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Abstract
The aim of the work is to investigate the relations between linearity

and horistology in order to generalize the linear spaces endowed with
super-additive norms, like the Minkowskian space-times.
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Introduction. According to our previous paper [1], a horistology on
the non-void set W (also called world if inspired by Relativity ) is a function

x: W —P(PW))

for which:

[h1] = ¢ P for all z € W and P € x(z);

[he] P € x(2),Q € P = Q € x(2);

[hs] P,Q € x(z) = PUQ € x(z);

[h4] VP € x(2),3Q € x(z) such that [y € P and R € x(y)] = [R C Q].

The pair (W, x) represents a horistological world (or space, briefly h.w.).
The elements of x(z) are called perspectives of x. Obviously, x(x).is an ideal
of subsets of W. It is easy to prove that if (W, x) is a h.w., then

K(x) = {(z,y) : {y} e x(x)} Ué

is an order on W (called causality in space-time).

The most important examples of h.w., including the Minkowskian space-
time, are linear spaces endowed with super-additive norms. Such a norm
(also called timer when it measures time) is a functional

p: K[0] = Ry
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for which:
[t1] p(x) =0if and only if x =0
[ta] p(Ax) = Ap(x) for all A € R, and = € K[0]
[ts] p(z+y) > p(x) +p(y) for all z,y € K[0],
where K is a linear order on the real linear space W.
In this case, for each x € W, x(z) is defined by the ideal base

Blx)={P CW :3r >0 suchthat P C H(x,r)}

where
H(z,r)={yeW:ply—xz)>r}

It is also remarkable that K = K(x).

By analogy with the classical theory of the linear topological spaces (see
[2]), where the operations are continuous functions, for the horistological
worlds we will naturally ask these operations to be discrete (in the sense of
[1]). In order to explain this condition, we recall that a function f: W — V,
where (W, x) and (V1) are h.w., is said to be discrete at x if

f(x(@)) S o (f(@)).

In addition, because the operations of a linear space are defined on Cartesian
products, we mention that if (W5, x;) and (W3, x,) are horistological worlds,
and W = Wy x Wy, then the product horistology on W is defined by

Y(z1,22) ={P1 X Py: P, € x;(x;),1 =1,2},

which represents its ideal base.

Because the h.w. are essentially ordered sets, we deal only with real
linear spaces. In particular, the standard horistology of R is generated by
the super-additive norm p(z) = x, defined on R, , i.e. on the cone of the
usual order of R. This horistology will be noted o.

Example 1 Let W be a real linear space, K be a linear order on W, and
let p : K[0] — Ry be a super-additive norm. If x denotes the horistology
generated by p, then the operations of W are discrete functions relative to x.
More precisely, for every xi,xo € W, P € x(x1) and Py € x(z3), we have
P+ Py, € x(z1 + x2). In fact, by hypothesis there exist ri,m5 > 0 such that
P, C H(xy,r;), i = 1,2, hence for every y; € P;, i = 1,2, in accordance with
[t3], we have
Py +y2 — (1 + 22)) > 11 + 72
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Similarly, the product with real numbers is a discrete function on Ry x K|0],
as a consequence of [ta]. In fact, if we consider P € o(\), and Q € x(x),
this means that P C Hg(\, €) and Q C Hy (z,r) for some e > 0 and r > 0.
IfA>0,(0,x) € K, u>e+ A\, and p(y — x) > r, then it follows that

p(py — Az) = pp(y — z) + (1 — A)p(x) > er,
hence PQ C Hy (Ax,er), and finally PQ € x(A\z).

This example contains many particular cases, namely the Minkowskian
space-time, the event spaces, as well as R, Cg([a, b]), etc. In all these spaces,
besides addition and multiplication, we may similarly see that translation,
dilation and embedding are discrete functions too.

Definition 2 Let W be a real linear space, and let x be a horistology on W .
We say that x is a linear horistology (compatible with linearity, etc.) if:
(1) For every x € W, the translation T, : W — W, defined by

18 discrete on W.
(17) The addition A : W x W — W, defined by

Alx,y) =z +y,

is discrete at (0,0).
(1ii) For every A > 0, the dilation Dy : W — W, of values

D/\(x) = A$)

is discrete at 0.
(iv) For all x € K[0], the embedding of the real line E, : R — W,

E.(\) = Az,

15 discrete at 0.
(v) The multiplication M : R x W — W, defined by

M\ x) = Az,

is discrete at (0,0).



In this case, the pair (W, x) will be called linear horistological world
(briefly Lh.w.).

Proposition 3 In every l.h.w. we have:

a) The addition is discrete on W x W,

b) The multiplication is discrete on R, x KI0].
Proof. a) From (i) we deduce that for all P € x(0) and x € W we have
x+ P € x(x). Because T, ' =T, is also discrete on W, and particularly at
x, we obtain

x(x) = 2+ x(0). (1)

On the other hand, the discreteness of A at (0,0) means that P+ @ € x(0)
whenever P,Q € x(0). Now, in order to prove the assertion a), it is enough
to remark that for all z,y € W, P € x(z), and Q € x(y), the identity

P+ Q = Tx+y[A(T—:c(P)v T—y(Q>]

holds, hence P + @) is a perspective of x + y.
b) Based on the relation

py — Az = (= ANy —2) + My — 2) + (b — Mz,
we deduce that for all A € Ry, x € K[0], P € x(0), and Q € o()\), we have

According to the hypothesis (i) — (v), all the involved functions are discrete,
hence QP € x(Az). m

Corollary 4 If (W, x) is a l.h.w., then:

a) The horistology x is uniform.

b) The order K(x) is linear.

c) If (V,4) is another L.h.w., then a linear operator U : W — V is discrete
on W if and only if it is discrete at 0.

Proof. a) To each perspective P € x(0) we attach the prospect
mp={(z,y) :y € x+ P}.

It is easy to see that the family of all such prospects represents an ideal base
for a uniform horistology on W, in the sense of [1].
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b) Because of (1), for any x € W we also have
Kz] = 2+ K[0],

i.e. K is invariant under translations. Using (ii7). we similarly see that
(x,y) € K implies (Az, \y) € K, whenever A > 0.
¢) Since U is linear, for every x € W we have

U=T,0UoT_,,

which reduces the discreteness of U at x to its discreteness at 0. m
In the rest of the paper we will analyze some specific properties of the
perspectives P € x(0) in a Lh.w.

Definition 5 Let W be a real linear space. We say that the set A C W is
extensive if cA C A whenever a > 1. For an arbitrary subset X of W we
define the extension e(X) by the formula

e(X)=U{aX : :a>1}.

Relative to the extension operator e : P(W) — P(W) we mention the
following properties:

Proposition 6 If W is a real linear space, then:
1) For every X C W, e(X) is extensive.
2) A is extensive if and only if A = e(A).

A C B implies e(A) C e(B)

(AUB) =e(A)Ue(B) for all A,BCW.

3)
4)
5) e(ANB) Ce(A)Ne(B) forall A,B CW.

e
e
The proof is routine and will be omitted.

Lemma 7 If (W, ) is a L.h.w., then x(0) admits an ideal base consisting of
extensive prospects.

Proof. Because X C e(X) for all X C W, it is sufficient to show that
e(P) € x(0) holds for all P € x(0). In fact, using the discreteness of the
multiplication at (0,0), if we note

Q={aeR:a>1},
we obtain e(P) = M(Q, P) € x(0). m
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Remark 8 The proof of the above Lemma may also be based on the relation
between e(P) and K|[P], where K = K(x), and P € x(0). More precisely,
we have:

a) For all P € x(0), the set K[P] is extensive.

b) For every P € x(0), the inclusion e(P) C K[P] holds.

In fact, Lemma 7 follows by combining these properties with the general
fact that
{K[P]: P e x(x)}

is an ideal base of x(z), where x € W is arbitrary (see also [1]).
In order to prove a), we recall that

K[Pl={ye W :(z,y) € K for some x € P}.

If z € e(K[P]), then there exist y € K[P] and o > 1 such that z = ay.
But in this case (y,ay) € K too, hence using the membership (z,y) € K
for some x € P, we deduce that (z,z) € K. Consequently, z € K[P]. This
proves that e(K[P]) C K|[P], i.e. K[P] is extensive.

The second property follows from the former one, and from the monotony
of e, since P C K|[P] implies

e(P) C e(K[P]) = K[P).

Theorem 9 If (W, x) is a L.h.w., then there exists a family B C x(0) such
that:
[l
[lhs
[lhs
[lhy

0 ¢ P whenever P € B.

For every P,(Q) € B there is L € B such that PUQ C L.

Every P € B is extensive.

For every P € B there is S € B such that for all Q € B we have

[ i U

P+QCS.
[lhs] For every P € B and X\ > 0 there exists Q € B such that
AP C Q.
Proof. We will show that the family
B={P "* K[P]:Pex(0)}
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satisfies the conditions of the theorem. Thus, in order to prove [lhq], it is
sufficient to see that 0 ¢ P because 0 ¢ P for all P € x(0). Farther, if
P = K[P] and Q = K[Q], we have L = PUQ € x(0), hence L = K[L] is
the perspective which satisfies [lhy]. Condition [lh3] is assured by Lemma 7,
with the completion mentioned in Remark 8.

Because B C x(0), and the translation is discrete, we have

P+Q=U{y+Qex(y) :y€ P}

By [h4] there will exist S € x(0) such that P +@Q C S. The fourth condition
is verified for S = K[S].

The last property is a consequence of the discreteness of dilation D, at
0. In fact, for each P € B C x(0) we can find Q € x(0) such that AP C Q.
Then we consider Q = K[Q] € B, so that AP C Q. =

Theorem 10 Let W be a real linear space and let B C P(W) be such that
the conditions [lhi] — [lhs| from the above Theorem are fulfilled. If we note

x0)={PCW:PCP for some P¢cB}, and
x(@)=xz+x(0) for all zeW,

then x is a linear horistology on W.

Proof. Obviously, x(0) verifies [hs] and [h3], being the ideal generated by
B. It is also easily seen that [hy] is assured by [lh4]. B
In order to prove [h4], we may remark that if we take y € P C P € B and

Q € x(y) = y + x(0), then {y} € x(0), and Q = y + Q for some Q € x(0).
According to [lhy], there exists S € B such that

Q=y+QCS.
Consequently, x is a horistology on W. As usually, we note
K=K(x)={(v,y) e W?:3P € B such that y € z+ P}UJd.

Now, let us prove that y is linear, i.e. the conditions in Definition 2
are fulfilled. In fact, condition (i) is contained in the construction of x(x).
The discreteness at (0,0) of the addition A follows from [lh4]. Similarly, the
discreteness of the dilation is expressed in [lhs].

7



In order to prove (iv), we primarily note that if z € K [0], then for every
e > 0 we have {ex} € x(0), because ez € P holds for some P € B. If

Qe={ eR: A >ec>0}

is an arbitrary perspective of the origin of R, then

since P is extensive.
Finally, for (v), let us consider Q. = {\ € R: A > ¢ > 0} € ¢(0) and
P € x(0). It is easy to see that

M(Q., P) = {gsx :A>¢, ex €eP} =e(eP) CeP

holds for some P € B. According to [lhs], eP € x(0), hence the multiplication
M is discrete at (0,0). =

Remark 11 The conditions in Definition 2 are formulated with the aim to
allow a very detailed analysis, but they are not independent. For example, if
A >0, then {\} € 0(0), and for arbitrary P € x(0) we have

Dy(P) = M({A}, P),

hence (v) implies (iii). Similarly, if © € K[O], then {z} € x(0), and for all
Q € 0(0) it follows that

E.(Q) = M(Q,{x}),

i.e. (v) implies (iv).
On the other hand, (i) is essential in obtaining (1), i.e. even in the
definition of x, but we cannot deduce it from (ii). In fact, {x} € x(0) holds

if and only if x € K[0|, hence the discreteness of A at (0,0) involves only
particular elements x € W, while in (i) we need x to be arbitrary.
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