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Abstract

The horistological structures turn out to be a natural framework
for the study of discrete sets, which extends the �niteness. The knowl-
edge of the family of discrete sets allows recovering the horistological
structure, and reformulating the discreteness of a function. Similarly
to the role of topology in the study of continuum, the horistological
discreteness has a purely theoretic motivation; however, this topic is
strongly connected to special relativity, discrete event systems, and
other practical �elds.
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In the sequel we note by S an arbitrary non-void set. The binary relation

� = f(x; x) : x 2 Sg

represents the equality on S. If K is a binary relation on S, then
0

K = Kn�
is said to be the strict K. We use the term order in its strict sense, which is
more suitable to causality. More exactly, K � S � S is said to be an order
on S if it is re�exive, i.e. � � K, and sensu stricto (brie�y s.s.) transitive,
which means

K �
0

K �
0

K and
0

K �K �
0

K. (0)

Condition (0) matter-of-factly assures the anti-symmetry (K \K�1 = �).

�e-mail: ttbalan@yahoo.com, mpred@central.ucv.ro
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The section of K at a point x is de�ned by

K[x] = fy 2 S : (x; y) 2 Kg,

and the section of K at a set P 2 P(S) means

K[P ]
def:
= fz 2 S : 9y 2 P such that (y; z) 2 Kg = [fK[y] : y 2 Pg.

As usually, to each function � : S ! P(P(S)) we attach the relation

K� = f(x; y) : 9P 2 �(x) such that y 2 Pg [ �.

Taking [BT ] as a starting point, we remind the axioms of a horistology:

De�nition 1 Let S be a non-void set. The function � : S ! P(P(S)) is
called horistology on the set S if it satis�es the conditions:
[h1] x =2 P for all x 2 S and P 2 �(x);
[h2] P 2 �(x); Q � P =) Q 2 �(x);
[h3] P;Q 2 �(x) =) P [Q 2 �(x);
[h4] 8P 2 �(x);9H 2 �(x) such that [y 2 P and Q 2 �(y)] =) [Q � H] :

We say that the pair (S; �) is a horistological space. The conditions [h2]
and [h3] show that �(x) forms an ideal at each x 2 S, which consists of
so-called perspectives of x.

Example 2 The relativist space-times represent the simplest cases of real
horistological spaces. For example, S = R2 is a Minkowskian space-time if
we endow it with the causal order

K = f((t1; s1); (t2; s2)) : t2 � t1 > js2 � s1jg [ �,

and with the super-additive metric � : K ! R+, of values

�((t1; s1); (t2; s2)) =
p
(t2 � t1)2 � (s2 � s1)2.

Using � we �rst de�ne the hyperbolic perspectives

H((t0; s0); r) = f(t; s) 2 K[(t0; s0)] : �((t0; s0); (t; s)) > rg

of center (t0; s0) and radius r > 0, and �nally

�((t0; s0)) = fP 2 P(S) : 9r > 0 such that P � H((t0; s0); r)g.

Similar constructions are possible in R4 and more general worlds of events
(see [BT ], [CB], [B � P ], etc.).
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Proposition 3 If (S; �) is a horistological space, then K� is an order.

The proof is immediate; condition (0) follows from [h4]. In particular, in
the above Minkowskian space-time we have K� = K.

Proposition 4 Let � � S � S be an order on S. If � : S ! P(P(S)) is a
horistology on S, then the restriction �j� : S ! P(P(S)), of values

�j�(x) = fP \ �[x] : P 2 �(x)g

is a horistology too. In addition, K�j� = � \K�.

Lemma 5 If the function � : S ! P(P(S)) satis�es the condition [h2], then
[h4] is equivalent to:
[h�4] P 2 �(x)() K�[P ] 2 �(x).

Proof. Let us show that in the presence of [h2] and [h4], P 2 �(x) implies
K�[P ] 2 �(x). In fact, using [h2], this membership follows from K�[P ] � H,
where H 2 �(x) is that of [h4]. To prove this inclusion, if z 2 K�[P ], then
we may take Q = fzg in [h4], and we obtain z 2 H.
The opposite implication in [h4]� follows from [h2] and the re�exivity of

K�, which assures the inclusion P � K�[P ]. Consequently, [h4]� holds.
Conversely, if we suppose the conditions [h2] and [h4]�, then [h4] holds

with H = K�[P ]. In fact, from y 2 P , Q 2 �(y), and z 2 Q it follows that
z 2 H, hence Q � H.

De�nition 6 Let � be an order on the horistological space (S; �), such that
� � K�, and let M be a subset of S. We say that a point x 2 M is �-
detachable from M (alternatively, M is �-discrete at x, etc.) if

M \
0

�[x] 2 �(x).

The set of all �-detachable points of M is called �-discrete part of M ; it
is noted @�(M). If each point of M is �-detachable, i.e. @�(M) = M , then
we consider that M is �-discrete. The function

@� : P(S) �! P(S),

which extracts the �-discrete part @�(M) of each subset M 2 P(S), is called
operator of �-discreteness.
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In the case � = K�, we may omit mentioning �, and simply speak
of detachability, discreteness, etc. Alternatively, we may interpret the �-
discreteness as discreteness relative to �j�.
Relative to this notion of discreteness we mention:

Proposition 7 Let � : S ! P(P(S)) be a horistology and let � be an order
on S, such that � � K�. The operator @� has the properties:
[d0] @�(M) �M for all M 2 P(S);
[d1] card M 2 N =)@�(M) =M ;
[d2] L �M=)L\@�(M) � @�(L;)
[d3] @�(M) \ @�(L) � @�(M [ L);

[d4] x 2 @�(M)() x 2M \ @�
�
fxg [ �

�
M \

0

�[x]

��
;

[d5] For all x 2 S and M �
0

�[x] we have

x 2 @�(fxg [M)() x 2 @� (fxg [ � [M ]) ;

[d6] � � �=)@�(M)�@�(M);
[d7] f@�(M) =M and � � �g=)@�(M) =M ;
[d8] f@�(M) =M and L �Mg=)@�(L) = L;
[d9] @� (@�(M)) = @�(M).

Proof. [d0] follows from the very de�nitions of @�; it says that the operator
@� is contractive.
[d1] shows that the �nite sets are �-discrete for all � � K�. In fact, for

each y 2
0

K� we have fyg 2 �(x). Consequently, according to [h3], every

�nite set in
0

K�[x] is also a perspective of x. In our case, M is �nite, and

M \
0

K�[x] is a fortiori �nite, hence M \
0

K�[x] 2 �(x). In addition, from

� � K� it follows that M \
0

�[x] � M \
0

K�[x], so that according to [h2],

M \
0

�[x] 2 �(x) too. By using this result at arbitrary x in M , we may
conclude that M is �-discrete at each of its points, i.e. @�(M) =M .
[d2] establishes that passing to smaller sets preserves the property of being

detachable. It follows from the inclusion L \
0

�[x] �M \
0

�[x] and [h2].
[d3] is a consequence of [h3]. However, we mention that this inclusion is

frequently strict, e.g. the case when M = fxg, and x =2 L.
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[d4] is a characterization of the �-detachability. First o¤, let us remark
that both implications in [d4] make use of a general set theoretical relation,
which holds for sensu stricto orders, namely�

fxg [ �
�
M \

0

�[x]

��
\

0

�[x] = �

�
M \

0

�[x]

�
. (1)

To justify this equality we may take into account that x =2
0

�[x], so that a De
Morgan transformation of the left hand term gives�

fxg [ �
�
M \

0

�[x]

��
\

0

�[x] = �

�
M \

0

�[x]

�
\

0

�[x].

On the other hand, it is easy to see that

�

�
M \

0

�[x]

�
\

0

�[x] = �

�
M \

0

�[x]

�
,

i.e. �[M \
0

�[x]] �
0

�[x]. In fact, if z 2 �[M \
0

�[x]], then there is an

y 2 M \
0

�[x] such that (y; z) 2 �. But y 2
0

�[x] means (x; y) 2
0

�, so that

the strict transitivity of �, expressed by (0), leads to (x; z) 2
0

�. Equivalently,

z 2
0

�[x], hence (1) is correct.

To prove "=)" we start with x 2M andM\
0

�[x] 2 �(x). Using [h4]� we
obtain K�[M \

0

�[x]] 2 �(x), and by [h2], �[M \
0

�[x]] 2 �(x). Consequently,
according to de�nition 2, from (1) we deduce

x 2 @�
�
fxg [ �

�
M \

0

�[x]

��
.

Finally, x 2M holds by hypothesis, hence "=)" is proved.
Conversely, let us take x 2 M and x 2 @�

�
fxg [ �

�
M \

0

�[x]

��
. By

de�nition, the latter membership means�
fxg [ �

�
M \

0

�[x]

��
\

0

�[x] 2 �(x),

or equivalently, via (1), �
�
M \

0

�[x]

�
2 �(x).
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Finally, because � is re�exive, we have M \
0

�[x] � �
�
M \

0

�[x]

�
, hence

according to [h2] we obtain M \
0

�[x] 2 �(x). Together with x 2 M , this
means x 2 @�(M).
[d5] essentially follows from [h4]

�. By hypothesis, we have

(fxg [M) \
0

�[x] =M \
0

�[x] =M 2 �(x).

According to [h4]� and [h2], � [M ] 2 �(x) too. Because � is s.s. transitive,
we have � [M ] �

0

�[x], and

(fxg [ � [M ]) \
0

�[x] = � [M ] \
0

�[x] = � [M ] 2 �(x).

Consequently, x 2 @� (fxg [ � [M ]).
The converse implication is valid because of �(=�in [h4]�.
[d6] means that smaller orders lead to more detachable points. This fact

is based on the inclusion M \
0

�[x] �M \
0

�[x] and [h2].
[d7] is a consequence of [d6], expressed in terms of discreteness.
[d8] follows from [d2], and shows that the subsets of a �-discrete set are

also �-discrete.
[d9] means that @� is idempotent. The inclusion @� (@�(M)) � @�(M) is

a consequence of [d0]. To obtain the opposite inclusion we may replace L by
@�(M) in [d2], which is possible because of [d0].

Remark 8 The role of the restriction � � K� is somehow hidden, but very
important. For example, it is visible in [d1], while in the �nal part of the
proof of [d4] it seems useless; however, intermediate results like

�

�
M \

0

�[x]

�
2 �(x)

could lose their sense if we accept � * K�.

The extreme case � = � is still acceptable, but
0

�[x] = ? leads to a trivial
situation when all subsets of S are �-discrete. On the other hand, simple
examples show how inappropriate can be assuming � � K�. In particular,
let � be strictly wider than K in the Minkowskian space-time (R2; �), i.e.
there is some t0; s0 2 R such that 0 < t0 < s0 and

�[(0; 0)] � K�[(0; 0)] [ f(t0; s0)g.

6



.. ε

ε

x
x” t

s

[
]x

Λ

K
x[ ]

b  M x  x”)  = { , }

x’.
.

x

x’

t

s

K x[ ]

[ ]xΛ

a  L x  x’)  = { , }

H x r( ,  )

Figure 1: � � K� disturbs discreteness

For brevity we note x = (0; 0), x0 = (t0; s0) and x" = ("; 0), where " > 0 is
chosen such that 0 < t0+" < s0 too. Finally, let us search the sets L = fx; x0g
and M = fx; x"g for discreteness (see Fig.1.):
Because L \

0

�[x] = fx0g =2 �(x), it follows that x =2 @�(L). This means
that L is not discrete, contrarily to [d1].

In the other case, M \
0

�[x] = fx"g 2 �(x) shows that x 2 @�(M). Since
also x" 2 @�(M), we conclude that M is discrete. However, because

x0 + x" = (t0 + "; s0) =2 K[x],

it follows that �[x"] =2 �(x). Consequently, according to (1), for the second
part of [d4] we obtain

0

�[x] \
�
fxg [ �

�
M \

0

�[x]

��
= �[x"] =2 �(x).

This means that x =2 @�
�
fxg [ �

�
M \

0

�[x]

��
, i.e. [d4] fails again.

This remark is useful in solving the converse problem, namely to recover
the horistology from a given operator of discreteness. We start this study
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by selecting several properties from the above Proposition 7 as axioms of an
operator of discreteness:

De�nition 9 Let S be a non-void set. A function @ : P(S) �! P(S) is said
to be an operator of discreteness if it satis�es the conditions:
[@1] card M 2 N =) @(M) =M ;
[@2] L �M =) L \ @(M) � @(L);
[@3] @(M) \ @(L) � @(M [ L).
In addition, if � is a (s.s.) order on S, such that the equivalence

[@4] x 2 @(M)() x 2M \ @
�
fxg [ �

�
M \

0

�[x]

��
holds for all M 2 P(S), then we say that � is compatible with @.

The triplet (S; @;�), where [@1] � [@4] hold, is called discreteness space.
As before, we say that the points x 2 @(M) are detachable from M , @(M) is
the discrete part of M , and M 2 P(S) is a discrete set if @(M) =M .

Remark 10 We will see later that the discreteness spaces always exist inside
a horistological framework; more exactly, we will show that each operator of
discreteness de�nes a horistology. Until then, it is useful to mention a couple
of aspects concerning the axioms [@1]� [@4]:
(i) According to Proposition 7, (S; �) is a discreteness space, and � = K

is compatible with @K. Consequently, real examples of horistological spaces
(e.g. event spaces) show that the axioms [@1]� [@4] are not contradictory.
(ii) If � = � is compatible with an operator of discreteness @, then every

set is discrete. This behavior is speci�c to the �small�orders, in the sense of

cardinality. More exactly, if card
0

� 2 N, then both M \
0

�[x] and �[M \
0

�[x]]

are �nite for arbitrary M , hence
�
fxg [ �[M \

0

�[x]]

�
is discrete by virtue

of [@1]. Consequently, for each x 2M we have

x 2M \ @
�
fxg [ �

�
M \

0

�[x]

��
.

By [@4], we obtain x 2 @(M), i.e. M consists of detachable points only.
(iii) If card S 2 N, then @(M) = M holds for all M 2 P(S), hence the

operator @ reduces to the identity of P(S). In this case, large orders, e.g.
� = S � S, can be compatible with @.

8



Properties similar to [d5] � [d9] can be directly deduced from [@1] � [@4],
as in the following:

Lemma 11 If the order � is compatible with @ : P(S) �! P(S), then
[@5] x 2 @(fxg[M)() x 2 @(fxg[�[M ]) for all x 2 S and M �

0

�[x].

Proof. We have to show that [@5] follows from [@4] alone. In fact, [@5] refers

to points x 2 S and sets M 2 P(S), for which M �
0

�[x]. In this case we

have M \
0

�[x] =M , so that [@4] implies [@5].
Now, let us analyze how a pair (@;�) de�nes a horistology:

Theorem 12 If (S; @;�) is a discreteness space, then the function

�(@;�) : S ! P(P(S)),

of values

�(@;�)(x) = fP �
0

�[x] : x 2 x 2 @(fxg [ P )g, (2)

is a horistology on S. In addition, the proper order of �(@;�) is

K�(@;�) = �. (3)

Proof. We have to show that �(@;�) ful�ls the conditions [h1], [h2], [h3],

and [h4]. In fact, according to (2), we have P �
0

�[x], hence x =2 P for all
P 2 �(@;�)(x), as in [h1].
Condition [h2] is based on [@2]. Primarily, if P 2 �(@;�)(x) and Q � P ,

then Q �
0

�[x] because P �
0

�[x]. To obtain Q 2 �(@;�)(x) via (2), let us
take M = fxg [ P and L = fxg [Q in [@2]. From x 2 L \ @(M), we obtain

x 2 @(L) = @(fxg [Q).

To prove [h3], let P;Q 2 �(@;�)(x), i.e. according to (2), we have:

P �
0

�[x], Q �
0

�[x], x 2 @(fxg [ P ) and x 2 @(fxg [Q).

It is easy to see that P [Q �
0

�[x], and according to [@3],

x 2 @(fxg [ P ) \ @(fxg [Q) � @(fxg [ P [Q).

9



To conclude, P [Q 2 �(@;�)(x) in accordance with (2).
Before proving [h4], we have to prove the equality (3). As usually, we

may reduce this equality to a double inclusion. According to (2), the �(@;�)�

perspectives of x are parts of
0

�[x]. Because this property holds for arbitrary
x in S, it follows that K�(@;�) � �. The opposite inclusion is a consequence

of [@1]. More exactly, for each (x; y) 2
0

�, we obviously have card fx; yg = 2.
If we note P = fyg, then the conditions in (2) are satis�ed in the sense that
P �

0

�[x] and

x 2 @(fxg [ P ) � @(fx; yg) [@1]= fx; yg.

Consequently, fyg 2 �(@;�)(x), hence (x; y) 2
0

K�(@;�)
, which proves (3).

The equality (3) is tacitly used in the proof of [h4]. More exactly, based
on Lemma 5, with K�(@;�) = �, we may prove [h4]

� instead of [h4].
Part �=)�in [h4]� is based on Lemma 11 and s.s. transitivity. In fact,

x 2 @(fxg [ P ) =) x 2 @(fxg [ �[P ])

is a consequence of P �
0

�[x] and [@5]. In addition, �[P ] �
0

�[x] follows from
s.s. transitivity, hence �[P ] 2 �(@;�)(x).
Part �(=�is based on the re�exivity of �, which leads to P � �[P ], so

that we may use the fact that [@2] implies [h2].

Corollary 13 Let (S; �) be a horistological space, and let K = K� be the
order attached to �. If @ is the operator of discreteness in (S; �), relative to
K, then K is compatible with @, and

�(@;K) = �. (4)

Proof. As mentioned in Remark 10 (i), the compatibility ofK with @ follows
from the property [d4] in Proposition 7.
To prove (4), let us remind that by virtue of Theorem 12, �(@;K) really is

a horistology, and its proper order is K. Because the equality (4) refers to
functions on S, we have to prove that a set equality

�(@;K)(x) = �(x)

holds at each x 2 S. As usually, we will prove two inclusions:
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Part ���: According to the rule (2) of deriving a horistology from @, if

P 2 �(@;K)(x), then P �
0

K[x], and x 2 @(fxg [ P ). Because @ derives from
�, the condition x 2 @(fxg [ P ) means

(fxg [ P ) \
0

K[x] 2 �(x).

Obviously, (fxg [ P ) \
0

K[x] = P , hence �(@;K)(x) � �(x).

Part ���: If P 2 �(x), then P �
0

K[x], hence (fxg [ P ) \
0

K[x] = P .
Consequently, x 2 @(fxg [ P ), so that using (2), we obtain P 2 �(@;K)(x).
This proves the inclusion �(@;K)(x) � �(x).

Corollary 14 Let (S; @;�) be a discreteness space, and let �(@;�) be the at-
tached horistology via Theorem 12. If @� is the operator of discreteness in
the horistological space (S; �(@;�)), then

@� = @. (5)

Proof. @� and @ are functions on P(S), hence (5) means @�(M) = @(M) at
each M 2 P(S). The proof has two parts again:
Part ���: Let x 2 @�(M) be arbitrary. According to Theorem 12, the

proper order of �(@;�) is �, hence by De�nition 6, we have x 2 M and

P
not:
= M \

0

�[x] 2 �(@;�)(x). Taking into account the formula (2), which

describes the perspectives of x in the horistology �(@;�), we see that P �
0

�[x]
and x 2 @(fxg[P ). Now, we may use Lemma 11: Replacing M by P in the
left hand side of [@5], we obtain

x 2 @
�
fxg [ �

�
M \

0

�[x]

��
.

Finally, using the implication �(=�in [@4], we conclude that x 2 @(M).
Part ���is based on the opposite implications in [@4] and [@5].

Remark 15 The two corollaries from above are customarily interpreted in
the sense that the perspectives and the discrete sets are equivalent methods for
de�ning a horistology. Other equivalent ways to introduce horistologies can
be found in [BT ] and [PM ]. All these results reveal a deep similarity between
topology, viewed as theory of continuity, and horistology, which turns out to
be very adequate for the study of discreteness.

11



Besides their structural importance, the discrete sets allow a simple form
to the discreteness of a function. In this respect we remind (see [BT ], etc.):

De�nition 16 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces. We say

that function f : S1 ! S2 is discrete at a point x 2 S1 if

f(�
1
(x)) � �

2
(f(x)).

If this property holds at each x 2 S1, then we consider that f is discrete
on the space S1. We reduce the discreteness on a subset A � S1 to the
previous one, where A is considered a horistological subspace (in the sense
of [BT1], etc.).

Lemma 17 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces. If the function

f : S1 ! S2 is discrete at x 2 S1, then

f

�
0

K�1 [x]

�
�

0

K�2 [f(x)].

In addition, if f is discrete on the whole S1, then

�
not:
= fII(K�1)

def:
=�

(X; Y ) 2 S2 � S2 : 9(x; y) 2 K�1 such that X = f(x) and Y = f(y)
	

is a (s.s.) order on S2, and � � K�2.

Proof. Because �
1
satis�es [h2], we have

0

K�1 [x] = fy 2 S1 : fyg 2 �1(x)g,

so that

f

�
0

K�1 [x]

�
= fz 2 S2 : 9y 2 S1 such that fyg 2 �1(x) and z = f(y)g.

Using the discreteness of f again, we obtain ff(y)g 2 �
2
(f(x)), hence

z
not:
= f(y) 2

0

K�2 [f(x)].
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To prove the second assertion, we �rst remark the re�exivity of �, then we

examine condition (0). If, for example, (X;Y ) 2 � and (Y; Z) 2
0

�, then there
exist x; y; z 2 S1 such that X = f(x), Y = f(y), Z = f(z), (x; y) 2 K�1 and

(y; z) 2
0

K�1. Because K�1 is s.s. transitive, we deduce that (x; z) 2
0

K�1,

hence (X;Z) 2
0

�. The case (X;Y ) 2
0

� and (Y; Z) 2 � is similar.
Finally, let us take an arbitrary (X; Y ) 2

0

�. The corresponding x and y

satisfy (x; y) 2
0

K�1, hence fyg 2 �1(x). Because f is discrete at x, we have

fY g 2 �2(X), i.e. (X;Y ) 2
0

K�2.

Theorem 18 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let the

function f : S1 ! S2 be 1 : 1 and discrete on S1. If x 2 M is detachable
from the set M 2 P(S1), then f(x) is �-detachable from f(M) in S2, where

� = fII(K�1).

Proof. By hypothesis, M \
0

K�1 [x] 2 �1(x), where x 2M . The discreteness

of f at x leads to f
�
M \

0

K�1 [x]

�
2 �

2
(f(x)). Because f is 1 : 1, we have

f

�
M \

0

K�1 [x]

�
= f(M) \ f

�
0

K�1 [x]

�
.

Based on Lemma 17, we may easily see that

f

�
0

K�1 [x]

�
=

0

�[f(x)].

Consequently, f(M) \
0

�[f(x)] 2 �
2
(f(x)), i.e.f(x), which obviously is a

member of f(M), is �-detachable from f(M).
The property of f in this theorem justi�es the following:

De�nition 19 Let (S1; @1;�1) and (S2; @2;�2) be discreteness spaces. If the
function f : S1 ! S2 satis�es the condition

f(@1(M)) � @2(f(M)) (6)

13



for all M � S1, then f is said to be a detachability preserving function.
Alternatively, if the implication

M = @1(M) =) f(M) = @2(f(M)) (7)

is valid at eachM � S1, then f is named discreteness preserving function.

In the conditions of Theorem 18, f preserves discreteness too, namely:

Corollary 20 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let the

function f : S1 ! S2 be 1 : 1 and discrete on S1. If @1 and @2 denote the
discreteness operators on

�
S1; �1

�
and

�
S2; �2 j�

�
, where � = fII(K�1), then

function f is discreteness preserving.

Proof. The hypothesis M = @1(M) means that each x 2 M is detachable
from M . According to the previous theorem, respectively (6), it follows that
each f(x) is �-detachable from f(M). In other words, f(M) is @2-discrete,
i.e. the conclusion in (7) is correct.
The discreteness preserving functions are speci�c to spaces of events. In

particular, the following property refers to R4, but it is valid in much more
general cases where Zeeman�s Theorem holds (see [BT ], [BT2], etc.).

Corollary 21 The causal automorphisms of the Minkowskian space-time R4
preserve the discreteness of the sets relative to the intrinsic horistology.

Proof. According to[ZEC], the group of causal automorphisms consists of
Lorentz transformations, translations and dilations, which are all discrete
functions. In addition, because fII(K�) = K� holds for each causal auto-
morphism f , we may use Theorem 18 to conclude that these functions do
preserve the discreteness.

Theorem 22 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let @1

and @2 be the corresponding discreteness operators. If f : S1 ! S2 is a
strictly monotonic function relative to the orders K�1 and K�2, which pre-
serves detachability, then f is discrete on S1.

Proof. Condition (6) holds by hypothesis, i.e. the implication

x 2 @1(M) =) f(x) 2 @2(f(M))

14



is valid at every x 2M andM 2 P(S1). According to De�nition 16, we have
to show that

8x 2 S1 and 8P 2 �1(x) =) f(P ) 2 �
2
(f(x)).

Because P �
0

K�1 [x] holds for all P 2 �1(x), it follows that x is detachable
from M = P [ fxg. In other words, x 2 @1(M), hence by hypothesis,

f(x) 2 @2(f(M)).

If we remind De�nition 6, we may transform this membership into

f(M) \
0

K�2 [f(x)] 2 �2(f(x)).

The proof is complete if we remark that f(M) \
0

K�2 [f(x)] = f(P ). In fact,
because f(M) = f(P ) [ ff(x)g, the problem reduces to the inclusion

f(P ) �
0

K�2 [f(x)].

Routinely, if Y 2 f(P ), then there exists y 2 P such that Y = f(y). Using
the monotony of f , from (x; y) 2

0

K�1 we deduce (f(x); f(y)) 2
0

K�2 , hence

Y 2
0

K�2 [f(x)].
We may combine Theorems 18 and 22 in the following:

Corollary 23 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let the

function f : S1 ! S2 be 1 : 1 and strictly monotonic relative to the orders
K�1 and K�2. If in addition fII(K�1) = K�2, then

(f is discrete on S1) =) (f preserves detachability).

The proof is immediate.

Conclusion 24 The above properties of the discrete sets, together with those
of the discrete functions, may enforce the idea that the horistologies really
represent structures of discreteness. The analogy with topological families of
sets (e.g. open) completes the duality continuity � discreteness. The most
signi�cant interpretations are expected in domains where the horistologies
represent intrinsic structures, e.g. relativity (as in Corollary 21 from above,
etc.), concave programming (see [B � C], etc.), discrete system theory (see
[B � P1], etc.), Lp duality theory for p < 1 (see [CB]), etc.
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