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Abstract We analyze a variant of instability, in which
instead of non-continuity of the function initial state –
evolution, we propose the dual of continuity, known as
discreteness. The aim is to refine the stability theory and
to gain new instruments to investigate concrete cases.
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1. Introduction. Even if restricted to the Lyapunov’s
sense, the notion of stability has plenty of meanings. For
example, the standard form of the stability of a linear
system (see [Ionescu, 1985], etc) reduces to the
boundedness of the evolutions, while for nonlinear
smooth systems (see [Belea, 1985], etc.) it is expressed
by the continuity of the map initial state – evolution.
Many variants have been produced by altering the space
of functions that stand for evolutions, or by stressing on
particular components of the evolution. The common
feature of all these variants, which was therefore
assumed in the most general system theory, is that of
continuity of a particular function. More exactly
(according to [Mesarovic et al. 1975], [Belea 1985],
etc.), the evolution of a dynamical system is defined as a
function x:T!X, where T R is the time set, and X is

the set of states. Most frequently, we have T = [t0 ,!)

for some t0 2R, where t0 is referred as initial moment.

Correspondingly, x0 = x(t0) is called initial state. The
further change of states is described by an internal rule

of state transition, : XxK !X, where K is the usual

order on T (i.e. induced from R), and y = (x, t1, t2)

means that state x at the moment t1 is transformed into
state y at the later moment t2. Such a dynamical system is
considered with time evolution, and it is shortly noted as

a triplet (X, T, ).

Generalizing the case of smooth systems, where the
evolutions are solutions of some differential equations, it
is always assumed that the evolutions are uniquely
determined by the initial states via the internal rule of
state transition. This correspondence, noted

: X!XT

is known as initial state – evolution function, and the
notation x = (x0) shows that the evolution x starts with
the initial value x0. Consequently, we get another way to

specify a dynamical system, namely (X, T, ).

2. Stability. The notion of stability involves particular
structures on X, e.g. those of a normed linear space. The

norm is used to produce topologies on X and XT ,

which are involved in the condition of continuity. To
simplify the formalism of stability, using linearity, we
may always reduce the problem to the (stationary, i.e.
constant) null solution , where (t) = 0 for all t  t0 .

More explicitly, the null evolution  2XT is said to be

stable iff  is continuous at 0 = (t0) 2X, i.e.
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As far as we know, the notion of instability was
reduced to NON-continuity, and most frequently to the
exact negation of the condition from above. Our aim in
this paper is to conceive instability by a condition dual
but not opposite to continuity. In our opinion, the dual of
continuity is discreteness (see [Bălan 1992, Part II],
[Bălan et al. 2002], etc.).

3. Discreteness. Similarly to the continuous functions,
which are the morphisms of the topological structures,
the discrete functions are conceived as the morphisms of
the horistological spaces, introduced by [Bălan 1992] as
qualitative structures of the super-additivity. In other
words, discreteness is dual to continuity since the
horistologies are dual to the topologies, as we can see
from the very starting definition, where the filters of
neighborhoods are replaced by ideals of perspectives.

We remember that a horistology on X is a function

X!P (P(X)),

which attaches a family of perspectives (e) P(X) to

each e2X, such that the following conditions (easily

seen to be dual to those that occur in the definition of a
topology) are fulfilled:
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The pair (X, ) is called horistological space.

It is significant to recall that each horistological space
is endowed with a proper order, defined by

 )}(}{:),{( 2 evve  X ,

where  = {(e, e): e 2X} is called diagonal of X 2, and

represents the equality on X.

If (X, ) and (Y, ) are two horistological spaces,

then function f: X!Y is said to be discrete at e2X iff

f(P)2(f(e)) whenever P2(e). If f is discrete at each

e2D X, we say that f is discrete on D. In this case f

is monotonic on D relative to the proper orders of the

horistologies and .
It is remarkable that differently from the continuous

functions, for which the counter-images of the f(x)-
neighborhoods are asked to be x-neighborhoods, the
discrete functions directly carry e-perspectives into f(e)-
perspectives (compare to boundedness, Darboux
property, etc.).

4. Concrete horistologies. For the sake of explicitness,
we recall that sub-additivity refers to the usual triangle’s

rule of a metric. By duality, : K!R+ , where K is an

order relation on X, is named super-additive (briefly Sa)

metric on X, iff the following conditions hold:

[M1] (x, y) = 0 iff x = y, and

[M2] (x, y)  (x, z) + (z, y) at all (x, z),(z, y)2K.

Obviously, Sa metrics cannot be defined on the whole
X2; the orders are their most natural domains.

In [Bălan 1992, part I] we find enough examples to
conclude that all sub-additive norms/metrics have dual
super-additive norms/metrics. Therefore topological and
horistological structures on the same space generally can
be coupled in pairs. In fact, super-additivity leads to
horistology in a way similar to the construction of a
metric topology. More exactly, if K is an order on X,

and : K!R+ is a super-additive metric, then we may

take P X to be a perspective of e2X iff there is

some >0 such that P H(e, ), where

H(e, ) = {v2X: (e, v) > }

is a hyperbolic perspective of e, of radius .
It is significant to mention that K =  whenever  is

generated by the S.a. metric : K!R+ .

Because the study of the practical problems usually
involves measurements, the metric horistologies will be
of primary interest in the context of (in)stability too. The
following examples of super-additive metrics, and
corresponding horistologies, which are mentioned in the
previous works too, seem to be particularly useful in the
study of (in)stability:

(i) X = R, K is the natural order on R, and

(x, y) = y – x
at any (x, y)2K. Consequently, P X is a perspective

of x2R iff P [y, +1) for some y > x.

(ii) X = R2, K is the product order, i.e.

K = {((x, y), (u, v)): x < u , y < v} [  ,

and is the hyperbolic metric of values
((x, y), (u, v)) = (u – x)( v – y).

(iii) X = R2, K is the product order, and

((x, y), (u, v)) = min{u – x, v – y}.

(iv) X = Rn, where n 2 N \ {0, 1, 2}, K is the

product order, and the super-additive metrics are similar
to  and  from the cases (ii) and (iii).

(v) X = RT,  is the functional product order,

 = {(x, y)2X2: )()(
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and

(x, y) = inf{y(t) – x(t): t2T}.

It is easy to identify the usual (i.e. sub-additive)
metrics, which are dual to the examples from above. In
addition, the dual is not uniquely determined. For
example, the Euclidean metric on Rn, where n2N*, can

be conceived as dual to several super-additive metrics,
e.g.
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where c > 0, and the other elements take physical
significance in the special relativity (e.g. see [Bălan
2001], etc.).

5. Instability. The null evolution 2XT of a dynamical

system (X, T, ) is said to be discretely instable (briefly

d.i.) iff  is discrete at the initial state 02X. Because

discreteness involves particular horistologies, say  on

X and  on XT , we can be more specific and mention it

as  d.i.



Because no relationship between topologies and
horistologies, including duality, is a priori imposed on
individual spaces, stability and discrete instability are in
principle independent properties of the dynamical
systems. In particular, we may expect them to hold in
particular cases simultaneously.

6. The mathematical pendulum is generally agreed as a
standard example in the dichotomy stability – instability,
because the normal pendulum is stable, but the reversed
one is not. We will show that the reversed pendulum is a
very natural example of d.i. system too.

Let us remember that the free pendulum of length l, in
the gravitational field of acceleration g, evolves in
accordance to the equation

// – sin  = 0,
where 2 = g/l, and  is the angle between the rod and
the vertical through the fixed end of the rod, directed
upwards (the value of the mass m, carried at the other
end of the rod, does not influence on the evolution). This
equation is non-linear and difficult to solve, but we may
change the unknown function, and introduce

() = /(t).
By integrating the resulting equation

 /  – sin  = 0
we obtain the relation

2() = – 2cos  + C.
In order for us to simplify the further analysis, let us

consider the non-struck pendulum, for which there is no
impulse ( / = 0) at the initial state 0 . Then we have

2 () = 2cos 0 – cos ,
where 0 stands for the constant of integration. To keep
up the evolution in the real range (i.e. to avoid complex

quantities) we have to restrict 2[0 , 20], so that

cos    cos 0 .
It is easy to see that 1(t) = 0 and 2(t) =  are stationary
evolutions of this pendulum, which correspond to the
initial states 0, respectively .

Now, to speak in dynamic system language, we shell

take X = [0, 2]  R, K and  as in the above example

(i), T = R+ , i.e. t0 = 0, and finally  and  from example

(v) on XT \ C2(T). According to the very definition, 1

is a d.i. evolution relative to the horistologies generated
by  and . On the other hand, 2 hasn’t this property,
but it is stable relative to the usual topological structures
on X and XT (e.g. see [Barbu 1985], etc.).

7. Time invariant linear systems. It is well known (see
[Ionescu 1985], [Barbu 1985], etc.) that a linear system
of the form

x / = Ax + Bu ,
where A and B are constant matrices, and u is the input,
has the solution (state evolution)

x(t) = eAtx0 + 
t tA dBue

0

)( )(  .

A remarkable theorem states that such a system is
(internally) stable iff the proper values of A all have
negative real parts, and those with null real parts are
simple. Taking into account the form of the fundamental

matrix, stability is immediately reduced to the property
of boundedness for some exponential functions.
Consequently, a single proper value with strictly positive
real part makes the system non-stable, while d.i. holds iff
all proper values of A are real and strictly positive. More
exactly, because x is a vector function, the product
horistological structure of XT (similar to (iv)) asks each

component of x to be discrete in the sense of (v). This is
obviously possible for increasing exponentials only. To
conclude, in this case, d.i. is much stronger than non-
stability.

8. Concomitance of stability and d.i. is possible in spite
of their opposite nature. For example, let us consider the
second order linear differential equation

x //cosh t + 2x / sinh t = 0,
where 00  tt , and x X = C2

R(T). If we note

x / = y,
then the equation becomes

y / + 2y tanh t = 0,
which can be integrated, and we deduce

y(t) = C1 cosh—2 t,
so that finally we obtain the general solution

x(t) = C1 tanh t + C2.
Obviously, C2 = x(0), and C1 = x / (0) = y(0), and the null
evolution corresponds to null initial conditions

x(0) = x / (0) = 0.
According to the property of the function tanh of

being bounded, the double inequality
C2  x(t)  C1 + C2

holds at any t  0. Using it we can easily show that the
null solution is concomitantly stable and discretely
instable. In particular, the discrete instability refers to the
horistology in the example (iii), at the initial conditions

(x(0), x / (0))2R2 .

9. Symmetric d.i. It is easy to see that to each Sa metric

: K!R+ ,

there corresponds a symmetric Sa metric

*: K – 1 !R+ ,

which takes the values *(x, y) = (y, x). Alternatively,
if we reformulate condition [M2], we may speak of a
symmetric Sa metric from the very beginning, but we
prefer to distinguish two symmetric horistologies,  and
*, generated by  and respectively *. The existence of
a symmetric horistology is essential for a horistology to
be uniform / metric (see [Bălan 1992*]).

Because the metrical horistologies always appear in
symmetric pairs, the property of discreteness, and in
particular d.i., can be studied in pairs of horistologies.
For example, the study of the pendulum can be similarly

developed for 2[–2, 0], and the result is the same.

Reversing time in linear systems may affect the physical
meaning, but it is possible in principle, and the resulting
properties are similar to the increasing time.

Besides symmetric pairs, the examples from above
show that we obtain plenty of variants of d.i. by altering
the Sa metrics, hence the horistologies.



10. Preserving d.i. Changing the horistology
naturally affects the discrete instability, but it is possible
to make changes that preserve d.i., based on comparable
horistologies. A horistology  – is said to be smaller than

 on X iff  – (e)   (e) at any e2X ; in this case we

note  –   . Similarly we define a greater horistology,

which is noted +   .

Let (X, T, ) be a discretely instable dynamical

system (its null evolution is discretely instable relative to

the horistologies  on X and  on XT ). If  –   , and

+   , then the system (X, T, ) will be  – – +

discretely instable too.
The proof of this property reduces to the more general

fact that such a change of horistologies preserves the
discreteness of  at 0.
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