Linear Horistologies

Trandafir BĂLAN and Dana CONSTANTINESCU*

Abstract

The aim of the work is to investigate the relations between linearity and horistology in order to generalize the linear spaces endowed with super-additive norms, like the Minkowskian space-times.

AMS classification: 46C20, 06F20, 06A11, 83A05
Key words: linear horistology, discrete operations, space-time
Introduction. According to our previous paper [1], a horistology on the non-void set W (also called world if inspired by Relativity) is a function

$$
\chi: W \rightarrow \mathcal{P}(\mathcal{P}(W))
$$

for which:
[h_{1}] $x \notin P$ for all $x \in W$ and $P \in \chi(x)$;
$\left[h_{2}\right] P \in \chi(x), Q \subseteq P \Longrightarrow Q \in \chi(x) ;$
$\left[h_{3}\right] P, Q \in \chi(x) \Longrightarrow P \cup Q \in \chi(x)$;
$\left[h_{4}\right] \forall P \in \chi(x), \exists Q \in \chi(x)$ such that $[y \in P$ and $R \in \chi(y)] \Longrightarrow[R \subseteq Q]$.
The pair (W, χ) represents a horistological world (or space, briefly h.w.). The elements of $\chi(x)$ are called perspectives of x. Obviously, $\chi(x)$.is an ideal of subsets of W. It is easy to prove that if (W, χ) is a h.w., then

$$
K(\chi)=\{(x, y):\{y\} \in \chi(x)\} \cup \delta
$$

is an order on W (called causality in space-time).
The most important examples of h.w., including the Minkowskian spacetime, are linear spaces endowed with super-additive norms. Such a norm (also called timer when it measures time) is a functional

$$
p: K[0] \rightarrow \mathbb{R}_{+}
$$

[^0]for which:
$\left[t_{1}\right] p(x)=0$ if and only if $x=0$
$\left[t_{2}\right] \quad p(\lambda x)=\lambda p(x)$ for all $\lambda \in \mathbb{R}_{+}$and $x \in K[0]$
$\left[t_{3}\right] \quad p(x+y) \geq p(x)+p(y)$ for all $x, y \in K[0]$,
where K is a linear order on the real linear space W.
In this case, for each $x \in W, \chi(x)$ is defined by the ideal base
$$
\beta(x)=\{P \subset W: \exists r>0 \text { such that } P \subseteq H(x, r)\}
$$
where
$$
H(x, r)=\{y \in W: p(y-x)>r\}
$$

It is also remarkable that $K=K(\chi)$.
By analogy with the classical theory of the linear topological spaces (see [2]), where the operations are continuous functions, for the horistological worlds we will naturally ask these operations to be discrete (in the sense of [1]). In order to explain this condition, we recall that a function $f: W \rightarrow V$, where (W, χ) and (V, ψ) are h.w., is said to be discrete at x if

$$
f(\chi(x)) \subseteq \psi(f(x))
$$

In addition, because the operations of a linear space are defined on Cartesian products, we mention that if $\left(W_{1}, \chi_{1}\right)$ and $\left(W_{2}, \chi_{2}\right)$ are horistological worlds, and $W=W_{1} \times W_{2}$, then the product horistology on W is defined by

$$
\gamma\left(x_{1}, x_{2}\right)=\left\{P_{1} \times P_{2}: P_{i} \in \chi_{i}\left(x_{i}\right), i=1,2\right\}
$$

which represents its ideal base.
Because the h.w. are essentially ordered sets, we deal only with real linear spaces. In particular, the standard horistology of \mathbb{R} is generated by the super-additive norm $p(x)=x$, defined on \mathbb{R}_{+}, i.e. on the cone of the usual order of \mathbb{R}. This horistology will be noted σ.

Example 1 Let W be a real linear space, K be a linear order on W, and let $p: K[0] \rightarrow \mathbb{R}_{+}$be a super-additive norm. If χ denotes the horistology generated by p, then the operations of W are discrete functions relative to χ. More precisely, for every $x_{1}, x_{2} \in W, P_{1} \in \chi\left(x_{1}\right)$ and $P_{2} \in \chi\left(x_{2}\right)$, we have $P_{1}+P_{2} \in \chi\left(x_{1}+x_{2}\right)$. In fact, by hypothesis there exist $r_{1}, r_{2}>0$ such that $P_{i} \subseteq H\left(x_{i}, r_{i}\right), i=1,2$, hence for every $y_{i} \in P_{i}, i=1,2$, in accordance with [t_{3}], we have

$$
p\left(y_{1}+y_{2}-\left(x_{1}+x_{2}\right)\right)>r_{1}+r_{2} .
$$

Similarly, the product with real numbers is a discrete function on $\mathbb{R}_{+} \times K[0]$, as a consequence of $\left[t_{2}\right]$. In fact, if we consider $P \in \sigma(\lambda)$, and $Q \in \chi(x)$, this means that $P \subseteq H_{\mathbb{R}}(\lambda, \varepsilon)$ and $Q \subseteq H_{W}(x, r)$ for some $\varepsilon>0$ and $r>0$. If $\lambda \geq 0,(0, x) \in K, \mu>\varepsilon+\lambda$, and $p(y-x)>r$, then it follows that

$$
p(\mu y-\lambda x) \geq \mu p(y-x)+(\mu-\lambda) p(x)>\varepsilon r,
$$

hence $P Q \subseteq H_{W}(\lambda x, \varepsilon r)$, and finally $P Q \in \chi(\lambda x)$.
This example contains many particular cases, namely the Minkowskian space-time, the event spaces, as well as $\mathbb{R}, C_{\mathbb{R}}([a, b])$, etc. In all these spaces, besides addition and multiplication, we may similarly see that translation, dilation and embedding are discrete functions too.

Definition 2 Let W be a real linear space, and let χ be a horistology on W. We say that χ is a linear horistology (compatible with linearity, etc.) if:
(i) For every $x \in W$, the translation $T_{x}: W \rightarrow W$, defined by

$$
T_{x}(y)=x+y
$$

is discrete on W.
(ii) The addition $A: W \times W \rightarrow W$, defined by

$$
A(x, y)=x+y
$$

is discrete at $(0,0)$.
(iii) For every $\lambda>0$, the dilation $D_{\lambda}: W \rightarrow W$, of values

$$
D_{\lambda}(x)=\lambda x
$$

is discrete at 0.
(iv) For all $x \in K[0]$, the embedding of the real line $E_{x}: \mathbb{R} \rightarrow W$,

$$
E_{x}(\lambda)=\lambda x
$$

is discrete at 0.
(v) The multiplication $M: \mathbb{R} \times W \rightarrow W$, defined by

$$
M(\lambda, x)=\lambda x
$$

is discrete at $(0,0)$.

In this case, the pair (W, χ) will be called linear horistological world (briefly l.h.w.).

Proposition 3 In every l.h.w. we have:
a) The addition is discrete on $W \times W$.
b) The multiplication is discrete on $\mathbb{R}_{+} \times K[0]$.

Proof. a) From (i) we deduce that for all $P \in \chi(0)$ and $x \in W$ we have $x+P \in \chi(x)$. Because $T_{x}^{-1}=T_{-x}$ is also discrete on W, and particularly at x, we obtain

$$
\begin{equation*}
\chi(x)=x+\chi(0) . \tag{1}
\end{equation*}
$$

On the other hand, the discreteness of A at $(0,0)$ means that $P+Q \in \chi(0)$ whenever $P, Q \in \chi(0)$. Now, in order to prove the assertion a), it is enough to remark that for all $x, y \in W, P \in \chi(x)$, and $Q \in \chi(y)$, the identity

$$
P+Q=T_{x+y}\left[A\left(T_{-x}(P), T_{-y}(Q)\right]\right.
$$

holds, hence $P+Q$ is a perspective of $x+y$.
b) Based on the relation

$$
\mu y-\lambda x=(\mu-\lambda)(y-x)+\lambda(y-x)+(\mu-\lambda) x,
$$

we deduce that for all $\lambda \in \mathbb{R}_{+}, x \in K[0], P \in \chi(0)$, and $Q \in \sigma(\lambda)$, we have

$$
Q P \subseteq T_{\lambda x}\left\{A\left\langle A\left[D_{\lambda}\left(T_{-x}(P)\right), E_{x}(Q-\lambda)\right], M\left(Q-\lambda, T_{-x}(P)\right)\right\rangle\right\}
$$

According to the hypothesis $(i)-(v)$, all the involved functions are discrete, hence $Q P \in \chi(\lambda x)$.

Corollary 4 If (W, χ) is a l.h.w., then:
a) The horistology χ is uniform.
b) The order $K(\chi)$ is linear.
c) If (V, ψ) is another l.h.w., then a linear operator $U: W \rightarrow V$ is discrete on W if and only if it is discrete at 0.

Proof. a) To each perspective $P \in \chi(0)$ we attach the prospect

$$
\pi_{P}=\{(x, y): y \in x+P\}
$$

It is easy to see that the family of all such prospects represents an ideal base for a uniform horistology on W, in the sense of [1].
b) Because of (1), for any $x \in W$ we also have

$$
K[x]=x+K[0],
$$

i.e. K is invariant under translations. Using (iii). we similarly see that $(x, y) \in K$ implies $(\lambda x, \lambda y) \in K$, whenever $\lambda \geq 0$.
c) Since U is linear, for every $x \in W$ we have

$$
U=T_{x} \circ U \circ T_{-x},
$$

which reduces the discreteness of U at x to its discreteness at 0 .
In the rest of the paper we will analyze some specific properties of the perspectives $P \in \chi(0)$ in a l.h.w.

Definition 5 Let W be a real linear space. We say that the set $A \subseteq W$ is extensive if $\alpha A \subseteq A$ whenever $\alpha \geq 1$. For an arbitrary subset X of W we define the extension $e(X)$ by the formula

$$
e(X)=\cup\{\alpha X: \alpha \geq 1\}
$$

Relative to the extension operator $e: \mathcal{P}(W) \rightarrow \mathcal{P}(W)$ we mention the following properties:

Proposition 6 If W is a real linear space, then:

1) For every $X \subseteq W, e(X)$ is extensive.
2) A is extensive if and only if $A=e(A)$.
3) $A \subseteq B$ implies $e(A) \subseteq e(B)$
4) $e(A \cup B)=e(A) \cup e(B)$ for all $A, B \subseteq W$.
5) $e(A \cap B) \subseteq e(A) \cap e(B)$ for all $A, B \subseteq W$.

The proof is routine and will be omitted.
Lemma 7 If (W, χ) is a l.h.w., then $\chi(0)$ admits an ideal base consisting of extensive prospects.

Proof. Because $X \subseteq e(X)$ for all $X \subseteq W$, it is sufficient to show that $e(P) \in \chi(0)$ holds for all $P \in \chi(0)$. In fact, using the discreteness of the multiplication at $(0,0)$, if we note

$$
Q=\{\alpha \in \mathbb{R}: \alpha \geq 1\}
$$

we obtain $e(P)=M(Q, P) \in \chi(0)$.

Remark 8 The proof of the above Lemma may also be based on the relation between $e(P)$ and $K[P]$, where $K=K(\chi)$, and $P \in \chi(0)$. More precisely, we have:
a) For all $P \in \chi(0)$, the set $K[P]$ is extensive.
b) For every $P \in \chi(0)$, the inclusion $e(P) \subseteq K[P]$ holds.

In fact, Lemma 7 follows by combining these properties with the general fact that

$$
\{K[P]: P \in \chi(x)\}
$$

is an ideal base of $\chi(x)$, where $x \in W$ is arbitrary (see also [1]).
In order to prove a), we recall that

$$
K[P]=\{y \in W:(x, y) \in K \quad \text { for some } x \in P\}
$$

If $z \in e(K[P])$, then there exist $y \in K[P]$ and $\alpha \geq 1$ such that $z=\alpha y$. But in this case $(y, \alpha y) \in K$ too, hence using the membership $(x, y) \in K$ for some $x \in P$, we deduce that $(x, z) \in K$. Consequently, $z \in K[P]$. This proves that $e(K[P]) \subseteq K[P]$, i.e. $K[P]$ is extensive.

The second property follows from the former one, and from the monotony of e, since $P \subseteq K[P]$ implies

$$
e(P) \subseteq e(K[P])=K[P] .
$$

Theorem 9 If (W, χ) is a l.h.w., then there exists a family $\mathcal{B} \subseteq \chi(0)$ such that:
$\left[l h_{1}\right] 0 \notin \bar{P}$ whenever $\bar{P} \in \mathcal{B}$.
$\left[h_{2}\right]$ For every $\bar{P}, \bar{Q} \in \mathcal{B}$ there is $\bar{L} \in \mathcal{B}$ such that $\bar{P} \cup \bar{Q} \subseteq \bar{L}$.
$\left[l h_{3}\right]$ Every $\bar{P} \in \mathcal{B}$ is extensive.
$\left[l h_{4}\right]$ For every $\bar{P} \in \mathcal{B}$ there is $\bar{S} \in \mathcal{B}$ such that for all $\bar{Q} \in \mathcal{B}$ we have

$$
\bar{P}+\bar{Q} \subseteq \bar{S}
$$

$\left[h_{5}\right]$ For every $\bar{P} \in \mathcal{B}$ and $\lambda>0$ there exists $\bar{Q} \in \mathcal{B}$ such that

$$
\lambda \bar{P} \subseteq \bar{Q}
$$

Proof. We will show that the family

$$
\mathcal{B}=\{\bar{P} \stackrel{\text { not. }}{=} K[P]: P \in \chi(0)\}
$$

satisfies the conditions of the theorem. Thus, in order to prove $\left[l h_{1}\right]$, it is sufficient to see that $0 \notin \bar{P}$ because $0 \notin P$ for all $P \in \chi(0)$. Farther, if $\bar{P}=K[P]$ and $\bar{Q}=K[Q]$, we have $L=P \cup Q \in \chi(0)$, hence $\bar{L}=K[L]$ is the perspective which satisfies $\left[l h_{2}\right]$. Condition $\left[l h_{3}\right]$ is assured by Lemma 7, with the completion mentioned in Remark 8.

Because $\mathcal{B} \subseteq \chi(0)$, and the translation is discrete, we have

$$
\bar{P}+\bar{Q}=\cup\{y+\bar{Q} \in \chi(y): y \in \bar{P}\} .
$$

By $\left[h_{4}\right]$ there will exist $S \in \chi(0)$ such that $\bar{P}+\bar{Q} \subseteq S$. The fourth condition is verified for $\bar{S}=K[S]$.

The last property is a consequence of the discreteness of dilation D_{λ} at 0 . In fact, for each $\bar{P} \in \mathcal{B} \subseteq \chi(0)$ we can find $Q \in \chi(0)$ such that $\lambda \bar{P} \subseteq Q$. Then we consider $\bar{Q}=K[Q] \in \mathcal{B}$, so that $\lambda \bar{P} \subseteq \bar{Q}$.

Theorem 10 Let W be a real linear space and let $\mathcal{B} \subset \mathcal{P}(W)$ be such that the conditions $\left[l h_{1}\right]-\left[l h_{5}\right]$ from the above Theorem are fulfilled. If we note

$$
\begin{gathered}
\chi(0)=\{P \subset W: P \subseteq \bar{P} \text { for some } \bar{P} \in \mathcal{B}\}, \text { and } \\
\chi(x)=x+\chi(0) \text { for all } x \in W,
\end{gathered}
$$

then χ is a linear horistology on W.
Proof. Obviously, $\chi(0)$ verifies $\left[h_{2}\right]$ and $\left[h_{3}\right]$, being the ideal generated by \mathcal{B}. It is also easily seen that $\left[h_{1}\right]$ is assured by $\left[l h_{1}\right]$.

In order to prove $\left[h_{4}\right]$, we may remark that if we take $y \in P \subseteq \bar{P}_{\widetilde{Q}} \in \mathcal{B}$ and $Q \in \chi(y)=y+\chi(0)$, then $\{y\} \in \chi(0)$, and $Q=y+\widetilde{Q}$ for some $\widetilde{Q} \in \chi(0)$. According to $\left[l h_{4}\right]$, there exists $\bar{S} \in \mathcal{B}$ such that

$$
Q=y+\widetilde{Q} \subseteq \bar{S}
$$

Consequently, χ is a horistology on W. As usually, we note

$$
K=K(\chi)=\left\{(x, y) \in W^{2}: \exists \bar{P} \in \mathcal{B} \text { such that } y \in x+\bar{P}\right\} \cup \delta
$$

Now, let us prove that χ is linear, i.e. the conditions in Definition 2 are fulfilled. In fact, condition (i) is contained in the construction of $\chi(x)$. The discreteness at $(0,0)$ of the addition A follows from $\left[l h_{4}\right]$. Similarly, the discreteness of the dilation is expressed in $\left[l h_{5}\right]$.

In order to prove (iv), we primarily note that if $x \in \dot{K}[0]$, then for every $\varepsilon>0$ we have $\{\varepsilon x\} \in \chi(0)$, because $\varepsilon x \in \bar{P}$ holds for some $\bar{P} \in \mathcal{B}$. If

$$
Q_{\varepsilon}=\{\lambda \in \mathbb{R}: \lambda \geq \varepsilon>0\}
$$

is an arbitrary perspective of the origin of \mathbb{R}, then

$$
E_{x}\left(Q_{\varepsilon}\right)=\left\{\frac{\lambda}{\varepsilon} \varepsilon x: \frac{\lambda}{\varepsilon} \geq 1\right\} \subseteq \bar{P}
$$

since \bar{P} is extensive.
Finally, for (v), let us consider $Q_{\varepsilon}=\{\lambda \in \mathbb{R}: \lambda \geq \varepsilon>0\} \in \sigma(0)$ and $P \in \chi(0)$. It is easy to see that

$$
M\left(Q_{\varepsilon}, P\right)=\left\{\frac{\lambda}{\varepsilon} \varepsilon x: \lambda \geq \varepsilon, \varepsilon x \in \varepsilon P\right\}=e(\varepsilon P) \subseteq \varepsilon \bar{P}
$$

holds for some $\bar{P} \in \mathcal{B}$. According to $\left[l h_{5}\right], \varepsilon \bar{P} \in \chi(0)$, hence the multiplication M is discrete at $(0,0)$.

Remark 11 The conditions in Definition 2 are formulated with the aim to allow a very detailed analysis, but they are not independent. For example, if $\lambda>0$, then $\{\lambda\} \in \sigma(0)$, and for arbitrary $P \in \chi(0)$ we have

$$
D_{\lambda}(P)=M(\{\lambda\}, P)
$$

hence (v) implies (iii). Similarly, if $x \in \dot{K}[0]$, then $\{x\} \in \chi(0)$, and for all $Q \in \sigma(0)$ it follows that

$$
E_{x}(Q)=M(Q,\{x\})
$$

i.e. (v) implies (iv).

On the other hand, (i) is essential in obtaining (1), i.e. even in the definition of χ, but we cannot deduce it from (ii). In fact, $\{x\} \in \chi(0)$ holds if and only if $x \in \dot{K}[0]$, hence the discreteness of A at $(0,0)$ involves only particular elements $x \in W$, while in (i) we need x to be arbitrary.

REFERENCES

[1] Bălan Trandafir, Generalizing the Minkowskian space-time, to appear in Stud. Cerc. Mat.,Tom 44 (1992)
[2] Bourbaki Nicolas, Éléments de Mathématique, Première Partie, Livre III, Topologie Générale, Hermann, Paris.

[^0]: *University of Craiova, Romania

