
Generalized evolutionary equations and their
invariant solutions

Rodica Cimpoiasu, Radu Constantinescu
University of Craiova, 13 A.I.Cuza Street, 200585 Craiova, Dolj, Romania

Abstract

The paper appplies the Lie symmetry approach to a general 1D dynamical sys-
tem described by a second order pde. A new algorithm is proposed for studying the
evolutionary equation with imposed solution. This approach will be exemplified for
two particular systems, the Fokker-Planck model and the „backward” Kolmogorov
one.
PACS: 05.45.-a, 11.30.Na

1 Introduction

The Lie group analysis is a mathematical theory that synthesizes symmetries of the differ-
ential equations which may be a point, a contact, and a generalized or nonlocal symmetry.
Many studies have been devoted to classified differential equations in terms of their sym-
metry group, in order to identify the set of equations which could be integrated or reduced
to lower-order equations by group theoretical algorithms. Group analysis provides two
basic ways for construction of exact solutions :group tranformations of known solutions
and construction of invariant solutions [1, 2].
The aims of this paper are: i) to determine the set of differential equations which is

able to determine the Lie symmetry generator and for a particular class of second order
pdes, ii) to study the same class of dynamical systems with imposed invariant solutions.
The paper is organized as follows: in section 2 the determining equations of the Lie

symmetries are obtained for a general 1D dynamical system described by a second order
pde. The invariant solutions for the evolutionary equation are also defined using the
general characteristic method. Section 3 is devoted to analyze dynamical equations with
imposed solutions. The general method was applied for the Fokker-Plank model and the
„backward” Kolmogorov one. The paper will end with some concluding remarks.

2 Lie symmetries and invariant solutions

2.1 Determining equations of the Lie symmetries

Let us consider a general class of dynamical systems described by the following evolution-
ary equations:

ut = A(x, t)u2x +B(x, t)ux + C(x, t)u (1)

with A(x, t), B(x, t), C(x, t) arbitrary functions.
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The general expression of the classical Lie operator which leaves (1) invariant is:

U(x, t, u) = ϕ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
(2)

Following the symmetry theory [3], the invariance condition of (1) is given by the relation:

U (2)[ut −A(x, t)u2x −B(x, t)ux − C(x, t)u] = 0 (3)

where U (2) is the second extension of the Lie symmetry generator (2).
By extending the condition (3) an equivalent form is obtained:

0 = (−ϕAt − ξAx)u2x + (−ϕBt − ξBx)ux − ϕCtu− ξCxu+

− Cη −Bηx + ηt −Aη2x (4)

By particularization of the general expressions [3] of the functions ηx, ηt, η2x, for the
analyzed model (1), substituting them into the condition (4) and then equating with zero
the coefficient functions of various monomials in derivatives of u, the following partial
differential system is obtained:

ϕx = 0

ϕu = 0

ξu = 0

η2u = 0 (5)

ϕAt + ξAx +Aϕt − 2Aξx = 0
−ϕBt − ξBx +Bξx − ξt −Bϕt − 2Aηxu +Aξ2x = 0

−ϕCtu− ξCxu+ Cηuu− Cϕtu− Cη −Bηx + ηt −Aη2x = 0

For any particular model of type (1), the system (5) contains the determining equations
for the coefficient functions ϕ(x, t, u), ξ(x, t, u), η(x, t, y) of the symmetry operator (2).

2.2 Determination of invariant solutions by the characteristic
method

The general system (5) generates the unknown functions ϕ, ξ, η of the symmetry operator
(2), for any 1D model of the type (1). An invariant solution with respect to a symmetry
group is a solution which is unalterable under the action of the group’s transformations.
Invariant solutions can be expressed via the invariants of the symmetry group [4].
The characteristic equations have the forms:

dt

ϕ
=

dx

ξ
=

du

η
(6)

By integrating the characteristic system of ordinary differential equations (6) the
invariants I1, I2 of the analyzed dynamical system could be found. The invariant solution
can be expressed in the form:

I2 = φ(I1) (7)

Taking into account the concrete expressions of the invariants for any particular model,
the relation (7) generates the invariant solution u(x, t).
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3 Evolutionary equations with imposed solutions

3.1 The general approach

Let us impose for (1) a general solution of the form:

u(x, t) = φ(f(x, t))g(x, t) (8)

with the property:

φ̈(z) =
d2φ(z)

dz2
= 0, z = f(x, t) (9)

By choosing the invariants associated to the dynamical system (1) to be exactly the func-
tions f(x, t) and φ(f(x, t)), (9) will show the linear dependence between these invariants.
Some of the derivative forms of the general solution (8) have the expressions:

ut = φ̇ftg +
u

g
gt (10)

ux = φ̇fxg +
u

g
gx (11)

u2x = φ̈f2xg + φ̇f2xg + 2φ̇fxgx +
u

g
g2x (12)

By substituting φ̇ from (10) in (11) and (12) the following differential system will result:

ux =

∙
gx
g
− gt

g

fx
ft

¸
u+

fx
ft
ut (13)

u2x =

∙
g2x
g
− gt

g

f2x
ft
− 2gtgx

g2
fx
ft

¸
u+

gx
g

fx
ft
ut +

gx
g

fx
ft
ut (14)

By substituting the product g fxut from (13) only in one of the last two terms of (14), an
equivalent evolution equation is obtained:

ut =
g

gx

ft
fx
u2x −

ft
fx
ux −

∙
g2x
gx

ft
fx
− gt

gx

f2x
fx
− gt

g
− gx

g

ft
fx

¸
u (15)

Now, by comparing the dynamical equations (1) and (15), it results that the coefficient
functions take the forms:

A(x, t) =
g

gx

ft
fx
, B(x, t) = − ft

fx
,

C(x, t) = −g2x
gx

ft
fx
+

gt
gx

f2x
fx
+

gt
g
+

gx
g

ft
fx

(16)

3.2 Some applications

i) The first model we have considered is the general Fokker-Planck equation of the form
[5]:

ut = [−∂xA(x) + ∂2xB(x)]u (17)

where A(x) and B(x) are called diffusion and drift coefficients, such that B(x) i 0.
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Equation (17) is an equation of motion for the distribution function u(x, t) [6]. We
restrict our application to the particular case:

A(x) = −x, B(x) = 1 (18)

For this particular dynamical model, the general system (16) becomes:

g

gx

ft
fx
= 1 (19)

− ft
fx
= x (20)

−g2x
gx

ft
fx
+

gt
gx

f2x
fx
+

gt
g
+

gx
g

ft
fx
= 1 (21)

The previous differential system has the solution:

g(x, t) = me−x
2/2,∀ m = const.

f(x, t) = ρ(lnx− t), ∀ ρ⇒ ef(x,t) = xe−t (22)

It is important to remark that the solution (22) generates the two invariants of the 1D
Fokker-Planck model.

ii) The second application we considered is represented by the equation of „backward”
Kolmogorov type [7]:

ut = u2x + (x−
1

x
)ux (23)

For this particular model we must impose C(x, t) = 0 in (16). This condition imposes the
existence of the following differential system:

g2x − gg2x = 0 (24)

gf2x + gxfx = 0 (25)

which has solutions of the forms:

f(x, t) = f3(t) + f4(t)e
−f1(t)x, ∀f1(t), f3(t), f4(t) (26)

g(x, t) = f2(t)e
f1(t)x, ∀f2(t) (27)

Thereby, the invariants of the Kolmogorov type model are respectively the function (26)
and u

g(x,t)
, where function g(x, t) has the expression (27).

4 Conclusions

The results of this paper can be synthesized as follows: (i) the general determining equa-
tions (5) for the Lie symmetries of evolutionary equations of the type (1) have been
obtained. It is important to remark that any Lie symmetry generator for any dynamical
system described by an differential equation of class (1), could be obtained directly by
solving the system (5) particularized for the analyzed system. Some examples of systems
of type (1) could be the Fokker -Planck equation used in various fields of natural sciences
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such as quantum optics, solid-state physics, chemical physics, theoretical biology [8], the
Black-Scholes model applied to financial problems [9] etc.(ii) the characteristic method
used for obtaining invariant solutions for a general dynamical system is explained iii)
an algorithm able to express the coefficient functions respective A(x, t), B(x, t), C(x, t)
of general differential equation (1) in terms of the invariants of the dynamical system is
proposed. It has been applied in two particular cases: the Fokker-Planck model and the
„backward” Kolmogorov one. Following the results of this algorithm, the invariants of
these concrete dynamical systems have been pointed out.
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