THE POLAR OF A SUPER-ADDITIVE NORM

Trandafir BÅLAN

1. *Generalities.* Let $(\mathbf{H}, \langle .,. \rangle)$ be a real pre-Hilbert space and let $\mathbf{E} = \mathbb{R} \times \mathbf{H}$. The *temporal projection* $\mathscr{T}: \mathbf{E} \to \mathbf{H}$, and the *spatial projection* $\mathscr{T}: \mathbf{E} \to \mathbf{H}$, are \mathscr{T} defined by $e = (t, x) \mapsto t$, respectively $e = \mapsto x$ (\mathbb{R} and \mathbf{H} are identified with the subspaces $\mathbb{R} \times \mathbf{0}$ and $\mathbf{0} \times \mathbf{H}$). The functional $(.,.): \mathbf{E} \times \mathbf{E} \to \mathbb{R}$, expressed by $(e, f) = \mathscr{T}(e) \mathscr{T}(f) - \langle \mathscr{S}(e), \mathscr{S}(f) \rangle$,

is an *indefinite inner product* on **E**, which makes (**E**, (. , .)) a Π_1 Pontrjagin space. It is well known that each real Π_1 space has such a decomposition (see [3]).

The cone

$$\mathbf{P} = \{ e \in \mathbf{E} : \mathscr{T}(e) > ||\mathscr{S}(e)|| \} \cup \{0\}$$

defines the *causal order* of (**E**, (.,.)). Because $\mathbf{P} \subset \mathfrak{P}^{++}$, we may define the *Minkowskian norm* $\|\cdot\|_t : \mathbf{P} \to \mathbb{R}^+$ by

$$\|e\|_{t} = (e, e)^{1/2},$$

where the index *t* comes from the physical signification of the values of this norm, namely *time*. Using the fundamental inequality for indefinite inner product spaces (see [2]), we obtain the Aczél's inequality

$$(e,f) \ge \left\| e \right\|_t \left\| f \right\|_t$$

for every $e, f \in \mathbf{P}$, with equality if and only if e and f are collinear.

2. Definition. A functional $p : \mathbf{P} \to \mathbb{R}^+$, which satisfies the conditions

i) p(e) = 0 if and only if e = 0

ii) $p(\lambda e) = \lambda p(e)$ for each $\lambda \in \mathbb{R}^+$ and $e \in \mathbf{P}$

iii) $p(e+f) \ge p(e) + p(f)$ for every $e, f \in \mathbf{P}$ (super-additivity)

is named a *super-additive* (s.a.) *norm*.

3. Examples of s.a. norms.

a) $p_1 = \|\cdot\|_t$ (the super-additivity follows from the Aczél's inequality).

b) $p_2 = \mathscr{T}|_{\mathbf{P}}$ (the equality always holds in iii)).

c) $p_3 = (\mathscr{T} - \|\cdot\| \circ \mathscr{S})|_{\mathbf{P}}$ (the super-additivity follows from the subadditivity of the usual norm $\|\cdot\|$ of **H**). More generally, according to [1], the formula

$$p(e) = \sup \{\lambda \in \mathbb{R}^+ : e \in \lambda A\}$$

defines a s.a. norm on **P** if *A* is a convex part of **P**, which has the property that for each $e \in \mathbf{P}$ there exists $\rho \in \mathbb{R}^+$ such that $e \in \alpha A$ for some $\alpha \in [0, \rho]$, but $e \notin \beta A$ for all $\beta \ge \rho$.

4. *Remark.* The converse relation between convexity and super-additivity will be useful later, namely if $p : \mathbf{P} \rightarrow \mathbb{R}^+$ is a s.a. norm, then

 $A_r = \{e \in \mathbf{P} : p(e) > r\}$

are convex sets for all r > 0. Simple examples show that such a set generally does not admit any support function (in the classical sense, see [5]), i.e.

$$\sup \{(e,f): f \in A_r\} = \infty$$

for all $0 \neq e \in \mathbf{P}$. Consequently, it is natural to study the existence of

$$\inf \{(e,f): f \in A_r\}.$$

More precisely, it is important to show that it is strictly positive, as below.

5. LEMMA. The following conditions are equivalent:

i) $\tau(p) =: \inf \{ \mathscr{T}(e) : p(e) \ge 1 \} = 0,$

ii) $\theta(p) =: \inf \{ \mathscr{T}(e): p(e) \ge 1, \mathscr{S}(e) = 0 \} = 0,$

iii) $H(p) =: \{ e \in \mathbf{P} : p(e) \ge 1 \} = \mathbf{P} \setminus \{0\}.$

Proof. i) \Rightarrow ii). Let us consider $e = (\varepsilon, 0)$ for an arbitrary $\varepsilon > 0$. Because $\tau(p) = 0$, there exists f = (t, x) such that $t < \varepsilon / 3$ and p(f) > 1. From $f \in \mathbf{P} \setminus \{0\}$ we deduce t > ||x||, hence $2\varepsilon / 3 > \varepsilon / 3 > ||x||$, which implies $e - f \in \mathbf{P} \setminus \{0\}$. Using the super-additivity of p, we obtain $p(e) \ge p(f) + p(e - f) \ge 1$. Because $\varepsilon > 0$ was arbitrary, it follows that $\theta(p) = 0$.

ii) \Rightarrow iii). We will show that in the presence of $\theta(p) = 0$, it is impossible to have p(f) < 1 for some $f \in \mathbf{P} \setminus \{0\}$. In fact, if we suppose that there exists such an element f = (t, x), from the condition $f \in \mathbf{P} \setminus \{0\}$ it follows that $\varepsilon =: t - ||x||$ is strictly positive. Because $\theta(p) = 0$, for $e = (\varepsilon / 2, 0)$ we have $p(e) \ge 1$. Let us consider $\tilde{f} = f - e = (t - (\varepsilon/2), x)$. Since $t - (\varepsilon/2) - ||x|| = \varepsilon/2 > 0$, we also have $\tilde{f} \in \mathbf{P} \setminus \{0\}$. The super-additivity of p gives $1 > p(f) \ge p(\tilde{f}) + p(e) \ge p(\tilde{f})$, hence $p(\tilde{f}) < 1$ too. Now let us observe that for $\tilde{g} = [p(\tilde{f})]^{-1}\tilde{f}$ we have $p(\tilde{g}) = 1$ and \tilde{f} appears as a convex combination $\tilde{f} = \lambda \tilde{g} + (1 - \lambda)0$, where $0 < \lambda =: p(\tilde{f}) < 1$. Correspondingly, $f = \lambda g + (1 - \lambda)e$, where $g = \tilde{g} + e$. Obviously, $p(g) \ge p(\tilde{g}) + p(e) > 1$, hence $g \in H(p)$. Finally, using the convexity of H(p), we obtain $p(f) \ge 1$, which contradicts the hypothesis that p(f) < 1.

6. *PROPOSITION. For each s.a. norm p we have* $\tau(p) > 0$ *.*

Proof. According to the above Lemma, it is sufficient to show that situation $H(p) = \mathbf{P} \setminus \{0\}$ is impossible. In fact, if this equality would take place, then for each $e \in \mathbf{P} \setminus \{0\}$ and $n \in \mathbb{N}$ we may consider $e_n = \frac{1}{n}e$. Because $e_n \in \mathbf{P} \setminus \{0\}$ too, our equality would imply $p(e_n) \ge 1$, hence $p(e) \ge n$ for any large *n*, which is impossible.

Now it is clear how to introduce the polar of a s.a. norm.

7. *Definition*. The *polar of a s.a. norm* $p: \mathbf{P} \to \mathbb{R}^+$ is the functional $p^*: \mathbf{P} \to \mathbb{R}^+$ defined by

$$p^{*}(e) = \inf \{(e, f) : p(f) \ge 1\}.$$

If $p = p^*$ we say that p is *self-polar*.

8. *Examples.* a) $p_1 = \|\cdot\|_t$ is a self-polar s.a. norm. In fact, taking $\|f\|_t \ge 1$ in the Aczél's inequality, we obtain $(e, f) \ge \|e\|_t$, hence

$$p_1^*(e) = \inf \{(e, f) : ||f||_t \ge 1\} \ge ||e||_t.$$

On the other hand, if $e \in \mathbf{P} \setminus \{0\}$ and $f = [\|e\|_t]^{-1} e$, then we have

$$p_1^*(e) \leq [\|e\|_t]^{-1}(e, e) = p_1(e).$$

b) $p_2^* = p_3$. Considering $f \in \mathbf{H}(p_2)$, we have $p_2^*(e) = \inf \{ (\mathscr{T}(e) \mathscr{T}(f) - \langle \mathscr{S}(e), \mathscr{S}(f) \rangle) : \mathscr{T}(f) \ge 1 \} \ge$ $\ge \inf \{ (\mathscr{T}(e) - ||\mathscr{S}(e)|| ||\mathscr{S}(f)||) : \mathscr{T}(f) = 1 \} =$ $= \mathscr{T}(e) - ||\mathscr{S}(e)|| \sup \{ ||\mathscr{S}(f)|| : \mathscr{T}(f) = 1 \} = p_3(e).$

Conversely, for every $e \in \mathbf{P}$ and $\varepsilon > 0$ we find $f \in \mathbf{P}$, $p_2(f) = 1$, such that $p_2^*(e) < p_3(e) + \varepsilon$. More exactly, if e = (t, x), we consider $0 < \varepsilon < ||x||$, and then we construct $\delta = \varepsilon ||x|| [||x|| - \varepsilon]^{-1}$ and $f = (1, [||x|| - \varepsilon]^{-1}x)$, so that $f \in \mathbf{P} \setminus \{0\}$, $p_2(f) = 1$, and

$$p_2^*(e) \le (e, f) = t - ||x||^2 [||x|| + \delta]^{-1} < t - ||x|| + \varepsilon = p_3(e) + \varepsilon.$$

c) $p_3^* = p_2$. By definition we have

$$p_{3}^{*}(e) = \inf \{ (e, f) : \mathscr{T}(f) - ||\mathscr{S}(f)|| \ge 1 \} \ge$$
$$\ge \inf \{ \mathscr{T}(e) (1 + ||\mathscr{S}(f)||) - \langle \mathscr{S}(e), \mathscr{S}(f) \rangle): \mathscr{T}(f) \in \mathbf{H} \} =$$
$$= \mathscr{T}(e) + p_{3}(e) \inf \{ ||\mathscr{S}(f)||: \mathscr{T}(f) \in \mathbf{H} \} = \mathscr{T}(e) = p_{2}(e).$$

Conversely, we observe that $f = (1, 0) \in \mathbf{P}$, $p_3(f) = 1$, and $(e, f) = \mathscr{T}(e)$, so that $p_3^*(e) \le p_2(e)$.

9. PROPOSITION. The polar of a s.a. norm is a s.a. norm too.

Proof. We must verify the conditions of Definition 2 for p^* . Let us show that $e \in \mathbf{P} \setminus \{0\}$ implies $p^*(e) > 0$. In fact, we may interpret Proposition 6 as the inclusion $H(p) \subseteq L(p) =: \{e \in \mathbf{P} : \mathscr{T}(e) \ge \tau(p)\}$, hence $p^*(e) \ge \inf \{(e, f) : f \in L(p)\}$

Choosing
$$e \in \mathbf{P} \setminus \{0\}$$
, there is determined $k =: \mathscr{T}(e) - ||\mathscr{S}(e)|| > 0$. On the other hand, $f \in L(p)$ implies $\mathscr{T}(f) \ge \tau(p) > 0$ and $\mathscr{T}(f) > ||\mathscr{S}(f)||$, hence $\langle \mathscr{S}(e), \mathscr{S}(f) \rangle \le ||\mathscr{S}(e)|| ||\mathscr{S}(f)|| < \mathscr{T}(f) ||\mathscr{S}(e)||$, and finally,
 $(e, f) > \mathscr{T}(f) [\mathscr{T}(e) - ||\mathscr{S}(e)||] \ge k \tau(p) > 0.$

The rest of the proof is routine.

10. *Remark*. Some details concerning the relations between the s.a. norms p_1 , p_2 , p_3 and their polar s.a. norms are explained by the following simple (but general) properties:

 \diamond

i)
$$p \le q$$
 if and only if $H(p) \subseteq H(q)$,

ii)
$$p \le q$$
 implies $p^* \ge q^*$,

iii)
$$p p^* \le \|\cdot\|_t^2$$
,

iv)
$$p \leq \|\cdot\|_t$$
 if and only if $p^* \geq \|\cdot\|_t$.

The most significant result is the uniqueness of the self-polar s.a. norm. **11** THEOPEM $\| \cdot \|$ is the single self polar s.a. norm of **F**

11. *THEOREM.* $\|\cdot\|_t$ is the single self-polar s.a. norm of **E**.

Proof. We already saw that $\|\cdot\|_t$ is a self-polar s.a. norm. It remains to show that it is the unique s.a. norm with this property, i.e. if p is another self-polar s.a. norm, then $p = \|\cdot\|_t$. In fact, for each $e \in \mathbf{P} \setminus \{0\}$ we may consider the vector $f = [p(e)]^{-1} e$, so that p(f) = 1. From the hypothesis $p = p^*$ we deduce $p(e) \le (e, f) = [p(e)]^{-1} \|e\|_t^2$, and consequently $p(e) \le \|e\|_t$.

On the other hand, if we put $||f||_t \ge 1$ in the Aczél's inequality, then we obtain $(e, f) \ge ||e||_t$, hence $p(e) = p^*(e) \ge \inf \{(e, f) : ||f||_t \ge 1\} \ge ||e||_t$.

In conclusion, $p(e) = \|e\|_t$ for every $e \in \mathbf{P}$.

12. *Comment*. It is well known that in a pre-Hilbert space the single selfpolar norm (in the usual sense) is the Euclidean one, defined by $||x|| = \sqrt{\langle x, x \rangle}$. On the indefinite inner product spaces there exists no canonical norm, but selfpolar norms can still exist (see [4]) in the sense that

$$p(x) = \sup \{ |(x, y)| : p(y) \le 1 \}.$$

As an alternative, our results show that a theory specific to super-additivity is possible, if we find the most adequate notions to be used in the place of the classical ones.

Received September 9, 1986

REFERENCES

- 1. T. Bălan, *Observații asupra funcționalelor supra-aditive*, Anal. Univ. Craiova, **1** (1970), p. 45-51.
- 2. T. Bălan, *Asupra spațiilor cu produs interior indefinit*, "Seminar Științific Spații Liniare Ordonate Topologice" Univ. Bucuresti, **6** (1985), p. 1-22.
- 3. J. Bognár, *Indefinite Inner Product Spaces*, Springer-Verlag, Berlin Heidelberg New York, 1974.
- 4. F. Hansen, *Self-polar norms on an indefinite inner product space*, Publ. RIMS, Kyoto Univ. **16** (1980), p. 889-913.
- 5. S. F. A. Valentine, *Convex Sets*, McGraw-Hill Book Comp., New York, 1964.