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OPERATING WITH HORISTOLOGIES

TRANDAFIR T. BĂLAN

Our purpose is to analyze how the horistological structures are to be compared
and derived ones from the others when we correspondingly operate with their
supporting sets.

1991 Mathematical Subject Classification 46C50 (the corresponding topics on topologies
are classified by 54A10, 54B05, 54B10, 54B15)

INTRODUCTION

The horistological structures are introduced in [1] with the aim of developing a
qualitative analysis of super-additivity on the same way on which the topology
generalizes the sub-additivity. Besides the former models consisting of event
spaces (e.g. the Minkowskian space-time of special relativity), the horistological
structures generated by super-additive norms are useful in concave programming
and even in pure mathematical problems like the duality theory (see [2]). Working
with such structures naturally leads to the comparison and to the construction of
subspaces, products, quotients, etc., which are well known topics for the other
mathematical structures (for topologies see [3], etc.); this justifies our interest in
finding the general rules to operate with horistologies.

For the beginning, we recall some of the basic notions that we deal with, as they
are considered in [1]. A horistology on the non-void set W is a function

 :W  P (P (W))
for which:

[h1] xP whenever P(x)

[h2] If P(x) and Q P, then Q(x)

[h3] If P, Q (x), then P  Q(x)
[h4] For each P(x) there exists L(x) such that for every yP and Q (y)

we have Q  L.
The pair (W, ) is called horistological world (or space), and the elements P of (x)
are named perspectives of x.
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A uniform horistology (briefly u.h.) on W is a family H P (W 2) for which:

[uh1]   =  for all H , where  = {(x, x) : x W}

[uh2]  H and    imply  H

[uh3] If ,  H , then    H

[uh4] For each  H there exists  H such that for all  H we have

   and   .
The pair (W, H ) is a uniform horistological world (space), briefly u.h., and the

elements of H are called prospects.

Let (V, ) and (W, ) be horistological worlds. The function f : VW is discrete
at xV iff for every P(x) we have f (P)(f (x)).

If (V, L ) and (W, H ) are u.h. worlds, we say that the function f : VW is

uniformly discrete on V iff for every  L we have f2()H , where

f2() = {(f (a), f (b)) : (a, b)  }.
If (W, ) is a horistological world, then

K() = {(x, y)W 2 : {y}(x)}
is an order on W, called proper order of . Similarly, if H is a u.h. on W, then

K(H ) = [{W 2 :  H }] 

is the proper order of H .

If H is a u.h. on W, then the function  :W  P (P (W)), expressed by

(x) = {[x] :  H },

defines a horistology on W. We say that  is generated by H . Of course, if H

generates , then K(H ) = K().

A. The comparison of the horistological structures

The comparison of the horistological structures is based on the comparison of the
ideals defining these structures.

1. Definition. Let  and  be horistologies on the same set W. We say that  is

finer than  (or  is coarser than ) iff we have (x) (x) at each xW. In this

case we note  . Similarly, if H and L are uniform horistologies on W, we

say that H is finer than L (respectively L is coarser than H ) iff H L .
2. Remark. The relation “finer than” between the (u.) horistologies on W is a

partial order. The examples 0 in [1] (II) B 2a and H 0 in [1] (II) A 5a show that on
any set W there exist the coarsest elements (respectively the coarsest horistology
and the coarsest u.h.) in respect to this order.

3. PROPOSITION. If H and L are u. horistologies on W in the relation H L

and  and  are the generated horistologies, then:
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(i)   and

(ii) K() K().
4. Remark. If the proper orders of two (u.) horistologies on W are not comparable

(by inclusion), then also the (u.) horistologies themselves are not comparable (by
fineness). Because the union of two or more orders generally is not contained in
other order, it follows that usually we can not speak of an upper bound of two (u.)
horistologies. Consequently, the family of all (u.) horistologies on a given set W
does not form a lattice. Similarly, we may see that in general there exists no finest
(u.) horistology on a fixed set.

5. PROPOSITION. Let  and  be horistologies on W. Then   if and only if
the identical map  : (W, ) (W, ) is discrete on W.

A similar property holds for u. horistologies. It follows a characterization of the
equivalent (u.) horistological structures in terms of (u.) discreteness.

In the following considerations, according to [1] (I) C3, the term p-horometric
stands for the longer pseudo-super-additive metric.

6. PROPOSITION. Let  : R+ and  : R+ be two (p-) horometrics on the

same set W. If   and if there exists a number k > 0 such that (x, y)k (x, y)

for all (x, y) , then the u.h. generated by  is finer than that generated by .
7. THEOREM. If {H i : iI} is an arbitrary family of u.h. on W, then

H = { {i : iI}: iH i}

is a u.h. too. More than this, we have H = inf {H i : iI} and

K(H ) = {K(H i) : iI}.
Proof. For the beginning, let us remark that

(*) H = {H i : iI}.

Then it is easy to see that H satisfies [uh1] and is an ideal in P (W2), i.e. it also

verifies [uh2] and [uh3]. In order to prove [uh4] let  be an arbitrary prospect of H .

Then H i for each iI, and because each H i satisfies [uh4], there will exist

i H i , iI, such that i i and i i  for any i H i . Let us note

 = { i : iI}; then obviously i H . If  is another element of H , it has the

form  = { i : iI}, where i H i , and we have  i  i , and

 i  i . Because this holds for all iI, it follows that  , and

 , i.e. [uh4] is true for H .

Showing that H is the greatest lower bound of the family {H i : iI} is also
based on (*) as routine.

Finally, because H H i , we have K(H )K(H i) for each iI, hence

K(H )  {K(H i) : iI}. Conversely, if (x, y){K(H i) : iI}, then either

x = y, or {(x, y)}H i for each iI. Consequently, (x, y)K(H ) because either

(x, y), or {(x, y)}H . }
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8. THEOREM. If { i : iI} is an arbitrary family of horistologies on W, then the

function  :W  P (P (W)), defined by

(x) = {P = {Pi : iI} : Pi  i (x)}
is a horistology on W. In addition  = inf { i : iI} and

K() = {K( i) : iI}.
As in the proof of the above theorem, we remark that (x) = { i (x) : iI} at

each xW, so it is to repeat the stages of that proof.
9. COROLLARY. Although the family of all (u.) horistologies on a given set W

does not form a lattice, each of its upper bounded subfamily has a smallest upper
bound. The problem of constructing this upper bound remains open.

10. THEOREM. Let {H i : iI} be an arbitrary family of u. horistologies on W,

for which H / = inf {H i : iI}. If  i and  / are the horistologies generated by

H i and respectively H / , then  / = inf { i : iI}. Moreover, if we suppose that

there exists H // = sup{H i : iI}, then there exists  = sup { i : iI} too, and

it is not finer than the horistology  // , which is generated by H //.
Proof. In order to prove the first part of the theorem one may directly show that

/ is coarser than each  , and every other horistology having this property is
coarser than  /.

Using Corollary 9, the affirmation concerning the supremum follows from the
fact that  // is finer than each  i , i.e.  // is an upper bound of the considered family

of horistologies. Thus if P i (x) for some iI, there will exist H i such that

P = [x]. Because H // H i for each iI, it follows that  H //, which leads

to P //(x). If we remark that x is arbitrary, we may conclude that  //  i holds

for each iI. Consequently, there exists  = sup { i : iI}, and  //  . }

As Remark A 4d in [1] (I) shows, if we restrict the order on which a p-horometric
is defined, then we obtain another p-horometric. By the following two propositions
we analyze such a restriction in the case of (u.) horistological worlds.

11. PROPOSITION. Let (W, H ) be a u.h. space with the proper order K(H )=,

and let  be another order on W. Then H / = {  : H } also is a u.h.

on W, and K(H / ) = .

Proof. We may consider the restriction H / of H to  as H / = inf {H , H 1},

where H 1 is the u.h. generated by  \  like in [1] (I) A 5a, i.e. it is the principal

ideal P (\ ). }

12. PROPOSITION. Let (W, ) be a horistological world with K() = , and let 
be another order on W such that . Then the function  / : W  P (P (W)),

expressed at each xW by  / (x) = {P  [x] : P(x)} also is a horistology on
W, and K( / ) = .
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Proof. It is easy to see that  / = inf {, 1}, where 1 is the horistology defined by

1 (x) = P ([x]) at each xW. }

13. THEOREM. The family of all (u.) horistologies on a fixed set W is inductively
ordered (i.e. every totally ordered subfamily of (u.) horistologies on W has a
smallest upper bound).

Proof. Let us discuss the case of u. horistologies. Thus, let F = {H i : iI} be a

family of u.h. on W, for which we note K(H i) =  i , iI. If F is totally ordered,

then the family { i : iI} is also totally ordered by inclusion in P (W 2 ), hence

their union  = { i : iI} is an order on W too. In this case it is clear that the
u.h. H = P (\ ) is finer than each H i (since  i  , and H i P ( i\ )

for each iI). In other words, F is an upper bounded family of u. horistologies,
hence by Corollary A9 it has a smallest upper bound.

The case of (non-u.) horistological spaces is similar. }

14. COROLLARY. According to Zorn’s Lemma, it follows that for each (uniform)
horistology on a fixed set W there exists a finer (u.) horistology, which, at the same
time, is a maximal element in the family of all (u.) horistologies on W.

15. Remark. Coming back to the problem of finding (pseudo-) horometrics that
generate a given u.h., we may reformulate the construction in Theorem [1] (II) A 9
in terms of comparison between u. horistologies. Thus, if B is an open base

consisting of exhaustive prospects of H ,  is a (p-) horometric generated by an

element of B, and H  denotes the u. horistology of , then

H  = sup {H  :  is generated by an element of B }.

In fact, H  is finer than each H  because {(x, y) : ( x, y)1} is an (open)

prospect of H . On the other hand, if another u.h. H * is finer than each H ,

then H H * because for each  H we may find  and  > 0 such that

  {(x, y) : ( x, y)} H H *.
In the subsequent proposition, I will be an arbitrary family of indexes and W will

be a fixed (non-void) set;  i denotes an order on W corresponding to iI, and
finally,  = { i : iI}.

16. PROPOSITION. If { i : iI} is a family of p-horometrics  i :  i R+ , then

the functional  : R+, defined by ( x, y) = inf { i ( x, y) : iI} also is a p-

horometric on W. If H and H i are the u. horistologies generated by  and

respectively  i , then H  inf {H i : iI}, with equality whenever I is finite.

Proof. Obviously,  is an order on W. Showing that  verifies condition (i / ) of
Definition [1] (I) C3 also is trivial (perhaps it is more interesting to remark that  is
not necessarily a horometric, even if all  i are).
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In order to prove the super-additivity of  it is sufficient to note that for each iI
and for each (x, y), (y, z)  we have

(x, y) + (y, z) = inf { j ( x, y) : jI} + inf { k ( y, z) : kI} 
  i ( x, y) +  i ( y, z)   i ( x, z),

because the inequalities (x, y) + (y, z)   i ( x, z) for all iI imply
(x, y) + (y, z)   ( x, z).

Now, let us show that H is coarser than each H i . In fact, if H , then there

exists  > 0 such that   {(x, y) : ( x, y)}, hence on account of the expression

of , we also have   {(x, y) :  i ( x, y)} for all iI. From relation H H i

for arbitrary iI it follows that H  inf {H i : iI}.
Finally, let us consider that I is finite, or more precisely, I = {1, 2, …, n}. In

this case, if H * is coarser than each H i , it follows that H * H too. In fact, if

H * , we obtain  H i for each iI, i.e. for each iI there exists  i > 0

such that   {(x, y) :  i ( x, y)  i }. Noting  = min {1, 2, …,  n} > 0, we have

  {(x, y) : ( x, y)}, hence H = inf {H 1 , H 2 , …, H n}. }

17. Example. If I is an infinite set in the above proposition, then the strict
inclusion H  inf {H i : iI} is possible, even if all H i are equal. To see this,

let  0 be the temporal metric of a Minkowskian space-time E (like in [1] (I) B),

and let us define  n =
n
1  0 for each nN \ {0}. Then inf {H n : nN} is the

Minkowskian u. horistology on E, while H is the coarsest one.

B. Induced horistological structures

In this section we will analyze the construction and some properties of the direct
and inverse images of the horistological structures.

1. THEOREM. Let (W, H ) be a u.h. space, and let f : WM, be an injective

function, where M is an arbitrary set. Then f (H ) = {f 2 () : H } is a u.h. on
M, namely the coarsest u.h. for which f is uniformly discrete.

Proof. It is to show that f (H ) satisfies conditions [uh1] – [uh4]. In order to prove

[uh1], it is sufficient to recall that for all ( x, y)H we have x y; because f is

injective, we obtain f (x)  f (y), and consequently  f 2 () =  .
For proving [uh2] let us consider f 2 ()f (H ) and   f 2 (). Using again the

fact that f is injective, we deduce 
2f () , hence 

2f ()H . Further, because

  f 2 (W 2 ), we have f 2 ( 
2f ()) = , hence  f (H ).

Condition [uh3] is a simple consequence of the equality f 2 () f 2 () = f 2 (),

which holds for all ,  W 2 .
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Because each element of f (H ) has the form f 2 () for some H , we may

formulate condition [uh4] as follows: For each H there exists H , such that

for every H we have f 2 () f 2 () f 2 () and f 2 () f 2 () f 2 (). Let  be

the prospect which corresponds to  by virtue of the fact that H satisfies [uh4], i.e.

 and  for all H . Under the hypothesis that f is injective, we

have f 2 () f 2 () f 2 (), which achieves the proof of [uh4].
Finally, reasoning like in Proposition A5, we can easily see that f is uniformly

discrete relative to the u. horistologies H on W and L on M if and only if L is

finer than f (H ), i.e. f (H ) L . }

2. THEOREM. Let (W, ) be a horistological world, and let function f : WM,
be injective, where M is arbitrary. Then function  :MP (P (M)), defined by

(x) =










)(}{

)()}(:)({ //

Wfxif

xfxifxPPf 

is a horistology on M, namely the coarsest horistology for which f is discrete on W.
Proof. We verify conditions [h1] – [h4] by going through the same stages as for

the above theorem. The single difference consists in considering two cases, namely
x f (W) or not. }

3. Definition. We say that the u.h. f (H ) in Theorem B1 is the direct image of

the u.h. H on M (if necessary we may specify “through f ”). Similarly, horistology

 in Theorem B2 is the direct image of the horistology  on M.
The following theorem gives a relation between the direct images of uniform and

non-uniform horistological structures.
4. THEOREM. Let H be an u.h. on W, and let  be the horistology generated by

H . If f : WM is injective, we note by f (H ) and  the direct images of H and

respectively  on M. Then f (H ) generates  .

Proof. According to [1] (II) B2c, we have (x /) = {[x /] : H } at each x / W,
hence

(x) =










).(}{

)(}:])[({ //

Wfxif

xfxifxf H

On the other hand, the horistology , generated by f (H ), has the form

(x) = {(f 2 ())[x] : H },

where xM, hence the problem is to prove that  = . Now, we shall distinguish
two cases, namely either xM \ f (W), or xf (W). In the first case we have (x) =
{ } = (x), because in f 2 () there is no pair with x on the first place. In the

second case we have f ([x / ]) = (f 2 ())[x] whenever x = f (x / ). }
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5. Examples. As we easily see, the hypothesis that f is injective is essential in the
above construction of the direct images of horistological structures. However, it is
possible to obtain horistological structures as direct images through some non-
injective functions. For example, function : W  P (P (W)), expressed by

(x) = {P ([y]) : (x, y) \ },

where  is a total order on W, defines a horistology on W. In particular, let us take
W = R2, and let  be the lexical order of the plane. If f 1 is the first projection of R2,

then f 1() also is a horistology on R, which is generated on the same way on W = R

by its usual order. At the same time, other simple examples (e.g. the second
projection f 2 in the above case) show that, in general, the direct images of a
horistology on a product space through projections on the components are not
horistologies.

6. THEOREM. Let (W, H ) be an u.h. space, and let f : WM be an arbitrary

function. Then the family f (H )P (W 2), defined by
f (H ) = { :  / H such that  

2f ( / )},

is a horistology on W, namely the finest one for which f is u. discrete.
Proof. We shall prove the conditions [uh1] – [uh4]. Thus, for [uh1], if  and  /

are the diagonals of W 2 respectively M 2, we have  /  / =  for each  / H ,

hence 
2f ( / )  =  too, and a fortiori   =  for each  f (H ).

Condition [uh2] is an immediate consequence of the definition of f (H ), and

[uh3] is directly based on the general relation


2f ( / )  
2f ( / ) = 

2f ( /  / ).

In order to prove [uh4], let  be arbitrary in f (H ), i.e.  
2f ( / ) for some

 / H . Because H satisfies [uh4], there exists  / H , which corresponds to  /

in this condition. Let us note  = 
2f ( / ), and let  be another element of

f (H ) such that  
2f ( / ) for some  / H . From  /  /   / we deduce

 
2f ( / )  

2f ( / )   
2f ( /  / )  

2f ( / ) = .

Similarly,  /  /   / gives    .

Finally, we have f 2() H for each  f (H ), i.e. f is u. discrete relative to
f (H ) on W and H on M. On the other hand, if H * is another u.h. on W for

which f is u. discrete, we have f 2() H for each H *. Then using the general
relation

 
2f ( f 2()),

it follows that  f (H ), i.e. H * is coarser than f (H ). }
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7. THEOREM. Let f : WM be an arbitrary function, and let  be a horistology

on M. Then function  :W  P (P (W)), whose value at xW is defined by

 (x) = {P :  P / (f (x)) such that P  f ( P / )},

is a horistology on W; more precisely,  = f () is the finest horistology for

which f is discrete on W.
The proof goes through the same stages as those for the above theorem so we will

omit it. A terminology similar to that of Definition B3 is natural.

8. Definition. We say that the u.h. f (H ) in Theorem B6, and the horistology
f () in Theorem B7, are the inverse images of the u.h. H , and respectively of

the horistology , through function f, on W.
9. THEOREM. Let f : WM be an arbitrary function, and let H be a u.h. on M.

If  is the horistology generated by H , then f (H ) exactly generates f ().

Proof. The inverse image of the horistology  has a base consisting of sets of the

form f ([f (x)]), where H and xW. On the other hand, at each xW, the

horistology generated by f (H ) has an ideal base consisting of sets of the form

2f ()[x]. It is easy to see that these two bases coincide. }

10. THEOREM. Let W be an arbitrary set, and let I be an arbitrary family of
indices. We suppose that to each iI there corresponds a u.h. world (M i , H i )

and a function f i : W M i . Then the family H P (W 2), consisting of all sets 

for which there exist  i H i for each iI such that

   
2)( if  i ) : iI},

is a u.h. on W, namely the finest one for which all the functions f i are u. discrete.

Proof. If 
if ( H i ) denotes the inverse image of H i through f i , then according

to the above Theorem A7, we may consider that H = inf { 
if ( H i ) : iI}.

In order to prove the discreteness of the functions f i , we may consider f i = g i

for each iI, where the identity acts as  : (W, H )  (W, 
if ( H i )), and

g i : (W, 
if ( H i ))  (M i , H i )

takes the same values as f i . Consequently, each f i appears as a composition of two
u. discrete functions.

Finally, if H * is another u.h. on W, for which all f i are u. discrete, then H * is

coarser than H . In fact, if H *, then we find  i H i for each iI, such that

(f i ) 2 ()   i , and consequently   
2)( if  i ). Then    

2)( if  i ) : iI},

hence H i for each iI. }
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The same construction may be done with (non-uniform) horistological worlds, so
we will describe it without proof.

11. THEOREM. Let W and I be arbitrary non-void sets. To each iI we attach a
horistological world (M i ,  i ) and an application f i : W M i . We claim that
function  :W  P (P (W)), which assigns to each xW the family of all subsets P

of W for which there exist Pi   i (f i (x)) for all iI, such that

P   
if ( Pi ) : iI},

is a horistology on W, namely the finest one for which all f i are discrete on W.
12. COROLLARY. Under the conditions in Theorem B10, if  i are horistologies

generated by H i on M i , then the horistology , constructed as in Theorem B11
for the same family of I of indexes, coincides with the horistology generated by
H on W.

Proof. In the above conditions, we have

 = inf { 
if (  i ) : iI}

and

H = inf { 
if ( H i ) : iI}.

According to Theorem B9, 
if ( H i ) generates 

if (  i ) for each , iI, hence

the assertion follows as a consequence of Theorem A10. }

13. Remark. Like in the case of the topological structures (see [3], etc.), we say
that the structures H and  in Theorems B10 and B11 are initial horistological
structures. We may formulate the properties expressed by the mentioned theorems
in terms of function composition, as the following two propositions show.

14. PROPOSITION. Under the conditions of Theorem B10, if (L, D ) is another

u.h. world, then function h: LW is u. discrete relative to D and H if and only if
f ih is u. discrete for each iI.

Proof. If h is u. discrete, then f ih is u. discrete for each iI too. Conversely, if
 is an arbitrary prospect of D, then  = h 2 () H . In fact, because each f ih is

u. discrete, we have ( f ih) 2 ()H i for each iI. Then (f i ) 2 ()H i , and so

 
if ( H i ) for each iI. If we recall that H = { 

if ( H i ) : iI}, we

really obtain H . }

15. PROPOSITION. Beyond the conditions in the above Theorem B11, let (L, )
be another horistological world. Then function h: LW is discrete at xL relative
to  and  if and only if all the functions f ih are discrete at xL in respect to 
and  i .

We may reason like in the proof of the previous proposition, but referring to non-
uniformly discrete functions.
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C. Horistological subspaces, products and quotients

In essence, this paragraph contains some particular cases when we can apply the
methods of deriving horistological structures as in the previous section.

1. THEOREM. Let (M, H ) be an u.h. space, and let us consider WM. Then

the family L  P (W 2), expressed by

L = {:  / H such that  =  /  W 2}
is a u. horistology on W, namely the finest one for which the embedding of W in M
is uniformly discrete.

Similarly, if  is a horistology on M, then function  :WP (P (W)), defined by

 (x) = {P :  P / (x) such that P  P /  W },
is a horistology on W, namely the finest one for which the embedding of W in M is
discrete on W.
In addition, if H generates  on M, then L generates  on W.

Proof. If f : WM denotes the embedding f (x ) = x , then  W 2 = 
2f () for

each   M 2 , hence L = f (H ). We only mention that, because f is injective,

the family { 
2f () : H } is an ideal, but not only an ideal base.

We may similarly see that  = f ().

The last sentence is a corollary of Theorem B9. }

2. THEOREM. Let W be a subset of M. Then each u.h. H W on W, considered as

a family of parts of M 2 , is a u.h. on M too (noted H M ).

Similarly, if W is a horistology on W, then function M : MP (P (M)), defined
at each xM by

M (x) =








WMxif

WxifxW

\}{

)(

is a horistology on M: more exactly, it is the coarsest one for which the embedding
of W in M is discrete on W.

In addition, if H W generates W on W, then H M generates M on M.
Proof. The embedding f (x ) = x of W in M is injective, so we may consider that

H M is the direct image of H W through f, as in Theorem B1. Similarly, M is the

direct image of W through f, in the sense of Theorem B2. The last assertion simply
follows from Theorem B4. }

3. Remark. Like in topology, it is natural to say that (W, L ) in Theorem C1 is a

uniform horistological subspace of (M, H ), and (W, ) is a horistological

subspace of (M, ). Considering over-spaces (as in Theorem C2) seems to be more
significant for horistological than for topological structures.



12

The construction of a product of (u.) horistological spaces is a direct issue of
Theorems B10 and B11. In fact, if W = X {M i : iI}, and f i denotes the projection
of W on the component M i , then (W, H ) from Theorem B10 exactly represents

the product u.h. space of the u.h. spaces (M i , H i ), iI. Under similar conditions,

(W, ) of Theorem B11 is the product of the horistological spaces (M i ,  i ), iI.
The study of the quotient horistological structures cannot be simply reduces to the

constructions described in section B (see for example B5), and some additional
conditions are necessary. For the sake of clarity, we start by specifying the usual
notations: So, if  is an equivalence relation on W, then we note the corresponding

equivalence classes by x~ = [x]. For each part P W, we note its equivalence

extension by P
~

={ x~ :xP}, and for each W 2 we write π~ = {( x~ , y~ ):(x, y) }.

Finally, for each family F P (W ) (or F P (W 2)) we note F
~

= { P
~

: PF }

(respectively F
~

= {~ : F}).

4. Definition. We say that a relation  on W is stable relative to the equivalence 

iff   and   . Similarly, a family F of relations on W is said to be

stable relative to  iff each of its elements is so.
5. THEOREM. Let (W, H ) be an u.h. space, and let  be an equivalence on W.

If a base B of H is stable relative to , then B
~

forms a base of a uniform

horistology on W
~

. This u. horistology (noted H
~

and called quotient of H by )

is independent of the choice of the stable base B , and it is the coarsest u.h. on W
~

for which the canonical function x x~ is uniformly discrete.
Proof. Because the canonical map x x~ is not generally injective, we may not

apply Theorem B1, and therefore we must directly verify the conditions that define
the ideal base of a u. horistology.

The former condition means 
~
 π~ =  for each B. In fact, if we suppose

the contrary, from ( x~ , y~ )
~
 π~ it follows x~ = y~ , hence there exists at least one

element z x~ such that (z, z) , which is impossible.

The property of B
~

to be an ideal base asks for any λ
~

, π~ B
~

to find ω~ B
~

such that λ
~
 π~  ω~ . Obviously, it follows from the same property of B .

The last condition exactly is [uh4]. In order to prove it, let π~ be an arbitrary

element of B
~

, and let B be the prospect for which    and  

for all B . It is easy to see that λ
~

is the required element, i.e. π~  ω~  λ
~

and

ω~  π~  λ
~

hold for all ω~ B
~

. In fact, because B is stable base relative to ,

from ( x~ , z~ ) π~ and ( z~ , y~ )ω~ we deduce that (x / , z / )  and (z / , y / )  for all

x /  x~ , y /  y~ and z / z~ . Consequently, (x / , y / ), hence ( x~ , y~ ) λ
~

.

We may similarly obtain ω~  π~  λ
~

.
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Finally, if B 1 and B 2 are stable bases of H , then 1
~

B and 2
~

B are equivalent

ideal bases, hence H
~

is unique.

In addition, the canonical application q(x) = x~ is u. discrete because H gives

q 2 () = π~ H
~

. It is also clear that every u.h. on W
~

, for which function q is u.
discrete, must be finer than the quotient u. horistology. }

6. THEOREM. Let (W, ) be a horistological world, and let  be an equivalence
relation on W. If  has a base  such that relation

 x, P = {(x , y) : yP}
is stable relative to  for each P  (x) and xW, then function

β
~

: W
~

 P (P (W
~

)),

defined by

β
~

( x~ ) = { P
~

: P  (x)},

is a base for a horistology on W
~

(noted χ~ and called quotient of  by ). The

horistology χ~ does not depend on the choice of the stable base , and it may be

characterized as the coarsest horistology of W
~

for which the canonical application
q(x) = x~ is discrete on W.

Proof. Under the above stated conditions it is clear that two equivalent elements
have the same perspectives in the base  and each perspective of this base includes
the whole class x~ whenever it contains x.

The effective proof consists in showing that β
~

is a base of a horistology; being

similar to the above one, we will omit the details. }

7. COROLLARY. Let (W, H ) and  be like in Theorem C5, and let H generate

the horistology . Then  satisfies the hypotheses of Theorem C6, and the u.h. H
~

generates χ~ .

8. Remark. The question concerning the proper orders of the derived (uniform)
horistologies has the following simple answer:

a) If  is the proper order of H (or ) in Theorem C1, then W 2 is the proper

order of L (respectively of  ).
b) The construction of an over-space extends the initial proper order by identity

on the greater space.
c) The proper order of a product of horistological structures is the product of the

corresponding proper orders of the factors.

d) If  is the proper order of H in Theorem C5 (or  in Theorem C6) then 
~

is

the proper order of the quotient H
~

(respectively χ~ ).

The last problem that we will discuss here concerns the metrizability of the
derived horistological structures.
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9. THEOREM. Every u. horistological subspace (or over-space) of a metrizable
u.h. space is metrizable too.

Proof. Using the notations in the first part of Theorem C1, the problem is to show
that L is metrizable (in the sense of [1] (II) A5b, A9, etc., i.e. by (p) horometrics)

whenever H is. Let  : R + be a p-horometric that generates H on M. Then

 = W 2 is an order on W, and the restriction  of  to W, i.e.  : R + , is a

p-horometric on this set. If  r and  r are the hyperbolical prospects of radius r > 0
corresponding to  and , then  r =  r W 2 , hence  generates L .

The affirmation concerning the extension follows from the fact that we may
extend each p-horometric  : R + of M, to an over-space L M. In fact, if  is

the diagonal of L, and  = , then the p-horometric σ : R + , of the form

σ (x, y) =








,),(),σ(

),(0

yxifyx

yxif

defines the same hyperbolical prospects. }

10. THEOREM. Every finite product of metrizable u.h. spaces is also metrizable.
Proof. Like in the above Remark C3, let us take W = X {M i : iI}, and let us

note by f i the projection of W on M i . Using the hypothesis of metrizability, for
each (M i , H i ) we can find a p-horometric  i :  i R + , which generates H i .

If  denotes the product order of  i , then the functionals iσ : R +, defined by

iσ ( Ikkx )( , Ijjy )( ) =  i (x i , y i ),

are p-horometrics on W. It is not difficult to see that each iσ generates on W the

inverse image 
if ( H i ). According to Theorem B10, the product u. horistology

H on W allows the form

H = inf { 
if ( H i ) : iI}.

So it remains to apply Proposition A16, which shows that  : R + , of values

(x, y) = inf { iσ (x, y): iI},

exactly generates H when I is finite. }

11. Definition. Let (W, , ) be a p-horometric space, and  be an equivalence
relation on W such that  is stable relative to . We say that the p-horometric  is
stable relative to , iff

(x, y) = (x / , y / )

whenever (x, x / ), (y, y / ) . In this case, the functional σ~ : 
~
R + , defined by

σ~ ( x~ , y~ ) = (x, y),

where x  x~ , and y  y~ , is a p-horometric. We call it quotient p-horometric of 

relative to .
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12. THEOREM. Let (W, , ) be a p-horometric space for which  is stable

relative to an equivalence relation  on W. Then the u.h. H , generated by , has a

stable base relative to , and the quotient p-horometric σ~ generates the quotient

u.h. H
~

on the quotient space W
~

.
Proof. The family B of all hyperbolical prospects in respect to  obviously is

stable relative to  and forms a base of H . If

 r = {(x, y) W 2 : (x, y)  r},
where r > 0, is an arbitrary element of B , then

rπ
~ = {( x~ , y~ )W

~ 2 : σ~ ( x~ , y~ )  r},

hence H
~

has a base consisting of all hyperbolical prospects generated by the p-
horometric σ~ . }

Of course, the present study of the operations with spaces (worlds) endowed with
horistological structures is far from being complete, but when necessary, making
use of similar methods, we may investigate the other cases (e.g. direct sums,
function spaces. etc.).
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