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REMARKS ON SUPER-ADDITIVE FUNCTIONALS
by Trandafir Bălan *

Summary. We first give the complete formulation of the triangle rule in

the plane, relative to the metric 2
12

2
12 )()( yyxx  , which is the logic

negation of that for the Euclidean one. Then we extend this rule to super-
additive metrics in real linear spaces, and we put forward a construction
similar to the Minkowskian semi-norms. Finally, we formulate the same rule
for symmetric super-additive metrics in arbitrary spaces (not necessarily
linear).

1. It is easy to see that the functional
2

12
2

1221 )()(),( yyxxzz  , (1)

defined for pairs of points z1 (x1, y1), z2 (x2, y2) in the plane does not fulfill
the usual triangle inequality, which is

),(),(),( 322131 zzzzzz   . (2)

Consequently, whenever we need to deal with such functionals (for example
[1], [2]), we naturally have to replace (2) by the opposite inequality,

),(),(),( 322131 zzzzzz   . (3)

Obviously, inequality (3) cannot hold for all permutations of the sides of a
triangle z1, z2, z3 , and in general, as in the case of (1),  does not take real
values at each pair of points in the space. This situation justifies restrictions
on the domain of , as well as specifications about the applicability of (3),
like in the cited works. Even so, the problem of the rule of a triangle is not
completely solved, because relation (3) is valid for only one order of the
sides, but not for each side.

We claim that we could surpass such difficulties if we use the complete
form of the triangle rule, which is the former aim in this paper.
_______________
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Our second purpose is to construct super-additive functionals on arbitrary
real linear spaces by means of convex sets. More exactly, we are interested
in obtaining  from a “norm” N through the formula  (z1, z2) = N (z1 – z2),
with the preservation of (3), and in expressing the values N(z) in connection
to some convex sets of the space.

Since we wish to get inequality (3) in arbitrary real linear spaces, the third
problem that appears concerns the prolongation of , respectively N, which
allows the complete formulation of the triangle rule.

2. Let N : R2 C be a functional of values N(z) = 22 yx  , which gives

the metric  (z1, z2) = N (z1 – z2) in (1). Evidently, in terms of [3], the set
P = { z(x, y)R2 : x2 – y2 0, x0}

is a sharp and convex cone in R2, and N takes real (and positive) values on

and only on P  (– P) .
Theorem 1. Functional N has the properties:

[N1] z = 0 implies N(z) = 0
[N2] N( z) =  N(z) for all  R

[N3] If z1, z2 and z1 + z2P  (– P), then
either N(z1 + z2)  N(z1) + N(z2),

or N(z1 + z2)  N(z1) – N(z2).
Proof. Properties [N1] and [N2] are immediate. To prove [N3], we consider
the expression E() = (x1 +  x2)

2 – (y1 +  y2)
2 . Writing

E() = [x1 + y1 +  (x2 + y2)] [x1 – y1 +  (x2 – y2)]
we see that the only case when E() cannot vanish holds for x2 + y2 = 0 and
x2 – y2 = 0, i.e. z2 = 0. If z2 = 0, condition [N3] is straightly satisfied. If not,
there exist 1 and 2 in R such that E()0, and E()0. In these cases,

for the trinomial

E() =  2 )( 2
2

2
2 yx  + 2 (x1 x2 – y1 y2) + )( 2

1
2
1 yx 

we have the inequality

(x1 x2 – y1 y2)
2 – )( 2

1
2
1 yx  )( 2

2
2
2 yx   0.

Because z1, z2P  (– P), this result takes the form of the disjunction
either x1 x2 – y1 y2  N(z1) N(z2),
or x1 x2 – y1 y2  – N(z1) N(z2).

Amplifying by 2 and adding the expression
2
2

2
1

2
2

2
1 yyxx  = N 2(z1) + N 2(z2),

we obtain
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either N 2(z1 + z2)  [N(z1) + N(z2)]
2,

or N 2(z1 + z2)  [N(z1) – N(z2)]
2.

Taking into account that the above values of N are real and positive, we can
extract the square root and obtain [N3]. }

Remark 1. We shall apply the former inequality from the alternative

expressed by [N3] in the case H(z1, z2)
.not

 x1 x2 – y1 y2  0, and the second
one if H(z1, z2)  0. In particular, we have H(z1, z2)  0 for all z1, z2 P,

since 02
1

2
1  yx and 02

2
2
2  yx imply 11 yx  and 22 yx  , hence

212121 yyyyxx  .

In this case, the triangle rule takes the form N(z1 + z2)  N(z1) + N(z2), which
is the super-additivity (briefly s.a.) of the functional N. Consequently, the
corresponding metric , generated by N, fulfills the rule specified in [2].

If compared to the complete triangle rule for the Euclidean metric, i.e.
“each side is less than the sum of the other two sides and greater than their
difference”, we see that rule [N3] exactly represents its logical negation.

3. Further, we extend R2 to an arbitrary real linear space. In these spaces we

construct super-additive functionals following the method of a Minkowskian
semi-norm (see [3], etc.).

Let E be a real linear space with elements x, y, …, and let P be a sharp and
convex cone in this space. The theorems in this section establish several
connections between sets AE, which fulfill conditions like
[a1]  xP   0 such that xA
[a2]  xP, x 0, 0 such that xA holds for all   
[a3] A is convex
and functionals S : P R, which have properties of the form

[h1] S(x) = 0  x = 0 and S(x) > 0 for all xP \ {0}
[h2] S( x) =  S(x) for all   0
[h3] S(x + y)  S(x) + S(y) for all x, yP.

Considering such sets and functionals makes sense since they exist in the
previous case of E = R2 at least.

Condition [h2] is a particular form of [N2] in the case   0, condition [h1]
reinforces [N1], and property [h3] represents the super-additivity. Let us
remark that [a1] and [a2] allow to define a functional HA : PR, attached to

the set A according to the formula
HA (x) = sup { : xA}. (4)
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Theorem 2. If a set A satisfies the conditions [a1], [a2] and [a3], then HA ,
defined by (4), has the properties [h1], [h2] and [h3].

Proof. To prove [h1], let us suppose that HA (x) = 0. According to [a1] and
definition (4), it follows that  = 0 is the only number for which xA is
valid. But }0{0  A , hence x = 0. Conversely, if x = 0, then in accordance

to [a1], there exists  0 such that xA. The point is that  = 0 is the only
number of this type. In fact, if we accept that x0 A for some 0 > 0, then
xA should be valid for all  > 0, which contradicts condition [a2]. So we
have a proof of the equivalence “S(x) = 0  x = 0”. The second part of [h1]
is a consequence of the fact that in [a1] we always have   0.

Property [h2] is a direct consequence of the operations with sup.
To prove [h3], we start with x, yP. If HA vanishes at one of them, say x,

then x = 0 as before, and we obtain equality in [h3], namely
HA (0 + y) = HA (y) = HA (x) + HA (y).

Otherwise, if both HA (x) > 0 and HA (y) > 0, then there is some 0 > 0 such
that HA (x) – 0 > 0 and HA (y) – 0 > 0. In this case, for each  (0, 0 ) we
can find two real numbers m and n such that

HA (x) –   m  HA (x) and HA (y) –   n  HA (y),

where Ax
m

1 and Ay
n

1 . Because of [a3], membership Ayx
nm

  1 is

valid for all  (0, 1). In particular,
nm

m


 leads to x + y (m + n) A, so

that m + n  HA (x + y). More than this, because
HA (x + y)  HA (x) + HA (y) – 2

holds for arbitrary small , we obtain [h3]. }

Theorem 3. Let P be a sharp and convex cone in the real linear space E.
If the functional S : P R satisfies conditions [h1], [h2] and [h3], then for all

r > 0, the set
A r = {x : S(x)  r} (5)

has the properties [a1], [a2] and [a3].
Proof. Let us take an arbitrary xP, for which we note S(x) = b, and let us

consider a real number  such that
r
b0 . To prove [a1] we distinguish

two cases, depending on b. If b = 0, then [h1] implies x = 0, hence  = 0 too.
In this case, [a1] reduces to 0 rA0 . If b > 0, then there exists  > 0 such

that
b
r


1 . Using [h2], we deduce rxSxS  )()( 11


, hence rAx  .

To prove [a2], let us take x and b as before, and consider
r
b and   .

We may distinguish two cases:
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If x = 0, then [h1] gives b = 0, hence )( 1 xS


= 0 < r, i.e. rAx  .

If x  0, then )( 1 xS


= )(1 xS


< r, so that rAx  again.

Property [a3] is immediate, since from xA r , yA r , and 0 <  < 1, we
deduce S(x)  r, S(y)  r, and by [h3], S [ x + (1 –  )y]  r. According to
the definition (5) of A r , this means  x + (1 –  )y A r . }

Corollary 1. Let P be a sharp and convex cone in the real linear space E.
If the functional S : P R satisfies conditions [h1], [h2] and [h3], then the

set AS , constructed by (5), satisfies [a1], [a2] and [a3]; the functional
SAH ,

attached to AS in accordance to (4), has the properties [h1], [h2] and [h3]. In
addition,

S =
SAH .

In fact, the former two assertions are reformulations of Theorems 3 and 2.
To prove the claimed equality, we first remark that it is obvious at x = 0. At
any x  0, we have S(x) = b > 0, so SAx  is possible for  > 0 only. Now,

it remains to evaluate:

SAH (x) = }:sup{ 1
SAx


 = }1)(:sup{ 1 xS


 = }1:sup{ 1 b


 = b.

Corollary 2. Let P be a sharp and convex cone in the real linear space E.
Let A be a set satisfying conditions [a1] and [a2], and the functional HA be
constructed by (4). If B is given by (5), for S = HA, then PAB  .

The proof is direct. If PAx  , then Ax  holds for  = 1. This means
HA (x)  1, which gives Bx .

Simple examples show that the converse inclusion is not generally valid.
Remark 2. The results from above are not restricted to finite dimensional

real linear spaces, as in [1], where the dimension is 4. For example, we may

take E = ])1,0([0
RC , P consisting of 00 f and strictly positive functions,

and the super-additive norm S(f ) = inf {f (x): x[0, 1]}.

4. We may remark that the metric defined in [2] makes sense only on pairs
(z1, z2) where z1 < z2 holds in a particular order, and the triangle rule is given
by the condition (3). In [1], even if the metric is defined for arbitrary pairs
(z1, z2), it obeys the same condition. In the previous section, where the metric
is generated by a norm in real linear spaces, (3) also gives the triangle rule.
Now we will show how to formulate a complete triangle rule, which is a
logical negation of the Euclidean one, in a general framework that includes
these situations. The idea is to prolong the metric by symmetry.
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As usually, by order in a set X we understand a reflexive, anti-symmetric
and transitive binary relation.

Theorem 4. Let X be an arbitrary non-void set, and let  be an order on
X. If a function  :  R + satisfy the conditions

[ 1] x = y   (x, y) = 0
[ 2] (x, y), (y, z)   (x, y) +  (y, z)   (x, z),
then there exists a function * :  –1 R + , which prolongs  (i.e.

coincides with  on ), and has the properties:
[1] x = y  *(x, y) = 0
[2] *(x, y) = *(y, x)
[3] If (x, y), (y, z), (x, z)  – 1 , then

either * (x, y) + * (y, z)  * (x, z)
or j* (x, y) – * (y, z)j  * (x, z).

Proof. If (x, y), then we define *(x, y) =  (x, y), and if (x, y) – 1,
then *(x, y) =  (y, x), since (y, x).

The proof of [1] is based on the reflexivity of . In fact, since (x, x),
and [ 1] gives  (x, x) = 0, we obtain *(x, x) = 0.

Property [2] is significant for x  y, so we have to consider two disjoint
cases: (x, y) , respectively (y, x). In the first case, the construction of
* gives *(x, y) =  (x, y), as well as *(y, x) =  (x, y). The other case is
similar.

To prove [3] we primarily remark that we may define *(x, y), *(y, z)
and *(x, z) in the following cases only:
(a) (x, y), (y, z)  hence (x, z) 
(b) (x, y) –1, (y, z)  –1 hence (x, z)  –1

(c) (x, y), (y, z)  –1 and (x, z) 
(d) (x, y), (y, z)  –1 and (x, z)  –1

(e) (x, y) –1, (y, z)  and (x, z) 
(f) (x, y) –1, (y, z)  and (x, z)  –1.

In the case (a), [ 2] leads to the first inequality in [3]. The symmetry of
* assures the same inequality in case (b).

In the case (c) we have (x, y), (z, y)  and (x, z) , hence [ 2]
gives  (x, z) +  (z, y)   (x, y). In terms of *, this means

* (x, z)  * (x, y) – * (y, z),
which is the second inequality in [3].

The remaining cases are similar. }
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