Linear Horistologies

Trandafir BĂLAN and Dana CONSTANTINESCU*

Abstract

The aim of the work is to investigate the relations between linearity and horistology in order to generalize the linear spaces endowed with super-additive norms, like the Minkowskian space-times.

AMS classification: 46C20, 06F20, 06A11, 83A05

Key words: linear horistology, discrete operations, space-time

Introduction. According to our previous paper [1], a **horistology** on the non-void set W (also called *world* if inspired by Relativity) is a function

$$\chi:W\to \mathcal{P}(\mathcal{P}(W))$$

for which:

 $[h_1]$ $x \notin P$ for all $x \in W$ and $P \in \chi(x)$;

 $[h_2] P \in \chi(x), Q \subseteq P \Longrightarrow Q \in \chi(x);$

 $[h_3]$ $P, Q \in \chi(x) \Longrightarrow P \cup Q \in \chi(x);$

 $[h_4] \ \forall P \in \chi(x), \exists Q \in \chi(x) \text{ such that } [y \in P \text{ and } R \in \chi(y)] \Longrightarrow [R \subseteq Q] \,.$

The pair (W, χ) represents a horistological world (or space, briefly h.w.). The elements of $\chi(x)$ are called perspectives of x. Obviously, $\chi(x)$ is an ideal of subsets of W. It is easy to prove that if (W, χ) is a h.w., then

$$K(\chi) = \{(x,y) : \{y\} \in \chi(x)\} \cup \delta$$

is an order on W (called causality in space-time).

The most important examples of h.w., including the Minkowskian spacetime, are linear spaces endowed with super-additive norms. Such a norm (also called *timer* when it measures time) is a functional

$$p: K[0] \to \mathbb{R}_+$$

^{*}University of Craiova, Romania

for which:

 $[t_1]$ p(x) = 0 if and only if x = 0

 $[t_2]$ $p(\lambda x) = \lambda p(x)$ for all $\lambda \in \mathbb{R}_+$ and $x \in K[0]$

 $[t_3]$ $p(x+y) \ge p(x) + p(y)$ for all $x, y \in K[0]$,

where K is a linear order on the real linear space W.

In this case, for each $x \in W$, $\chi(x)$ is defined by the ideal base

$$\beta(x) = \{ P \subset W : \exists r > 0 \text{ such that } P \subseteq H(x, r) \}$$

where

$$H(x,r) = \{ y \in W : p(y-x) > r \}$$

It is also remarkable that $K = K(\chi)$.

By analogy with the classical theory of the linear topological spaces (see [2]), where the operations are continuous functions, for the horistological worlds we will naturally ask these operations to be discrete (in the sense of [1]). In order to explain this condition, we recall that a function $f: W \to V$, where (W, χ) and (V, ψ) are h.w., is said to be discrete at x if

$$f(\chi(x)) \subseteq \psi(f(x)).$$

In addition, because the operations of a linear space are defined on Cartesian products, we mention that if (W_1, χ_1) and (W_2, χ_2) are horistological worlds, and $W = W_1 \times W_2$, then the *product* horistology on W is defined by

$$\gamma(x_1, x_2) = \{ P_1 \times P_2 : P_i \in \chi_i(x_i), i = 1, 2 \},\$$

which represents its ideal base.

Because the h.w. are essentially ordered sets, we deal only with real linear spaces. In particular, the *standard* horistology of \mathbb{R} is generated by the super-additive norm p(x) = x, defined on \mathbb{R}_+ , i.e. on the cone of the usual order of \mathbb{R} . This horistology will be noted σ .

Example 1 Let W be a real linear space, K be a linear order on W, and let $p: K[0] \to \mathbb{R}_+$ be a super-additive norm. If χ denotes the horistology generated by p, then the operations of W are discrete functions relative to χ . More precisely, for every $x_1, x_2 \in W$, $P_1 \in \chi(x_1)$ and $P_2 \in \chi(x_2)$, we have $P_1 + P_2 \in \chi(x_1 + x_2)$. In fact, by hypothesis there exist $r_1, r_2 > 0$ such that $P_i \subseteq H(x_i, r_i)$, i = 1, 2, hence for every $y_i \in P_i$, i = 1, 2, in accordance with $[t_3]$, we have

$$p(y_1 + y_2 - (x_1 + x_2)) > r_1 + r_2.$$

Similarly, the product with real numbers is a discrete function on $\mathbb{R}_+ \times K[0]$, as a consequence of $[t_2]$. In fact, if we consider $P \in \sigma(\lambda)$, and $Q \in \chi(x)$, this means that $P \subseteq H_{\mathbb{R}}(\lambda, \varepsilon)$ and $Q \subseteq H_W(x, r)$ for some $\varepsilon > 0$ and r > 0. If $\lambda \geq 0$, $(0, x) \in K$, $\mu > \varepsilon + \lambda$, and p(y - x) > r, then it follows that

$$p(\mu y - \lambda x) \ge \mu p(y - x) + (\mu - \lambda)p(x) > \varepsilon r$$

hence $PQ \subseteq H_W(\lambda x, \varepsilon r)$, and finally $PQ \in \chi(\lambda x)$.

This example contains many particular cases, namely the Minkowskian space-time, the event spaces, as well as \mathbb{R} , $C_{\mathbb{R}}([a,b])$, etc. In all these spaces, besides addition and multiplication, we may similarly see that translation, dilation and embedding are discrete functions too.

Definition 2 Let W be a real linear space, and let χ be a horistology on W. We say that χ is a **linear** horistology (**compatible** with linearity, etc.) if:

(i) For every $x \in W$, the translation $T_x : W \to W$, defined by

$$T_x(y) = x + y,$$

is discrete on W.

(ii) The addition $A: W \times W \to W$, defined by

$$A(x,y) = x + y,$$

is discrete at (0,0).

(iii) For every $\lambda > 0$, the dilation $D_{\lambda} : W \to W$, of values

$$D_{\lambda}(x) = \lambda x,$$

is discrete at 0.

(iv) For all $x \in K[0]$, the embedding of the real line $E_x : \mathbb{R} \to W$,

$$E_x(\lambda) = \lambda x,$$

is discrete at 0.

(v) The multiplication $M: \mathbb{R} \times W \to W$, defined by

$$M(\lambda, x) = \lambda x$$

is discrete at (0,0).

In this case, the pair (W, χ) will be called *linear horistological world* (briefly l.h.w.).

Proposition 3 In every l.h.w. we have:

- a) The addition is discrete on $W \times W$.
- b) The multiplication is discrete on $\mathbb{R}_+ \times K[0]$.

Proof. a) From (i) we deduce that for all $P \in \chi(0)$ and $x \in W$ we have $x + P \in \chi(x)$. Because $T_x^{-1} = T_{-x}$ is also discrete on W, and particularly at x, we obtain

$$\chi(x) = x + \chi(0). \tag{1}$$

On the other hand, the discreteness of A at (0,0) means that $P+Q \in \chi(0)$ whenever $P,Q \in \chi(0)$. Now, in order to prove the assertion a), it is enough to remark that for all $x,y \in W$, $P \in \chi(x)$, and $Q \in \chi(y)$, the identity

$$P + Q = T_{x+y}[A(T_{-x}(P), T_{-y}(Q))]$$

holds, hence P + Q is a perspective of x + y.

b) Based on the relation

$$\mu y - \lambda x = (\mu - \lambda)(y - x) + \lambda(y - x) + (\mu - \lambda)x,$$

we deduce that for all $\lambda \in \mathbb{R}_+$, $x \in K[0]$, $P \in \chi(0)$, and $Q \in \sigma(\lambda)$, we have

$$QP \subseteq T_{\lambda x} \{ A \langle A[D_{\lambda}(T_{-x}(P)), E_{x}(Q-\lambda)], M(Q-\lambda, T_{-x}(P)) \rangle \}.$$

According to the hypothesis (i) - (v), all the involved functions are discrete, hence $QP \in \chi(\lambda x)$.

Corollary 4 If (W, χ) is a l.h.w., then:

- a) The horistology χ is uniform.
- b) The order $K(\chi)$ is linear.
- c) If (V, ψ) is another l.h.w., then a linear operator $U : W \to V$ is discrete on W if and only if it is discrete at 0.

Proof. a) To each perspective $P \in \chi(0)$ we attach the prospect

$$\pi_P = \{(x, y) : y \in x + P\}.$$

It is easy to see that the family of all such prospects represents an ideal base for a uniform horistology on W, in the sense of [1].

b) Because of (1), for any $x \in W$ we also have

$$K[x] = x + K[0],$$

i.e. K is invariant under translations. Using (iii). we similarly see that $(x, y) \in K$ implies $(\lambda x, \lambda y) \in K$, whenever $\lambda \geq 0$.

c) Since U is linear, for every $x \in W$ we have

$$U = T_x \circ U \circ T_{-x},$$

which reduces the discreteness of U at x to its discreteness at 0.

In the rest of the paper we will analyze some specific properties of the perspectives $P \in \chi(0)$ in a l.h.w.

Definition 5 Let W be a real linear space. We say that the set $A \subseteq W$ is **extensive** if $\alpha A \subseteq A$ whenever $\alpha \geq 1$. For an arbitrary subset X of W we define the **extension** e(X) by the formula

$$e(X) = \cup \{\alpha X : \alpha \ge 1\}.$$

Relative to the extension operator $e: \mathcal{P}(W) \to \mathcal{P}(W)$ we mention the following properties:

Proposition 6 If W is a real linear space, then:

- 1) For every $X \subseteq W$, e(X) is extensive.
- 2) A is extensive if and only if A = e(A).
- 3) $A \subseteq B$ implies $e(A) \subseteq e(B)$
- 4) $e(A \cup B) = e(A) \cup e(B)$ for all $A, B \subseteq W$.
- 5) $e(A \cap B) \subseteq e(A) \cap e(B)$ for all $A, B \subseteq W$.

The proof is routine and will be omitted.

Lemma 7 If (W, χ) is a l.h.w., then $\chi(0)$ admits an ideal base consisting of extensive prospects.

Proof. Because $X \subseteq e(X)$ for all $X \subseteq W$, it is sufficient to show that $e(P) \in \chi(0)$ holds for all $P \in \chi(0)$. In fact, using the discreteness of the multiplication at (0,0), if we note

$$Q = \{ \alpha \in \mathbb{R} : \alpha \ge 1 \},$$

we obtain $e(P) = M(Q, P) \in \chi(0)$.

Remark 8 The proof of the above Lemma may also be based on the relation between e(P) and K[P], where $K = K(\chi)$, and $P \in \chi(0)$. More precisely, we have:

- a) For all $P \in \chi(0)$, the set K[P] is extensive.
- b) For every $P \in \chi(0)$, the inclusion $e(P) \subseteq K[P]$ holds.

In fact, Lemma 7 follows by combining these properties with the general fact that

$$\{K[P]: P \in \chi(x)\}$$

is an ideal base of $\chi(x)$, where $x \in W$ is arbitrary (see also [1]).

In order to prove a), we recall that

$$K[P] = \{ y \in W : (x, y) \in K \text{ for some } x \in P \}.$$

If $z \in e(K[P])$, then there exist $y \in K[P]$ and $\alpha \geq 1$ such that $z = \alpha y$. But in this case $(y, \alpha y) \in K$ too, hence using the membership $(x, y) \in K$ for some $x \in P$, we deduce that $(x, z) \in K$. Consequently, $z \in K[P]$. This proves that $e(K[P]) \subseteq K[P]$, i.e. K[P] is extensive.

The second property follows from the former one, and from the monotony of e, since $P \subseteq K[P]$ implies

$$e(P) \subseteq e(K[P]) = K[P].$$

Theorem 9 If (W, χ) is a l.h.w., then there exists a family $\mathcal{B} \subseteq \chi(0)$ such that:

 $[lh_1] \ 0 \notin \overline{P} \ whenever \overline{P} \in \mathcal{B}.$

 $[lh_2]$ For every $\overline{P}, \overline{Q} \in \mathcal{B}$ there is $\overline{L} \in \mathcal{B}$ such that $\overline{P} \cup \overline{Q} \subseteq \overline{L}$.

[lh_3] Every $\overline{P} \in \mathcal{B}$ is extensive.

[lh_4] For every $\overline{P} \in \mathcal{B}$ there is $\overline{S} \in \mathcal{B}$ such that for all $\overline{Q} \in \mathcal{B}$ we have

$$\overline{P}+\overline{Q}\subseteq \overline{S}.$$

[lh_5] For every $\overline{P} \in \mathcal{B}$ and $\lambda > 0$ there exists $\overline{Q} \in \mathcal{B}$ such that

$$\lambda \overline{P} \subseteq \overline{Q}.$$

Proof. We will show that the family

$$\mathcal{B} = \{ \bar{P} \stackrel{not.}{=} K[P] : P \in \chi(0) \}$$

satisfies the conditions of the theorem. Thus, in order to prove $[lh_1]$, it is sufficient to see that $0 \notin \overline{P}$ because $0 \notin P$ for all $P \in \chi(0)$. Farther, if $\overline{P} = K[P]$ and $\overline{Q} = K[Q]$, we have $L = P \cup Q \in \chi(0)$, hence $\overline{L} = K[L]$ is the perspective which satisfies $[lh_2]$. Condition $[lh_3]$ is assured by Lemma 7, with the completion mentioned in Remark 8.

Because $\mathcal{B} \subseteq \chi(0)$, and the translation is discrete, we have

$$\overline{P} + \overline{Q} = \cup \{y + \overline{Q} \in \chi(y) : y \in \overline{P}\}.$$

By $[h_4]$ there will exist $S \in \chi(0)$ such that $\overline{P} + \overline{Q} \subseteq S$. The fourth condition is verified for $\overline{S} = K[S]$.

The last property is a consequence of the discreteness of dilation D_{λ} at 0. In fact, for each $\overline{P} \in \mathcal{B} \subseteq \chi(0)$ we can find $Q \in \chi(0)$ such that $\lambda \overline{P} \subseteq Q$. Then we consider $\overline{Q} = K[Q] \in \mathcal{B}$, so that $\lambda \overline{P} \subseteq \overline{Q}$.

Theorem 10 Let W be a real linear space and let $\mathcal{B} \subset \mathcal{P}(W)$ be such that the conditions $[lh_1] - [lh_5]$ from the above Theorem are fulfilled. If we note

$$\chi(0) = \{ P \subset W : P \subseteq \overline{P} \text{ for some } \overline{P} \in \mathcal{B} \}, \text{ and }$$

$$\chi(x) = x + \chi(0)$$
 for all $x \in W$,

then χ is a linear horistology on W.

Proof. Obviously, $\chi(0)$ verifies $[h_2]$ and $[h_3]$, being the ideal generated by \mathcal{B} . It is also easily seen that $[h_1]$ is assured by $[lh_1]$.

In order to prove $[h_4]$, we may remark that if we take $y \in P \subseteq \overline{P} \in \mathcal{B}$ and $Q \in \chi(y) = y + \chi(0)$, then $\{y\} \in \chi(0)$, and $Q = y + \widetilde{Q}$ for some $\widetilde{Q} \in \chi(0)$. According to $[lh_4]$, there exists $\overline{S} \in \mathcal{B}$ such that

$$Q = y + \widetilde{Q} \subseteq \overline{S}.$$

Consequently, χ is a horistology on W. As usually, we note

$$K = K(\chi) = \{(x, y) \in W^2 : \exists \overline{P} \in \mathcal{B} \text{ such that } y \in x + \overline{P}\} \cup \delta.$$

Now, let us prove that χ is linear, i.e. the conditions in Definition 2 are fulfilled. In fact, condition (i) is contained in the construction of $\chi(x)$. The discreteness at (0,0) of the addition A follows from $[lh_4]$. Similarly, the discreteness of the dilation is expressed in $[lh_5]$.

In order to prove (iv), we primarily note that if $x \in K[0]$, then for every $\varepsilon > 0$ we have $\{\varepsilon x\} \in \chi(0)$, because $\varepsilon x \in \overline{P}$ holds for some $\overline{P} \in \mathcal{B}$. If

$$Q_{\varepsilon} = \{ \lambda \in \mathbb{R} : \lambda \ge \varepsilon > 0 \}$$

is an arbitrary perspective of the origin of \mathbb{R} , then

$$E_x(Q_{\varepsilon}) = \{\frac{\lambda}{\varepsilon} \varepsilon x : \frac{\lambda}{\varepsilon} \ge 1\} \subseteq \overline{P}$$

since \overline{P} is extensive.

Finally, for (v), let us consider $Q_{\varepsilon} = \{\lambda \in \mathbb{R} : \lambda \geq \varepsilon > 0\} \in \sigma(0)$ and $P \in \chi(0)$. It is easy to see that

$$M(Q_{\varepsilon}, P) = \{\frac{\lambda}{\varepsilon} \varepsilon x : \lambda \ge \varepsilon, \ \varepsilon x \in \varepsilon P\} = e(\varepsilon P) \subseteq \varepsilon \overline{P}$$

holds for some $\overline{P} \in \mathcal{B}$. According to $[lh_5]$, $\varepsilon \overline{P} \in \chi(0)$, hence the multiplication M is discrete at (0,0).

Remark 11 The conditions in Definition 2 are formulated with the aim to allow a very detailed analysis, but they are not independent. For example, if $\lambda > 0$, then $\{\lambda\} \in \sigma(0)$, and for arbitrary $P \in \chi(0)$ we have

$$D_{\lambda}(P) = M(\{\lambda\}, P),$$

hence (v) implies (iii). Similarly, if $x \in K[0]$, then $\{x\} \in \chi(0)$, and for all $Q \in \sigma(0)$ it follows that

$$E_x(Q) = M(Q, \{x\}),$$

i.e. (v) implies (iv).

On the other hand, (i) is essential in obtaining (1), i.e. even in the definition of χ , but we cannot deduce it from (ii). In fact, $\{x\} \in \chi(0)$ holds if and only if $x \in K[0]$, hence the discreteness of A at (0,0) involves only particular elements $x \in W$, while in (i) we need x to be arbitrary.

REFERENCES

- [1] Bălan Trandafir, Generalizing the Minkowskian space-time, to appear in Stud. Cerc. Mat., Tom 44 (1992)
- [2] Bourbaki Nicolas, Éléments de Mathématique, Première Partie, Livre III, Topologie Générale, Hermann, Paris.