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THE POLAR OF A SUPER-ADDITIVE NORM

Trandafir BĂLAN

1. Generalities. Let (H, .,. ) be a real pre-Hilbert space and let E = RH.

The temporal projection T : EH, and the spatial projection S : EH, are

defined by e = (t, x)
T
 t, respectively e =

S
 x (R and H are identified with

the subspaces R0 and 0H). The functional ( . , . ) : EER, expressed by

( e , f ) = T (e) T (f) – )(,)( fe SS ,

is an indefinite inner product on E, which makes (E, ( . , . )) a 1 Pontrjagin
space. It is well known that each real 1 space has such a decomposition (see
[3]).

The cone
P = {eE: T (e) > )(eS }  {0}

defines the causal order of (E, ( . , . )). Because PP+ + , we may define the
Minkowskian norm

t
 : P R+ by

t
e = ( e, e) 1 / 2 ,

where the index t comes from the physical signification of the values of this
norm, namely time. Using the fundamental inequality for indefinite inner
product spaces (see [2]), we obtain the Aczél’s inequality

( e, f ) 
t

e
t

f

for every e, f  P, with equality if and only if e and f are collinear.
2. Definition. A functional p : PR+ , which satisfies the conditions

i) p(e) = 0 if and only if e = 0
ii) p(  e) = p(e) for each  R+ and eP

iii) p(e + f )  p(e) + p(f ) for every e, f  P (super-additivity)
is named a super-additive (s.a.) norm.

3. Examples of s.a. norms.
a) p1 =

t
 (the super-additivity follows from the Aczél’s inequality).

b) p2 = T jP (the equality always holds in iii)).

c) p3 = ( T –  S )jP (the super-additivity follows from the sub-

additivity of the usual norm  of H).



2

More generally, according to [1], the formula
p(e) = sup { R+ : eA}

defines a s.a. norm on P if A is a convex part of P, which has the property that
for each eP there exists  R+ such that eA for some  [0, ), but

e A for all .
4. Remark. The converse relation between convexity and super-additivity

will be useful later, namely if p : PR+ is a s.a. norm, then

Ar = {eP : p(e) > r}
are convex sets for all r > 0. Simple examples show that such a set generally
does not admit any support function (in the classical sense, see [5]), i.e.

sup {( e, f ) : fAr } = 
for all 0  eP. Consequently, it is natural to study the existence of

inf {( e, f ) : fAr } .
More precisely, it is important to show that it is strictly positive, as below.

5. LEMMA. The following conditions are equivalent:
i) (p) =: inf { T (e): p(e)  1} = 0,

ii) (p) =: inf { T (e): p(e)  1, S (e) = 0} = 0,
iii) H(p) =: { eP : p(e)  1} = P \ {0}.

Proof. i)  ii). Let us consider e = (, 0) for an arbitrary  > 0. Because
(p) = 0, there exists f = (t, x) such that t <  / 3 and p(f ) > 1. From f P \ {0}
we deduce t > x , hence 2 / 3 >  / 3 > x , which implies e – f P \ {0}.

Using the super-additivity of p, we obtain p(e)  p(f ) + p(e – f )  1. Because
 > 0 was arbitrary, it follows that (p) = 0.

ii)  iii). We will show that in the presence of (p) = 0, it is impossible to
have p(f ) < 1 for some f P \ {0}. In fact, if we suppose that there exists such
an element f = (t, x), from the condition f P \ {0} it follows that  =: t – x

is strictly positive. Because (p) = 0, for e = ( / 2 , 0) we have p(e)  1. Let

us consider f
~

= f – e = (t – (/2), x). Since t – (/2) – x = /2 > 0, we also

have f
~
P \ {0}. The super-additivity of p gives 1 > p(f )  p( f

~
) + p(e) 

p( f
~

), hence p( f
~

) < 1 too. Now let us observe that for g~ = [ p( f
~

)] – 1 f
~

we

have p( g~ ) = 1 and f
~

appears as a convex combination f
~

=  g~ + (1 – )0,

where 0 <  =: p( f
~

) < 1. Correspondingly, f =  g + (1 – )e, where g = g~ +e.

Obviously, p(g)p( g~ ) + p(e) > 1, hence gH(p). Finally, using the convexity

of H(p), we obtain p(f )  1, which contradicts the hypothesis that p(f ) < 1.
iii) i) is obvious. }
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6. PROPOSITION. For each s.a. norm p we have (p) > 0.
Proof. According to the above Lemma, it is sufficient to show that situation

H(p) = P \ {0} is impossible. In fact, if this equality would take place, then for

each eP \ {0} and nN we may consider en =
n
1 e. Because en P \ {0} too,

our equality would imply p(en)  1, hence p(e)  n for any large n, which is
impossible. }

Now it is clear how to introduce the polar of a s.a. norm.
7. Definition. The polar of a s.a. norm p:PR+ is the functional p*:PR+

defined by
p*(e) = inf {( e, f ) : p(f )  1}.

If p = p* we say that p is self-polar.
8. Examples. a) p1 =

t
 is a self-polar s.a. norm. In fact, taking 

t
f 1 in

the Aczél’s inequality, we obtain ( e, f )
t

e , hence

)(*
1 ep = inf {( e, f ) : 

t
f 1}

t
e .

On the other hand, if eP \ {0} and f = [
t

e ] – 1 e, then we have

)(*
1 ep [

t
e ] – 1 (e, e) = p1(e).

b) *
2p = p3 . Considering fH(p2), we have

)(*
2 ep = inf {( T (e) T (f ) – )(,)( fe SS ): T (f )  1} 

 inf {( T (e) – )()( fe SS ): T (f ) = 1} =

= T (e) – )(eS sup { )( fS : T (f ) = 1} = p3(e).

Conversely, for every eP and  > 0 we find f P, p2 (f ) = 1, such that

)(*
2 ep < p3(e) + . More exactly, if e = (t, x), we consider 0 <  < x , and then

we construct  =  x [ x –  ] – 1 and f = (1, [ x –  ] – 1 x), so that f P \ {0},

p2 (f ) = 1, and

)(*
2 ep ( e, f ) = t –

2
x [ x + ] – 1 < t – x + = p3(e) + .

c) *
3p = p2 . By definition we have

)(*
3 ep = inf {( e, f ) : T (f ) – )( fS  1} 

 inf {T (e) (1 + )( fS ) – )(,)( fe SS ): T (f ) H } =

= T (e) + p3(e) inf { )( fS : T (f ) H } = T (e) = p2 (e).

Conversely, we observe that f = (1, 0) P, p3(f ) = 1, and ( e, f ) = T (e ), so

that )(*
3 ep p2 (e).
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9. PROPOSITION. The polar of a s.a. norm is a s.a. norm too.
Proof. We must verify the conditions of Definition 2 for p*. Let us show

that eP \ {0} implies p*(e) > 0. In fact, we may interpret Proposition 6 as the
inclusion H(p)  L(p) =: {eP : T (e)  (p)}, hence

p*(e)  inf {( e, f ) : f  L(p)}.
Choosing eP \ {0}, there is determined k =: T (e) – )(eS > 0. On the

other hand, f  L(p) implies T (f )  (p) > 0 and T (f ) > )( fS , hence

)(,)( fe SS  )()( fe SS < T (f ) )(eS , and finally,

( e, f ) > T (f ) [T (e) – )(eS ]  k (p) > 0.

The rest of the proof is routine. }

10. Remark. Some details concerning the relations between the s.a. norms
p1 , p2 , p3 and their polar s.a. norms are explained by the following simple
(but general) properties:

i) p  q if and only if H(p) H(q),
ii) p  q implies p*  q*,

iii) p p* 
2
t

 ,

iv) p 
t

 if and only if p* 
t

 .

The most significant result is the uniqueness of the self-polar s.a. norm.
11. THEOREM.

t
 is the single self-polar s.a. norm of E.

Proof. We already saw that
t

 is a self-polar s.a. norm. It remains to show

that it is the unique s.a. norm with this property, i.e. if p is another self-polar
s.a. norm, then p =

t
 . In fact, for each e  P \ {0} we may consider the

vector f = [p(e)] – 1 e, so that p(f ) = 1. From the hypothesis p = p* we deduce

p(e)  ( e, f ) = [ p(e)] – 1 2
t

e , and consequently p(e) 
t

e .

On the other hand, if we put 
t

f 1 in the Aczél’s inequality, then we

obtain ( e, f )
t

e , hence p(e) = p*(e)  inf {( e, f ) : 
t

f 1}
t

e .

In conclusion, p(e) =
t

e for every e  P . }

12. Comment. It is well known that in a pre-Hilbert space the single self-

polar norm (in the usual sense) is the Euclidean one, defined by x = xx, .

On the indefinite inner product spaces there exists no canonical norm, but self-
polar norms can still exist (see [4]) in the sense that

p(x) = sup { ),( yx : p(y)  1}.
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As an alternative, our results show that a theory specific to super-additivity
is possible, if we find the most adequate notions to be used in the place of the
classical ones.
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