C
β . (43)

If (43) is consistent, then it will produce a Lagrangian density at order one in the coupling
constant, at0, which breaks the PT invariance.
We will show that solution (43) is not consistent in antighost number two, meaning

that it cannot provide a solution at2 to the equation (29) for k = 3. In view of this, we
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compute the remaining components from (36), which are subject to equations (28)—(29)
for I = 4

δat4 + γat3 = ∂μ
(3)
m

μ

t , δat3 + γat2 = ∂μ
(2)
m

μ

t , (44)

δat2 + γat1 = ∂μ
(1)
m

μ

t , δat1 + γat0 = ∂μ
(0)
m

μ

t . (45)

Replacing (43) into the former equation from (44) and using the first definition from (23),
together with the results

∂ρFA
λμνα = γ

µ
1

3
∂[λ t

A
μνα]|ρ

¶
, (46)

∂μC
A
ν = γ

µ
−1
6
G0A
μν

¶
, (47)

we find that

at3 = −cABCερλμναβG0∗Aγ
ρ

¡
8
¡
∂λt

B
μνα|γ

¢
CC
β +FB

λμναG
0C
γβ

¢
, (48)

where G0C
γβ reads as in (24). In order to solve the latter equation from (44), we initially

compute δat3 starting with (48) and using the second definition from (23), and then ma-
nipulate the resulting expression based on formulas (46), (47), and the second relation
from (25), obtaining in the end

δat3 = ∂σ
¡
2cABCε

ρλμναβG0∗Aσγ|ρ
¡
8
¡
∂λt

B
μνα|γ

¢
CC
β +FB

λμναG
0C
γβ

¢¢
+γ

µ
−cABCερλμναβG0∗Aσγ|ρ

µ
4

3

¡
∂λt

B
μνα|[σ

¢
G0C

γ]β +FB
λμναG0Cσγ|β

¶¶
−2cABCερλμναβG0∗Aσγ|ρKB

λμνα|σγC
C
β , (49)

where KB
λμνα|σγ is precisely the curvature tensor (see (10)) and the transformed ghosts

G0Cσγ|β are defined in (24). Comparing the latter equation from (44) with (49), we observe
that at3 of the form (48) provides a consistent at2 if and only if

−2cABCερλμναβG0∗Aσγ|ρKB
λμνα|σγC

C
β = γb2 + ∂σ

(2)
w

σ

, (50)

where b2 and
(2)
w

σ

must fulfill the properties

agh (b2) = 2 = agh

µ
(2)
w

σ
¶
, pgh (b2) = 2, pgh

µ
(2)
w

σ
¶
= 3. (51)

The above requirement takes place if and only if

cABC = 0, (52)

because the left-hand side of relation (50) contains only non-trivial elements of H3 (γ)
with the antighost number equal to two, where the role of invariant polynomials is played
by

−2cABCερλμναβG0∗Aσγ|ρKB
λμνα|σγ,

which implies automatically b2 = 0, and, on the other hand, this expression cannot be

written in a divergence-like form, such that we must set
(2)
w

σ

= 0. But b2 = 0 and
(2)
w

σ

= 0
simultaneously in (50) lead to (52), and in consequence to

at4 = 0. (53)

10



In conclusion, under the hypothesis that the maximum derivative order of the interacting
Lagrangian is equal to two, the first-order deformation can only stop at antighost numbers
I ≤ 3.
In the case I = 3 we have that

at = at0 + at1 + at2 + at3, (54)

with γat3 = 0, such that we can write (see (32))

at3 = α3ω
3
¡
FA
λμνα, C

A
ν

¢
. (55)

The consistency of at at antighost number two (the existence of at2 as solution to the

equation δat3+γat2 = ∂μ
(2)
m

μ

t ) requires that α3d
Dx is a non-trivial element fromH invD

3 (δ|d).
Because the elements with the pure ghost number equal to three of a basis in the space
of polynomials in FA

λμνα and CA
ν are spanned by

ω3 :
³
CB
β ,FB

λμναFC
λ1μ1ν1α1

FD
λ2μ2ν2α2

´
, (56)

and the general, non-trivial representatives of H invD
3 (δ|d) are generated by the antifields

G0∗Aνα (see (35) for I = 3), we infer

at3 = G0∗A
ρσ

³
f
ρσλμναλ1μ1ν1α1λ2μ2ν2α2
1ABCD FB

λμναFC
λ1μ1ν1α1

FD
λ2μ2ν2α2

+ fρσβ2ABC
B
β

´
, (57)

where the coefficients denoted by f must be some non-derivative, constant tensors. The
condition that the maximum derivative order of the interacting Lagrangian is equal to
two imposes the restrictions

f
ρσλμναλ1μ1ν1α1λ2μ2ν2α2
1ABCD = 0, (58)

since otherwise the corresponding interacting term from at0 would be of order four in the
space-time derivatives of the fields, and hence we get

at3 = fρσβ2ABG
0∗A
ρσ C

B
β . (59)

Asking now that at3 is a Lorentz covariant and Poincaré invariant element defined on a
space-time of dimension D ≥ 5 leaves us with the trivial solution

fρσβ2AB = 0, (60)

which further implies
at3 = 0. (61)

In conclusion, the first-order deformation cannot stop in a non-trivial manner also at the
value I = 3 of the antighost number.
Next, we pass to the situation where the non-integrated density of the first-order

deformation stops at antighost number two

at = at0 + at1 + at2, (62)

where γat2 = 0, and hence, in agreement with (32), we have that

at2 = α2ω
2
¡
FA
λμνα

¢
. (63)
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(The ghosts CA
ν no longer appear in ω2 since their pure ghost number is equal to three,

while pgh (ω2) = 2). We recall that a necessary condition for the existence of (63) in

antighost number one (the existence of at1 as solution to the equation δat2 + γat1 = ∂μ
(1)
m

μ

t )
is that α2dDx belongs to H invD

2 (δ|d). The elements of pure ghost number equal to two of
a basis in the space of polynomials in FA

λμνα are spanned by

ω2 :
³
FA
λμναFB

λ1μ1ν1α1

´
, (64)

and the general, non-trivial representatives of H invD
2 (δ|d) are built from the antifields

G0∗Aμν|α (see (35) for I = 2), such that

at2 = f
ρσβλμναλ1μ1ν1α1
1ABC G0∗Aρσ|βFB

λμναFC
λ1μ1ν1α1

, (65)

where the coefficients denoted by f must be some non-derivative, constant tensors. The
derivative order hypothesis at0 requires

f
ρσβλμναλ1μ1ν1α1
1ABC = 0, (66)

since otherwise, if consistent, component (65) would lead to an at0 with three space-time
derivatives acting on the fields. Condition (66) further implies

at2 = 0, (67)

and hence we can take I ≤ 1 in the first-order deformation. The result (67) emphasizes
that the original, Abelian gauge algebra is rigid with respect to the deformation procedure
(since the existence of non-trivial terms in at2 that are simultaneously linear in the antifields
with the antighost number equal to two and quadratic in combinations of ghosts with the
pure ghost number equal to one is not allowed in the first-order deformation), such that the
resulting selfinteractions among the fields with the mixed symmetry (3, 1) might modify
at most the original gauge transformations or the free Lagrangian.
For I = 1 the first-order deformation becomes

at = at0 + at1, (68)

where the last component (γat1 = 0) takes the generic form (see (32))

at1 = α1
³h

t
∗λμν|α
A

i
,
£
KA

λμνξ|αβ
¤´

ω1
¡
FA
λμνα

¢
. (69)

The invariant polynomial α1 is linear in the antifields t
∗λμν|α
A and their derivatives (up to

a finite order) since these are the only objects of antighost number equal to one from the
BRST algebra, while

ω1 :
¡
FB
λμνα

¢
. (70)

We mentioned in the above (see the end of Section 3.2) that a necessary condition for
the consistency of at is that α1dDx is a non-trivial element of HD

1 (δ|d), which is infinite-
dimensional. The impossible mission of computing HD

1 (δ|d) can be avoided if we demand
from the start the hypothesis on at0 to be of maximum derivative order equal to two. This
assumption is particularly useful at this stage since it forbids the invariant polynomial α1
to depend on the curvature tensors KA

λμνξ|αβ or their space-time derivatives. Indeed, as-
suming that α1 effectively depends on the curvature tensors, it follows that the component
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from (69) with the minimum number of derivatives will be linear in the undifferentiated
antifields t∗λμν|αA , in the undifferentiated curvature tensors, as well as in the elements (70),
so it already contains three space-time derivatives. If consistent, it would produce an at0 of
order four in the space-time derivatives of the fields. Therefore, we forbid the dependence
on the curvature tensors and remain with

at1 = αlin1A

³h
t
∗λμν|α
B

i´
FA
λμνα. (71)

Moreover, the invariant polynomial αlin1 is further restricted not to depend on the deriv-
atives of t∗λμν|αB . This is because one can always move the derivatives (by making an
integration by parts) such as to act on FA

λμνα, which provides purely trivial (γ-exact)
contributions to at1 (see (46)), which can be eliminated from the first-order deformation.
The previous discussion allows us to state that the only eligible candidate to at1 is

defined in D = 6 and reads

at1 ≡ a
t(D=6)
1 = cABσ

αβελμνλ
0μ0ν0t∗Aλμν|αFB

λ0μ0ν0β. (72)

Let us investigate the solutions in antighost number zero

δa
t(D=6)
1 + γa

t(D=6)
0 = ∂μ

(0)
m

μ

t . (73)

In order to evaluate δat(D=6)1 , we use the identity

ελμνλ
0μ0ν0σαβ

(1)

T

A

λμν|α

(2)

T

B

λ0μ0ν0β = −
3

4
ελμνλ

0μ0ν0σαβ
(1)

T

A

λμβ|α

(2)

T

B

νλ0μ0ν0 (74)

(that takes place for any tensor
(1)

T

A

λμν|α completely antisymmetric in its first three indices

and for any completely antisymmetric tensor
(2)

T

B

λ0μ0ν0β) together with the first definition
from (17). After some computation, we obtain that

δa
t(D=6)
1 = γ

hcAB
2
(4−D) ελμλ

0μ0ν0ρ0tAλμ(ρ|α)∂λ0
³
σαρ∂βtBμ0ν0ρ0|β − ∂αtB ρ

μ0ν0ρ0|

´i
+∂ρj

ρ − cAB
2
(4−D) ελμλ

0μ0ν0ρ0T A
λμ(ρ|α)∂λ0

³
σαρ∂βtBμ0ν0ρ0|β − ∂αtB ρ

μ0ν0ρ0|

´
, (75)

where
T A
λμν|α ≡ 4∂[ληAμν]α + ∂[λGAμν]|α, T A

λμν|α = 3FA
λμνα + γtAλμν|α. (76)

Comparing (75) with (73), we observe that the existence of at(D=6)0 requires that the last
terms from the right-hand side of (75) either vanish or reduce to a full divergence. It is
clear from (76) that they cannot reduce to a divergence, and therefore must be set equal
to zero, which further implies

cAB = 0, (77)

such that
a
t(D=6)
1 = 0. (78)

Until now we showed that
at1 = 0, (79)

and hence the first-order deformation may contain at most terms of antighost number
zero (I = 0). The terms of antighost number one present in the solution to the master
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equation are known to control the gauge symmetries, such that (79) expresses the fact that
there are no consistent selfinteractions in a collection of tensor fields tAλμν|α that deform
the original gauge transformations, given in (9).
In this manner, we are left with a sole possibility, namely that the first-order defor-

mation reduces to the deformed Lagrangian at order one in the coupling constant

at = at0
¡£
tAλμν|α

¤¢
, (80)

and thus it is subject to the equation

γat0 = ∂μ
(0)
m

μ

t . (81)

Proceeding along a line similar to that employed in [33], it can be shown that the solution
to (81) is purely trivial

at0
¡£
tAλμν|α

¤¢
= 0. (82)

Assembling the results expressed by (53), (61), (67), (79), and (82), we can state that

S1 = 0, (83)

such that we can also take
Sk = 0, k > 1. (84)

Relations (83)—(84) emphasize the following main result of our paper: under the
hypotheses of analyticity of deformations in the coupling constant, space-time locality,
Lorentz covariance, Poincaré invariance, and conservation of the number of derivatives
on each field, there are no consistent selfinteractions in D ≥ 5 for a collection of massless
tensor fields with the mixed symmetry (3, 1). In other words, the presence of the collection
brings nothing new if compared to the case of a single tensor field tλμν|α.

4 Selfinteractions for a collection of massless tensor
fields with the mixed symmetry (2, 2)

4.1 Free model: Lagrangian formulation and BRST symmetry

The starting point is given by the Lagrangian action for a finite collection of free, massless
tensor fields with the mixed symmetry of the Riemann tensor in D ≥ 5

Sr0
£
raμν|αβ

¤
=

Z µ
1

8

¡
∂λrμν|αβa

¢ ¡
∂λr

a
μν|αβ

¢
− 1
2

¡
∂μr

μν|αβ
a

¢ ¡
∂λraλν|αβ

¢
−
¡
∂μr

μν|αβ
a

¢
(∂βr

a
να)−

1

2

¡
∂λrνβa

¢ ¡
∂λr

a
νβ

¢
+
¡
∂νr

νβ
a

¢ ¡
∂λraλβ

¢
−1
2

¡
∂νr

νβ
a

¢
(∂βr

a) +
1

8

¡
∂λra

¢
(∂λr

a)

¶
dDx. (85)

Like in the previous section, we employ the flat Minkowski metric of ‘mostly plus’ signature
σμν = σμν = (− + + + + · · · ). The lowercase indices a, b, etc. stand for the collection
indices and are assumed to take discrete values 1, 2, . . ., n. They are lowered with a
symmetric, constant and invertible matrix, of elements kab, and are raised with the help
of the elements kab of its inverse. Each tensor field raμν|αβ exhibits the mixed symmetry
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of the Riemann tensor, so it is separately antisymmetric in the pairs {μ, ν} and {α, β},
is symmetric under their permutation ({μ, ν} ←→ {α, β}), and satisfies the identity
ra[μν|α]β ≡ 0. The notations raνβ signify the traces of r

a
μν|αβ, r

a
νβ = σμαraμν|αβ, which are

symmetric, raνβ = raβν , while ra represent their double traces , ra = σνβraνβ, which are
scalars. Action (85) admits a generating set of gauge transformations of the form

δξr
a
μν|αβ = ∂μξ

a
αβ|ν − ∂νξ

a
αβ|μ + ∂αξ

a
μν|β − ∂βξ

a
μν|α, (86)

where the gauge parameters ξaμν|α are bosonic tensors, with the mixed symmetry (2, 1).
Just like in the case of a single (2, 2) field [34], the gauge transformations from (86) are
Abelian and off-shell, first-order reducible. Consequently, the Cauchy order of this linear
gauge theory is equal to three.
Related to the generators of the BRST algebra, the ghost spectrum contains the

fermionic ghosts Caαβ|μ associated with the gauge parameters and the bosonic ghosts for
ghosts Caμν corresponding to the first-order reducibility. Obviously, we will require that
Caαβ|μ preserve the mixed symmetry (2, 1) and the tensors Caμν remain antisymmetric. The
antifield spectrum comprises the antifields r∗μν|αβa associated with the original fields and
those corresponding to the ghosts, C∗μν|αa and C∗μνa . The antifields r∗μν|αβa still have the
mixed symmetry (2, 2), C∗μν|αa the mixed symmetry (2, 1), and C∗μνa are antisymmetric.
Related to the traces of r∗μν|αβa , we will use the notations r∗νβa = σμαr

∗μν|αβ
a and r∗a =

σνβr
∗νβ
a .
The BRST differential decomposes like in the previous section, as s = δ + γ, the

corresponding degrees of the generators from the BRST complex being valued like

pgh
¡
raμν|αβ

¢
= 0, pgh

¡
Caμν|α

¢
= 1, pgh

¡
Caμν
¢
= 2,

pgh
¡
r∗μν|αβa

¢
= pgh

¡
C∗μν|αa

¢
= pgh (C∗μνa ) = 0,

agh
¡
raμν|αβ

¢
= agh

¡
Caμν|α

¢
= agh

¡
Caμν
¢
= 0,

agh
¡
r∗μν|αβa

¢
= 1, agh

¡
C∗μν|αa

¢
= 2, agh (C∗μνa ) = 3.

The actions of δ and γ on the generators from the BRST complex, which enforce the
standard BRST properties, are given by

γraμν|αβ = ∂μCaαβ|ν − ∂νCaαβ|μ + ∂αCaμν|β − ∂βCaμν|α, (87)

γCaμν|α = 2∂αCaμν − ∂[μCaν]α, γCaμν = 0, (88)

γr∗μν|αβa = 0, γC∗μν|αa = 0, γC∗μνa = 0, (89)

δraμν|αβ = 0, δCaμν|α = 0, δCaμν = 0, (90)

δr∗μν|αβa =
1

4
Rμν|αβ
a , δC∗αβ|νa = −4∂μr∗μν|αβa , δC∗μνa = 3∂αC∗μν|αa . (91)

In the above Rμν|αβ
a is defined by δSr0/δr

μν|αβ
a ≡ − (1/4)Ra

μν|αβ and reads as

Ra
μν|αβ = ¤raμν|αβ + ∂ρ

¡
∂μr

a
αβ|νρ − ∂νr

a
αβ|μρ + ∂αr

a
μν|βρ − ∂βr

a
μν|αρ

¢
+∂μ∂αr

a
βν − ∂μ∂βr

a
αν − ∂ν∂αr

a
βμ + ∂ν∂βr

a
αμ

−1
2
∂λ∂ρ

¡
σμα

¡
raλβ|νρ + raλν|βρ

¢
− σμβ

¡
raλα|νρ + raλν|αρ

¢
−σνα

¡
raλβ|μρ + raλμ|βρ

¢
+ σνβ

¡
raλα|μρ + raλμ|αρ

¢¢
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−¤
¡
σμαr

a
βν − σμβr

a
αν − σναr

a
βμ + σνβr

a
αμ

¢
+∂ρ

¡
σμα

¡
∂βr

a
νρ + ∂νr

a
βρ

¢
− σμβ

¡
∂αr

a
νρ + ∂νr

a
αρ

¢
−σνα

¡
∂βr

a
μρ + ∂μr

a
βρ

¢
+ σνβ

¡
∂αr

a
μρ + ∂μr

a
αρ

¢¢
−1
2
(σμα∂β∂ν − σμβ∂α∂ν − σνα∂β∂μ + σνβ∂α∂μ) r

a

− (σμασνβ − σμβσνα)

µ
∂λ∂ρraλρ −

1

2
¤ra

¶
. (92)

The solution to the classical master equation for the free model under study is given by

Sr = Sr0
£
raμν|αβ

¤
+

Z ¡
r∗μν|αβa

¡
∂μCaαβ|ν − ∂νCaαβ|μ + ∂αCaμν|β − ∂βCaμν|α

¢
+C∗μν|αa

¡
2∂αCaμν − ∂[μCaν]α

¢¢
dDx. (93)

4.2 Computation of basic cohomologies

In order to analyze the local equation satisfied by the non-integrated density of the first-
order deformation ar (S1 =

R
ardDx), written in local form and dual language, sar =

∂μm
μ
r , we proceed like in the previous section. We ensure the space-time locality of the

deformations by working in the algebra of local differential forms with coefficients that
are polynomial functions in the fields, ghosts, antifields, and their space-time derivatives
(algebra of local forms). This means that we assume the non-integrated density of the
first-order deformation, ar, to be a polynomial function in all these variables (algebra
of local functions). Next, we develop ar according to the antighost number and assume
that this expansion contains a finite number of terms, with the maximum value of the
antighost number equal to I. Due to the decomposition s = δ+ γ, this equation becomes
equivalent to the chain

γarI = ∂μ
(I)
m

μ

r , (94)

δarI + γarI−1 = ∂μ
(I−1)
m

μ

r , (95)

δark + γark−1 = ∂μ
(k−1)
m

μ

r , I − 1 ≥ k ≥ 1, (96)

where
µ
(k)
m

μ

r

¶
k=0,I

are some local currents, with agh
µ
(k)
m

μ

r

¶
= k. Equation (94) can be

replaced in strictly positive values of the antighost number (see [35], Corollary 3.1) with

γarI = 0, I > 0. (97)

In conclusion, for I > 0 we have that arI ∈ HI (γ). We maintain the considerations from
the previous section on the uniqueness of arI and ar.
Thus, in order to solve equations (97) and (95)—(96), it is necessary to compute the

cohomology H∗ (γ) in the algebra of local functions. Definitions (89) and (87) indicate
that all the antifields

χ∗∆ =
¡
r∗μν|αβa , C∗μν|αa , C∗μνa

¢
, (98)

the curvature tensors

F a
μνλ|αβγ = ∂λ∂γr

a
μν|αβ + ∂μ∂γr

a
νλ|αβ + ∂ν∂γr

a
λμ|αβ
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+∂λ∂αr
a
μν|βγ + ∂μ∂αr

a
νλ|βγ + ∂ν∂αr

a
λμ|βγ

+∂λ∂βr
a
μν|γα + ∂μ∂βr

a
νλ|γα + ∂ν∂βr

a
λμ|γα, (99)

and all their space-time derivatives are non-trivial elements of H0 (γ). The curvature
tensors exhibit the mixed symmetry (3, 3). Simple computation shows that H1 (γ) = 0
and, moreover,

H2l+1 (γ) = 0, l ≥ 0. (100)

By means of the last definition from (88), we find that the ghosts for ghosts, Caμν, are non-
trivial objects from H∗ (γ). Consequently, their space-time derivatives are also γ-closed.
From the first relation present in (88) it follows that

∂(μCaν)α ≡ γ

µ
−1
3
Caα(μ|ν)

¶
. (101)

Formula (101) emphasizes that the quantities ∂(μCaν)α are trivial in H∗ (γ). Moreover, the
objects ∂[μCaνα] are not γ-exact, and ∂[μCaν]α (for μ, ν 6= α) belong to the same equivalence
class from H∗(γ) like ∂[μCaνα], such that they will also be non-trivial representatives of
H∗ (γ). Meanwhile direct calculations produce the relations

∂α∂βCaμν =
1

12
γ
¡
3
¡
∂αCaμν|β + ∂βCaμν|α

¢
+ ∂[μCaν] (α|β)

¢
, (102)

which show that all the space-time derivatives of the ghosts Caμν of order two or higher
are trivial in H∗ (γ). In conclusion, the only non-trivial combinations from H∗ (γ) built
from the ghosts for ghosts are polynomials in Caμν and ∂[μCaνα]. Since H0 (γ) is non-trivial,
so far we proved that only the cohomological spaces H2l (γ), with l ≥ 0, are non-trivial.
Therefore, equation (97) possesses non-trivial solutions only for even values of I, I = 2J ,
where the general form of ar2J is given by

arI ≡ ar2J = α2J
¡£
χ∗∆

¤
,
£
F a
μνλ|αβγ

¤¢
e2J
¡
Caμν, ∂[μCaνα]

¢
, J > 0. (103)

Notation χ∗∆ follows from (98). The coefficients αI([χ
∗∆], [F a

μνλ|αβγ]) are nothing but the
invariant polynomials (in form degree zero) of the theory (85)—(86).
Substituting solution (103) in equation (95) for I = 2J and taking into consideration

definitions (87)—(88), we obtain that a necessary condition for the existence of non-trivial
solutions ar2J−1 is that the invariant polynomials α2J present in (103) generate non-trivial
elements from the characteristic cohomology in antighost number 2J > 0 computed in
the algebra of local forms, α2JdDx ∈ HD

2J (δ|d). As the free model under consideration
is a linear gauge theory of Cauchy order equal to three, the general results from the
literature [36] establish that

HD
k (δ|d) = 0, k > 3. (104)

In addition, it can be shown that if the invariant polynomial αk, with agh (αk) = k ≥ 3,
defines a trivial element αkd

Dx ∈ HD
k (δ|d), then this element can be taken to be trivial

also in H invD
k (δ|d). The above results ensure that

H invD
k (δ|d) = 0, k > 3. (105)

Using definitions (91), we find that the non-trivial, Poincaré-invariant representatives
of
¡
HD

k (δ|d)
¢
k≥2 and

¡
H invD

k (δ|d)
¢
k≥2 are linearly generated by the following invariant
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polynomials: for k > 3 – there are none; for k = 3 – faμνC∗μνa dDx; for k = 2 –

faμναC
∗μν|α
a dDx. In the above the coefficients denoted by f stand for the components of

some constant, non-derivative tensors.
The previous results on HD

I (δ|d) and H invD
I (δ|d) allow us to eliminate successively all

the terms of antighost number strictly greater than two from the non-integrated density
of the first-order deformation. The last representative is of the form (103), where the
invariant polynomials necessarily define non-trivial elements from H invD

I (δ|d) if I = 2 or
respectively from HD

1 (δ|d) if I = 1.

4.3 Cohomological analysis of selfinteractions

In order to develop the general method of construction of consistent selfinteractions that
can be added to the free action (85), subject to the gauge symmetry (86), we initially
solve equation (4), responsible for the first-order deformation, and then approach its
consistency. We will work under the same hypotheses as before. The derivative order
assumption restricts the interaction Lagrangian to contain only interaction vertices with
maximum two space-time derivatives. Related to the non-integrated density of the first-
order deformation, we have seen in the previous section that its component of highest
antighost number, I, is constrained to satisfy the relation I = 2J (see the result expressed
by (100) on H∗(γ)). On the other hand, results (104) and (105) ensure that one can safely
take I ≤ 2.
In view of this, the first non-trivial situation is described by I = 2J = 2 > 0, in which

case we can write
ar = ar0 + ar1 + ar2, (106)

where ar2 is the general, non-trivial solution to equation (97), and hence, in agreement
with formula (103), has the expression

ar2 = α2
¡£
χ∗∆

¤
,
£
F a
μνλ|αβγ

¤¢
e2
¡
Caμν , ∂[μCaνα]

¢
. (107)

The elements e2 are spanned by Caμν and ∂[μCaνα], and α2dDx is a non-trivial element from
H invD
2 (δ|d). Due to the fact that the general representative of H invD

2 (δ|d) is linear in the
undifferentiated antifields C∗aμν|α, we deduce that

ar2 = C∗aμν|α
³
fμναβγab Cbβγ + f̄μναβγλab ∂[β Cbγλ]

´
, (108)

where fμναβγab and f̄μναβγλab are some non-derivative, constant tensors. These constants can-
not be simultaneously antisymmetric in the indices {μ, ν, α} since the identity C∗[μν|α]a ≡ 0
would lead to ar2 = 0. The last restriction (combined with the requirement D ≥ 5)
produces

fμναβγab = 0 = f̄μναβγλab , (109)

and hence
ar2 = 0, (110)

so the first-order deformation cannot end non-trivially at antighost number two.
Due to the fact that the last representative arI from the first-order deformation is

subject to the condition I = 2J , we are left only with the case I = 0

ar = ar0
¡£
raμν|αβ

¤¢
, (111)
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where ar0 satisfies equation (94) (I = 0, so equation (94) is no longer equivalent to (97))

γar0 = ∂μ
(0)
m

μ

r . (112)

Using a technique similar to that employed in [34], we find that the general solution to
the last equation reduces to a linear combination of double traces of the undifferentiated
tensor fields raμν|αβ (the analogue of the cosmological term for the Pauli—Fierz Lagrangian)

ar0 =
nX

a=1

car
a, (113)

with ca some real, arbitrary constants, such that

S1 =
nX

a=1

Z
car

adDx (114)

represents the most general expression of the first-order deformation of the solution to
the master equation for a collection of massless tensor fields with the mixed symmetry
(2, 2). Moreover, this solution is already consistent to all orders in the coupling constant.
Indeed, since (S1, S1) = 0, equation (5) is satisfied with the choice

S2 = 0, (115)

and similarly, all the higher-order equations are fulfilled for

S3 = S4 = . . . = 0. (116)

Relations (114)—(116) emphasize the following main result of our paper: under the
hypotheses of analyticity of deformations in the coupling constant, space-time locality,
Lorentz covariance, Poincaré invariance, and conservation of the number of derivatives
on each field, there are no consistent selfinteractions in D ≥ 5 for a collection of massless
tensor fields with the mixed symmetry of the Riemann tensor. The only terms that can
be added to the free Lagrangian action are given by a sum of cosmological terms, whose
existence does not modify the original gauge transformations.
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