THE POLAR OF A SUPER-ADDITIVE NORM

Trandafir BĂLAN

1. Generalities. Let $(\mathbf{H},\langle.,\rangle$.$) be a real pre-Hilbert space and let \mathbf{E}=\mathbb{R} \times \mathbf{H}$. The temporal projection $\mathscr{G}: \mathbf{E} \rightarrow \mathbf{H}$, and the spatial projection $\mathscr{G}: \mathbf{E} \rightarrow \mathbf{H}$, are defined by $e=(t, x) \stackrel{\mathscr{G}}{\mapsto} t$, respectively $e=\stackrel{\mathscr{\mathscr { O }}}{\mapsto} x(\mathbb{R}$ and \mathbf{H} are identified with the subspaces $\mathbb{R} \times \mathbf{0}$ and $\mathbf{0} \times \mathbf{H}$). The functional (., .) : $\mathbf{E} \times \mathbf{E} \rightarrow \mathbb{R}$, expressed by

$$
(e, f)=\mathscr{\mathscr { T }}(e) \mathscr{G}(f)-\langle\mathscr{\mathscr { C }}(e), \mathscr{\mathscr { C }}(f)\rangle,
$$

is an indefinite inner product on \mathbf{E}, which makes $(\mathbf{E},(.,)$.$) a \Pi_{1}$ Pontrjagin space. It is well known that each real Π_{1} space has such a decomposition (see [3]).
The cone

$$
\mathbf{P}=\{e \in \mathbf{E}: \mathscr{O}(e)>\|\mathscr{S}(e)\|\} \cup\{0\}
$$

defines the causal order of $(\mathbf{E},(.,)$.$) . Because \mathbf{P} \subset \mathfrak{P}^{++}$, we may define the Minkowskian norm $\|\cdot\|_{t}: \mathbf{P} \rightarrow \mathbb{R}^{+}$by

$$
\|e\|_{t}=(e, e)^{1 / 2}
$$

where the index t comes from the physical signification of the values of this norm, namely time. Using the fundamental inequality for indefinite inner product spaces (see [2]), we obtain the Aczél's inequality

$$
(e, f) \geq\|e\|_{t}\|f\|_{t}
$$

for every $e, f \in \mathbf{P}$, with equality if and only if e and f are collinear.
2. Definition. A functional $p: \mathbf{P} \rightarrow \mathbb{R}^{+}$, which satisfies the conditions
i) $p(e)=0$ if and only if $e=0$
ii) $p(\lambda e)=\lambda p(e)$ for each $\lambda \in \mathbb{R}^{+}$and $e \in \mathbf{P}$
iii) $p(e+f) \geq p(e)+p(f)$ for every $e, f \in \mathbf{P}$ (super-additivity)
is named a super-additive (s.a.) norm.

3. Examples of s.a. norms.

a) $p_{1}=\|\cdot\|_{t}$ (the super-additivity follows from the Aczél's inequality).
b) $p_{2}=\left.\mathscr{G}\right|_{\mathbf{P}}$ (the equality always holds in iii)).
c) $p_{3}=\left.(\mathscr{G}-\|\cdot\| \circ \mathscr{\mathscr { S }})\right|_{\mathbf{P}} \quad$ (the super-additivity follows from the subadditivity of the usual norm $\|\cdot\|$ of \mathbf{H}).

More generally, according to [1], the formula

$$
p(e)=\sup \left\{\lambda \in \mathbb{R}^{+}: e \in \lambda A\right\}
$$

defines a s.a. norm on \mathbf{P} if A is a convex part of \mathbf{P}, which has the property that for each $e \in \mathbf{P}$ there exists $\rho \in \mathbb{R}^{+}$such that $e \in \alpha A$ for some $\alpha \in[0, \rho)$, but $e \notin \beta A$ for all $\beta \geq \rho$.
4. Remark. The converse relation between convexity and super-additivity will be useful later, namely if $p: \mathbf{P} \rightarrow \mathbb{R}^{+}$is a s.a. norm, then

$$
A_{r}=\{e \in \mathbf{P}: p(e)>r\}
$$

are convex sets for all $r>0$. Simple examples show that such a set generally does not admit any support function (in the classical sense, see [5]), i.e.

$$
\sup \left\{(e, f): f \in A_{r}\right\}=\infty
$$

for all $0 \neq e \in \mathbf{P}$. Consequently, it is natural to study the existence of

$$
\inf \left\{(e, f): f \in A_{r}\right\} .
$$

More precisely, it is important to show that it is strictly positive, as below.
5. LEMMA. The following conditions are equivalent:
i) $\tau(p)=: \inf \{\mathscr{G}(e): p(e) \geq 1\}=0$,
ii) $\theta(p)=: \inf \{\mathscr{G}(e): p(e) \geq 1, \mathscr{\mathscr { C }}(e)=0\}=0$,
iii) $H(p)=:\{e \in \mathbf{P}: p(e) \geq 1\}=\mathbf{P} \backslash\{0\}$.

Proof. i) \Rightarrow ii). Let us consider $e=(\varepsilon, 0)$ for an arbitrary $\varepsilon>0$. Because $\tau(p)=0$, there exists $f=(t, x)$ such that $t<\varepsilon / 3$ and $p(f)>1$. From $f \in \mathbf{P} \backslash\{0\}$ we deduce $t>\|x\|$, hence $2 \varepsilon / 3>\varepsilon / 3>\|x\|$, which implies $e-f \in \mathbf{P} \backslash\{0\}$. Using the super-additivity of p, we obtain $p(e) \geq p(f)+p(e-f) \geq 1$. Because $\varepsilon>0$ was arbitrary, it follows that $\theta(p)=0$.
ii) \Rightarrow iii). We will show that in the presence of $\theta(p)=0$, it is impossible to have $p(f)<1$ for some $f \in \mathbf{P} \backslash\{0\}$. In fact, if we suppose that there exists such an element $f=(t, x)$, from the condition $f \in \mathbf{P} \backslash\{0\}$ it follows that $\varepsilon=: t-\|x\|$ is strictly positive. Because $\theta(p)=0$, for $e=(\varepsilon / 2,0)$ we have $p(e) \geq 1$. Let us consider $\tilde{f}=f-e=(t-(\varepsilon / 2), x)$. Since $t-(\varepsilon / 2)-\|x\|=\varepsilon / 2>0$, we also have $\tilde{f} \in \mathbf{P} \backslash\{0\}$. The super-additivity of p gives $1>p(f) \geq p(\tilde{f})+p(e) \geq$ $p(\tilde{f})$, hence $p(\tilde{f})<1$ too. Now let us observe that for $\tilde{g}=[p(\tilde{f})]^{-1} \tilde{f}$ we have $p(\tilde{g})=1$ and \tilde{f} appears as a convex combination $\tilde{f}=\lambda \tilde{g}+(1-\lambda) 0$, where $0<\lambda=: p(\tilde{f})<1$. Correspondingly, $f=\lambda g+(1-\lambda) e$, where $g=\tilde{g}+e$. Obviously, $p(g) \geq p(\tilde{g})+p(e)>1$, hence $g \in H(p)$. Finally, using the convexity of $H(p)$, we obtain $p(f) \geq 1$, which contradicts the hypothesis that $p(f)<1$.
iii) $\Rightarrow \mathrm{i}$) is obvious.
6. PROPOSITION. For each s.a. norm p we have $\tau(p)>0$.

Proof. According to the above Lemma, it is sufficient to show that situation $H(p)=\mathbf{P} \backslash\{0\}$ is impossible. In fact, if this equality would take place, then for each $e \in \mathbf{P} \backslash\{0\}$ and $n \in \mathbb{N}$ we may consider $e_{n}=\frac{1}{n} e$. Because $e_{n} \in \mathbf{P} \backslash\{0\}$ too, our equality would imply $p\left(e_{n}\right) \geq 1$, hence $p(e) \geq n$ for any large n, which is impossible.

Now it is clear how to introduce the polar of a s.a. norm.
7. Definition. The polar of a s.a. norm $p: \mathbf{P} \rightarrow \mathbb{R}^{+}$is the functional $p^{*}: \mathbf{P} \rightarrow \mathbb{R}^{+}$ defined by

$$
p^{*}(e)=\inf \{(e, f): p(f) \geq 1\} .
$$

If $p=p^{*}$ we say that p is self-polar.
8. Examples. a) $p_{1}=\|\cdot\|_{t}$ is a self-polar s.a. norm. In fact, taking $\|f\|_{t} \geq 1$ in the Aczél's inequality, we obtain $(e, f) \geq\|e\|_{t}$, hence

$$
p_{1}^{*}(e)=\inf \left\{(e, f):\|f\|_{t} \geq 1\right\} \geq\|e\|_{t} .
$$

On the other hand, if $e \in \mathbf{P} \backslash\{0\}$ and $f=\left[\|e\|_{t}\right]^{-1} e$, then we have

$$
p_{1}^{*}(e) \leq\left[\|e\|_{t}\right]^{-1}(e, e)=p_{1}(e) .
$$

b) $p_{2}^{*}=p_{3}$. Considering $f \in \mathbf{H}\left(p_{2}\right)$, we have

$$
\begin{aligned}
p_{2}^{*}(e) & =\inf \{(\mathscr{\mathscr { T }}(e) \mathscr{\mathscr { T }}(f)-\langle\mathscr{\mathscr { C }}(e), \mathscr{\mathscr { G }}(f)\rangle): \mathscr{\mathscr { T }}(f) \geq 1\} \geq \\
& \geq \inf \{(\mathscr{\mathscr { T }}(e)-\|\mathscr{G}(e)\|\|\mathscr{G}(f)\|): \mathscr{\mathscr { T }}(f)=1\}= \\
= & \mathscr{G}(e)-\|\mathscr{G}(e)\| \sup \{\|\mathscr{\mathscr { C }}(f)\|: \mathscr{G}(f)=1\}=p_{3}(e) .
\end{aligned}
$$

Conversely, for every $e \in \mathbf{P}$ and $\varepsilon>0$ we find $f \in \mathbf{P}, p_{2}(f)=1$, such that $p_{2}^{*}(e)<p_{3}(e)+\varepsilon$. More exactly, if $e=(t, x)$, we consider $0<\varepsilon<\|x\|$, and then we construct $\delta=\varepsilon\|x\|[\|x\|-\varepsilon]^{-1}$ and $f=\left(1,[\|x\|-\varepsilon]^{-1} x\right)$, so that $f \in \mathbf{P} \backslash\{0\}$, $p_{2}(f)=1$, and

$$
p_{2}^{*}(e) \leq(e, f)=t-\|x\|^{2}[\|x\|+\delta]^{-1}<t-\|x\|+\varepsilon=p_{3}(e)+\varepsilon .
$$

c) $p_{3}^{*}=p_{2}$. By definition we have

$$
\begin{gathered}
p_{3}^{*}(e)=\inf \{(e, f): \mathscr{G}(f)-\|\mathscr{\mathscr { C }}(f)\| \geq 1\} \geq \\
\geq \inf \{\mathscr{T}(e)(1+\|\mathscr{G}(f)\|)-\langle\mathscr{\mathscr { G }}(e), \mathscr{\mathscr { G }}(f)\rangle): \mathscr{\mathscr { T }}(f) \in \mathbf{H}\}= \\
=\mathscr{G}(e)+p_{3}(e) \inf \{\|\mathscr{\mathscr { C }}(f)\|: \mathscr{\mathscr { T }}(f) \in \mathbf{H}\}=\mathscr{\mathscr { T }}(e)=p_{2}(e) .
\end{gathered}
$$

Conversely, we observe that $f=(1,0) \in \mathbf{P}, p_{3}(f)=1$, and $(e, f)=\mathscr{G}(e)$, so that $p_{3}^{*}(e) \leq p_{2}(e)$.
9. PROPOSITION. The polar of a s.a. norm is a s.a. norm too.

Proof. We must verify the conditions of Definition 2 for p^{*}. Let us show that $e \in \mathbf{P} \backslash\{0\}$ implies $p^{*}(e)>0$. In fact, we may interpret Proposition 6 as the inclusion $H(p) \subseteq L(p)=:\{e \in \mathbf{P}: \mathscr{T}(e) \geq \tau(p)\}$, hence

$$
p^{*}(e) \geq \inf \{(e, f): f \in L(p)\}
$$

Choosing $e \in \mathbf{P} \backslash\{0\}$, there is determined $k=: \mathscr{O}(e)-\|\mathscr{\mathscr { C }}(e)\|>0$. On the other hand, $f \in L(p)$ implies $\mathscr{T}(f) \geq \tau(p)>0$ and $\mathscr{T}(f)>\|\mathscr{\mathscr { C }}(f)\|$, hence $\langle\mathscr{A}(e), \mathscr{\mathscr { G }}(f)\rangle \leq\|\mathscr{O}(e)\|\|\mathscr{\mathscr { C }}(f)\|<\mathscr{G}(f)\|\mathscr{\mathscr { S }}(e)\|$, and finally, $(e, f)>\mathscr{T}(f)[\mathscr{T}(e)-\|\mathscr{\mathscr { C }}(e)\|] \geq k \tau(p)>0$.
The rest of the proof is routine.
10. Remark. Some details concerning the relations between the s.a. norms p_{1}, p_{2}, p_{3} and their polar s.a. norms are explained by the following simple (but general) properties:
i) $p \leq q$ if and only if $H(p) \subseteq H(q)$,
ii) $p \leq q$ implies $p^{*} \geq q^{*}$,
iii) $p p^{*} \leq\|\cdot\|_{t}^{2}$,
iv) $p \leq\|\cdot\|_{t}$ if and only if $p^{*} \geq\|\cdot\|_{t}$.

The most significant result is the uniqueness of the self-polar s.a. norm.
11. THEOREM. $\|\cdot\|_{t}$ is the single self-polar s.a. norm of \mathbf{E}.

Proof. We already saw that $\|\cdot\|_{t}$ is a self-polar s.a. norm. It remains to show that it is the unique s.a. norm with this property, i.e. if p is another self-polar s.a. norm, then $p=\|\cdot\|_{t}$. In fact, for each $e \in \mathbf{P} \backslash\{0\}$ we may consider the vector $f=[p(e)]^{-1} e$, so that $p(f)=1$. From the hypothesis $p=p^{*}$ we deduce $p(e) \leq(e, f)=[p(e)]^{-1}\|e\|_{t}^{2}$, and consequently $p(e) \leq\|e\|_{t}$.
On the other hand, if we put $\|f\|_{t} \geq 1$ in the Aczél's inequality, then we obtain $(e, f) \geq\|e\|_{t}$, hence $p(e)=p^{*}(e) \geq \inf \left\{(e, f):\|f\|_{t} \geq 1\right\} \geq\|e\|_{t}$.
In conclusion, $p(e)=\|e\|_{t}$ for every $e \in \mathbf{P}$.
12. Comment. It is well known that in a pre-Hilbert space the single selfpolar norm (in the usual sense) is the Euclidean one, defined by $\|x\|=\sqrt{\langle x, x\rangle}$. On the indefinite inner product spaces there exists no canonical norm, but selfpolar norms can still exist (see [4]) in the sense that

$$
p(x)=\sup \{|(x, y)|: p(y) \leq 1\} .
$$

As an alternative, our results show that a theory specific to super-additivity is possible, if we find the most adequate notions to be used in the place of the classical ones.

Received September 9, 1986

REFERENCES

1. T. Bălan, Observații asupra funcționalelor supra-aditive, Anal. Univ. Craiova, 1 (1970), p. 45-51.
2. T. Bălan, Asupra spațiilor cu produs interior indefinit, ,,Seminar Ştiințific Spații Liniare Ordonate Topologice" Univ. Bucuresti, 6 (1985), p. 1-22.
3. J. Bognár, Indefinite Inner Product Spaces, Springer-Verlag, Berlin Heidelberg - New York, 1974.
4. F. Hansen, Self-polar norms on an indefinite inner product space, Publ. RIMS, Kyoto Univ. 16 (1980), p. 889-913.
5. S. F. A. Valentine, Convex Sets, McGraw-Hill Book Comp., New York, 1964.
