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Abstract

The purpose of this paper is to de�ne and study the admitted events
in the framework of the horistological worlds (de�ned in [BT]). The
most important properties are connected to discrete functions and
discrete sets (studied in [B-P]). The operator of admittance, which
attaches to each set the ensemble of its admitted events, turns out to
allow the reconstruction of the initial horistological structure.
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1 Introduction

In the present work we �rst de�ne the admitted events, then we study the
operator of admittance with the aim of clarifying its relations with the ba-
sic horistological structures. The terminology is inspired from the relativist
physics, e.g. we speak of events, perspectives, causality, etc., but for the sake
of rigor, we will formulate the notions and the properties in the most general
framework of horistological structures. However, the discourse may change
its practical signi�cance if referred to other particular objects, for example
sentences in a deductive scheme, states of a dynamic system, etc.
In this introductory part we recall some notions and results from [BT]

and [B-P] as they are used later. The second section is dedicated to the
study of the admitted events and the operator of admittance in horistological
spaces. In the �nal section we identify the axioms of an abstract operator
of admittance, and we analyze the problem of reconstructing a horistology
from such an operator.

�e-mail: mpred@central.ucv.ro, ttbalan@yahoo.com

1



We will use the similar topic from topology as a model for our study:
It is well-known that, except neighborhoods, we may de�ne a topological
structure by many other tools, e.g. convergent nets, open/closed sets, and
operators of interior/adherence (see [KJ], [PG], etc.). By the investigation
of the same problem in horistology we aim to reinforce the idea that the
horistologies - as structures of discreteness, and the topologies - as structures
of continuum, are dual in many respects.
The binary relations play an important role in the sequel. In particular,

� = f(x; x) : x 2 Sg

represents the equality on S. If K is a binary relation on S, then
0

K = Kn�
denotes the so-called strict K. The section (cut, cone, etc.) of K at a point
x is de�ned by

K[x] = fy 2 S : (x; y) 2 Kg.
By extension, the section of K at a set M is

K[M ] = [fK[x] : x 2Mg.

We use the term order in its strict sense, which is more suitable to causal-
ity. More exactly, we say that K � S � S is an order on S if it is re�exive,
i.e. � � K, and sensu stricto (brie�y s.s.) transitive, which means

K �
0

K �
0

K and
0

K �K �
0

K.

Obviously, if K is s.s. transitive, then it is antisymmetric, i.e. K \K�1 = �.

De�nition 1.1 Let S be an arbitrary non-void set. We say that the function

� : S ! P(P(S))

is a horistology on S i¤ it satis�es the conditions:
[h1] x =2 P for all x 2 S and P 2 �(x);
[h2] P 2 �(x); Q � P =) Q 2 �(x);
[h3] P;Q 2 �(x);=) P [Q 2 �(x);
[h4] 8P 2 �(x);9H 2 �(x) such that [y 2 P and Q 2 �(y)] =) [Q � H] :
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We say that the pair (S; �) is a horistological space. The conditions [h2]
and [h3] show that �(x) forms an ideal at each x 2 S. The elements of �(x)
are called perspectives of x, respectively x is considered to be a premise of
each P 2 �(x).
It is easy to see that:

Proposition 1.2 If (S; �) is a horistological space, then

K� = f(x; y) : 9P 2 �(x) such that y 2 Pg [ �

is an order on S:

This order is called proper order of �; or �-causality, etc.

Proposition 1.3 Let � � S � S be an order on S. If � : S ! P(P(S)) is
a horistology on S, then the restriction �j� : S ! P(P(S)), of values

�j�(x) = fP \ �[x] : P 2 �(x)g

is a horistology too. In addition, the proper order of �j� is K�j� = � \K�.

Lemma 1.4 If the function � : S ! P(P(S)) satis�es the condition [h2],
then [h4] is equivalent to:
[h�4] P 2 �(x)() K�[P ] 2 �(x).

De�nition 1.5 Let � be an order on the horistological space (S; �), such
that � � K�, and let M be a subset of S. We say that a point x 2 M is
�-detachable from M if

M \
0

�[x] 2 �(x).

The set of all �-detachable points of M is called �-discrete part of M ; it
is noted @�(M). If each point of M is �-detachable, i.e. @�(M) = M , then
M is considered �-discrete. The function

@� : P(S) �! P(S),

which extracts the �-discrete part @�(M) of each subset M 2 P(S), is called
operator of �-discreteness.
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In the case � = K�, we may omit mentioning �, and simply speak
of detachability, discreteness, etc. Alternatively, we may interpret the �-
discreteness as discreteness relative to the horistology �j�:

De�nition 1.6 Let (S; �) be a horistological space. The function

p : P(S) �! P(S),

of values
p(M) = fx 2 S :M 2 �(x)g,

is called premise operator on S.

De�nition 1.7 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces. We con-

sider that function f : S1 �! S2 is discrete at a point x 2 S1 if

f(�
1
(x) � �

2
(f(x)):

If this property holds at each x 2 S1, then f is said to be discrete on the
space S1.

Lemma 1.8 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces. If function

f : S1 �! S2 is discrete at x 2 S1, then

f

�
0

K�
1
[x]

�
�

0

K�
2
[f(x)] .

In addition, if f is discrete on the whole S1, then

�
not:
= fII

�
K�

1

�
def:
=

=
n
(X;Y ) 2 S2 � S2 : 9(x; y) 2 K�

1
such that X = f(x) and Y = f(y)

o
is a (s.s.) order on S2. In addition, � � K�

2
.

More details about detachability and discreteness can be found in our
recent paper [B-P].
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2 Admitted events in horistology

De�nition 2.1 Let � be an order on the horistological space (S; �), such
that � � K�, and let M be a subset of S. We say that a point x 2 S is a
�-admitted event of M , (or admitted relative to �, etc.) if

M \
0

�[x] 2 �(x).

The set of all admitted events of M relative to � is called �-admittance of
M , and we note it A�(M). The function A� : P(S) �! P(S), of values

A�(M) = fx 2 S :M \
0

�[x] 2 �(x)g,

is called operator of �-admittance.

If � = K�, and no confusion is possible, i.e. the admittance is completely
determined by �, then we don�t mention � any more, and we simply note
the admittance by A. In particular, every �-admittance is an admittance
relative to the horistology �j�:
The following proposition shows immediate relations between the opera-

tors @� and A�, respectively between �-discreteness and �-admittance.

Proposition 2.2 If (S; �) is a horistological space, and � is an order on S
such that � � K�, then:
(a) @�(M) =M \ A�(M) for all M 2 P(S);
(b) M is �-discrete ()M � A�(M);
(c) A�(M) = fx 2 S : x 2 @�(fxg [M)g.

Proof. (a) follows from the De�nitions 1.5. of @� and 2.1. of A�.
(b) According to De�nition 1.5., M is �-discrete i¤M = @�(M). From

(a) it follows that M is �-discrete i¤M =M \A�(M), hence M � A�(M).
(c) can be directly deduced from the De�nitions 1.5. and 2.1. if we

remark that (fxg [M) \
0

�[x] =M \
0

�[x].

Remark 2.3 (i) It is easy to see that A�(?) = S, @�(?) = ?, and inde-
pendently of � we have

@�(S) = A�(S) = fx 2 S :
0

�[x] 2 �(x)g.
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(ii) The extreme case when � = � is still acceptable, but
0

�[x] = ? leads
to a trivial situation when all subsets of S are �-discrete. More exactly, we
have

@�(M) =M \ A�(M) =M \ S =M and

A�(M) = fx 2 S : ? 2 �(x)g = S
for all M 2 P(S). In particular,

@�(S) = A�(S) = fx 2 S : ? 2 �(x)g = S.

In [B-P] we have shown that the discreteness of a function allows simple
description in terms of discrete sets. In essence, if f : S1 �! S2 is 1:1
and discrete on S1, then fpreserves detachability and set discreteness. By
analogy, let us now analyze the connection between discrete functions and
admittance.

Theorem 2.4 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let the

function f : S1 �! S2 be 1:1 and discrete on S1. If x 2 S1 is an admitted
event of the set M 2 P(S1), then f(x) is an admitted event of f(M) in S2,
relative to the order � = fII(K�

1
).

Proof. By hypothesis, M \
0

K�
1
[x] 2 �

1
(x). By De�nition 1.7, the discrete-

ness of f at x leads to

f

�
M \

0

K�
1
[x]

�
2 �

2
(f(x)).

Because f is 1:1, we have

f

�
M \

0

K�
1
[x]

�
= f(M) \ f

�
0

K�
1
[x]

�
.

Based on Lemma 1.8, we may easily see that

f

�
0

K�
1
[x]

�
=

0

� [f(x)] .

Consequently,

f(M) \
0

� [f(x)] 2 �
2
(f(x)),

i.e. f(x) is an admitted event of f(M) in S2.
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Corollary 2.5 As before, let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces,

and let the function f : S1 �! S2 be 1:1 and discrete on the whole S1. If A1
and A2 denote the admittance operators on

�
S1; �1

�
and

�
S2; �2j�

�
, where

� = fII(K�
1
), then f preserves the admittance, i.e. the inclusion

f (A1(M)) � A2 (f(M))

holds for all M 2 P(S1).

This assertion is an immediate consequence of Theorem 2.4. Particularly,
if M is a discrete set in S1, then f(M) is discrete in S2, i.e. f preserves the
discreteness of the sets too. In fact, according to Proposition 2.2(b), M is a
discrete set i¤M � A1(M). Because f(M) � f (A1(M)), we obtain

f(M) � A2 (f(M)) ,

which shows that f(M) is a discrete set in the space
�
S2; �2j�

�
.

Theorem 2.6 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let A1

and A2 be the corresponding admittance operators. If function f : S1 �! S2
is strictly monotonic relative to K�

1
and K�2, and admittance preserving,

then f is discrete on S1.

Proof. According to De�nition 1.7, we have to show that

8x 2 S1 and 8P 2 �1(x) =) f(P ) 2 �
2
(f(x)).

Because P �
0

K�
1
[x] holds for all P 2 �

1
(x), it follows that

P \
0

K�
1
[x] = P 2 �

1
(x),

i.e. x 2 A1(P ). By hypothesis, f(x) 2 A2 (f(P )), hence

f(P ) \
0

K�2 [f(x)] 2 �2(f(x)).

But f(P ) �
0

K�2 [f(x)]: Routinely, if Y 2 f(P ), then there exists y 2 P such
that Y = f(y); using the monotony of f , from (x; y) 2 K�

1
, we deduce that

(f(x); f(y)) 2 K�2 , hence Y 2
0

K�2 [f(x)]. Based on this inclusion, we may
conclude that f(P ) 2 �

2
(f(x)).

We may combine Corollary 2.5 and Theorem 2.6 in the following:
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Corollary 2.7 Let
�
S1; �1

�
and

�
S2; �2

�
be horistological spaces, and let the

function f : S1 �! S2 be 1:1 and strictly monotonic relative to the orders
K�

1
and K�2. If in addition fII(K�

1
) = K�2, then f is discrete on S1 if and

only if it is admittance preserving.

The proof is immediate.
Relative to the notion of admittance we mention:

Theorem 2.8 Let (S; �) is a horistological space, and let � be an order on
S, such that � � K�. The operator A� has the properties:
[a1] cardM 2 N =) A�(M) = S;
[a2] L �M =) A�(M) � A�(L);
[a3] A�(M [ L) = A�(M) \ A�(M) for all M;L 2 P(S);

[a4] A�(M) =
�
x 2 S : x 2 A�

�
�

�
M \

0

�[x]

���
for all M 2 P(S);

[a5] A�(M)\
�
x 2 S :M �

0

�[x]

�
= A� (�[M ])\

�
x 2 S :M �

0

�[x]

�
,

which means that the equivalence

x 2 A�(M)() x 2 A� (�[M ])

holds for all x 2 S and M �
0

�[x];

[a6] A�(M) =
�
x 2 S : x 2 A�

�
M \

0

�[x]

��
for all M 2 P(S);

[a7] � � � =) A�(M) � A�(M) for all M 2 P(S);
[a8] M � A�(M) and � � � =)M � A�(M);
[a9] M � A�(M) and L �M =) L � A�(L);
[a10] @� (A�(M)) � A�(A�(M)) � A�(@�(M)) for all M 2 P(S).

Proof.

[a1] Property [d1] from Proposition 3 in [B-P] says that

cardM 2 N =) @�(M) =M .

From the above Proposition 2.2(a) it follows that M \ A�(M) =M , hence

M � A�(M). (1)
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On the other hand, if x 2 {M , then forMx
not:
= M [fxg we have cardMx 2 N

too, hence @�(Mx) = Mx. Consequently x 2 @�(Mx), i.e. Mx \
0

�[x] 2 �(x).
Because Mx \

0

�[x] =M \
0

�[x], we may conclude that x 2 A�(M), hence

{M � A�(M). (2)

From (1) and (2) we immediately obtain A�(M) = S.
[a2] Obviously, L � M implies L \

0

�[x] � M \
0

�[x] for all x 2 S. If we
take x 2 A�(M), which means M \

0

�[x] 2 �(x), then using [h2] we deduce
L \

0

�[x] 2 �(x). Consequently, x 2 A�(L), hence A�(M) � A�(L).
[a3] From M �M [ L, L �M [ L, and [a2] we deduce that

A�(M) � A�(M [ L) and A�(L) � A�(M [ L),

hence
A�(M) \ A�(L) � A�(M [ L). (3)

Conversely, if x 2 A�(M)\A�(L), thenM\
0

�[x] 2 �(x), and L\
0

�[x] 2 �(x).
According to [h3], it follows that

(M [ L) \
0

�[x] 2 �(x),

i.e. x 2 A�(M [ L). Therefore,

A�(M) \ A�(L) � A�(M [ L). (4)

The equality [a3] is an immediate consequence of (3) and (4).
[a4] is a characterization of the �-admittance in terms of �-sections. First

o¤, let us remark that the s.s. transitivity of � leads to the equality

�

�
M \

0

�[x]

�
\

0

�[x] = �

�
M \

0

�[x]

�
. (5)

Now, if we start with x 2 A�(M), i.e. M \
0

�[x] 2 �(x), then by [h�4] and

[h2] we obtain �
�
M \

0

�[x]

�
2 �(x). Equivalently, via (5), we have

�

�
M \

0

�[x]

�
\

0

�[x] 2 �(x).
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Consequently, according to De�nition 2.1, we deduce that

x 2 A�
�
�

�
M \

0

�[x]

��
,

hence

A�(M) �
�
x 2 S : x 2 A�

�
�

�
M \

0

�[x]

���
. (6)

Conversely, let us take x 2 S with the property x 2 A�
�
�

�
M \

0

�[x]

��
.

By the de�nition of A� it follows that

�

�
M \

0

�[x]

�
\

0

�[x] 2 �(x),

and by (5) �
�
M \

0

�[x]

�
2 �(x). Using [h2] we obtain M \

0

�[x] 2 �(x),

hence x 2 A�(M). So we conclude that the opposite of (6) holds, i.e.�
x 2 S : x 2 A�

�
�

�
M \

0

�[x]

���
� A�(M). (7)

Finally, the equality [a4] is a consequence of (6) and (7).
[a5] Let us take x 2 A� (� [M ]). By the de�nition of A� this means that

�[M ]\
0

�[x] 2 �(x). Because � is re�exive, it follows that M � �[M ], hence

M \
0

�[x] � �[M ] \
0

�[x].

Using [h2], we deduce that also M \
0

�[x] 2 �(x), i.e. x 2 A�(M). This
means that the inclusion

A� (� [M ]) � A�(M) (8)

holds for all M 2 P(S).
To complete the proof of [a5], we have to show that

A�(M) \
�
x 2 S :M �

0

�[x]

�
� A� (�[M ]) . (9)
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With this aim, let us take x 2 A�(M) such that M �
0

�[x]. In this case,

from M \
0

�[x] 2 �(x), and M �
0

�[x] we obtain M 2 �(x). According to
[h�4] and [h2], �[M ] 2 �(x) too. Because �[M ] \

0

�[x] � �[M ], by [h2] we

obtain �[M ]\
0

�[x] 2 �(x), hence x 2 A� (�[M ]). Property [a5] follows from
(8) and (9).
[a6] is a shorter characterization of the �-admittance, which follows from

the very de�nition of A�. In fact, x 2 A�(M) means that M \
0

�[x] 2 �(x),

hence
�
M \

0

�[x]

�
\

0

�[x] 2 �(x). Using De�nition 2.1 again, we obtain

x 2 A�
�
M \

0

�[x]

�
, so that

A�(M) �
�
x 2 S : x 2 A�

�
M \

0

�[x]

��
. (10)

Conversely, let us take x 2 S with the property x 2 A�
�
M \

0

�[x]

�
.

The de�nition of A� shows that
�
M \

0

�[x]

�
\

0

�[x] 2 �(x), which reduces

to M \
0

�[x] 2 �(x), hence x 2 A�(M). Therefore,�
x 2 S : x 2 A�

�
M \

0

�[x]

��
� A�(M). (11)

The equality [a6] follows from (10) and (11).
[a7] shows that smaller orders lead to more admitted events. This fact is

based on [h2] and the obvious inclusion M \
0

�[x] �M \
0

�[x].
[a8] can be considered a reformulation of [a7] in terms of discreteness.

In fact, if M is �-discrete and � � �, then M is �-discrete. Using the
connection between discreteness and admittance from Proposition 2.2(b),
the problem reduces to

(A�(M) � A�(M) and M � A�(M))=) (M � A�(M)) .

[a9] follows from [a2], and shows that the subsets of a �-discrete set are
�-discrete too. By [a2], L �M implies A�(M) � A�(L), and by Proposition
2.2(b) we have L �M � A�(M) � A�(L), hence L � A�(L).

11



[a10] According to Proposition 2.2(a), @�(P ) � A�(P ) holds for arbitrary
P 2 P(S). Putting P = A�(M) for arbitrary M 2 P(S), we obtain

@� (A�(M)) � A� (A�(M)) . (12)

On the other hand, the action of [a2] on the inclusion @�(M) � A�(M),
where M is arbitrary in P(S), leads to

A� (A�(M)) � A� (@�(M)) . (13)

Property [a10] is a simple juxtaposition of the inclusions (12) and (13).

Remark 2.9 Property [a1] and Proposition 2.2(b) establish that the �nite
sets are �-discrete for all � � K�. Simple examples (as those from [B-P],
Remark 1) reveal the importance of the restriction � � K�.
Obviously, the properties [a5] and [a6] represent equivalent characteriza-

tion of the �-admittance in horistological spaces. However, there is a "small"

di¤erence: [a5] refers to sets M 2 P(S) for which M �
0

�[x], while [a6] is

non-trivial in the contrary case, when M \
0

�[x] 6=M .
Sometimes it is important to know relations between the conditions [a4],

[a5] and [a6], as for example when we analyze the problem of de�ning a horis-
tology by an operator of admittance. In this respect we notice the implications:
[a4] =) [a5], [a4] =) [a6], and ([a5]&[a6]) =) [a4]. This remark explains
why [a4] is a preferred axiom of an abstract operator of admittance (see the
next section).

In the case � = K�, the operator of admittance is closely related to the
premise operator:

Theorem 2.10 Let A be the operator of admittance, and let p be the premise
operator in a horistological space (S; �). The following statements represent
equivalent properties:
(a) M 2 �(x);
(b) x 2 p(M);
(c) x 2 A(M) and M �

0

K[x];
(d) x 2 p(K[M ]);
(e) x 2 A(K[M ]) and M �

0

K[x].

The proof is routine and will be omitted.
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3 Structures of admittance

It is already known that except perspectives, a horistology is well de�ned by
other means, e.g. a premise operator [BT], discrete sets [B-P], emergent nets
[PM], etc. Now, to enlarge this list, we will show how the horistology can
be recovered by an abstract operator of admittance. To start, we have to
select several properties from the above Theorem 2.4 as axioms of such an
operator:

De�nition 3.1 Let S be an arbitrary nonvoid set. A function

A : P(S) �! P(S)

is named operator of admittance if it satis�es the conditions:
[A1] cardM 2 N =) A(M) = S;
[A2] L �M =) A(M) � A(L);
[A3] A(M [ L) � A(M) \ A(L) for all M;L 2 P(S).

In addition, if � is a s.s. order on S, such that

[A4] x 2 A(M)() x 2 A
�
�

�
M \

0

�[x]

��
for all M 2 P(S),

then we say that � is compatible with A.

The triplet (S;A;�), for which the conditions [A1] - [A4] are valid, is
called admittance space. As before, A(M) is called admittance of M , and
the points of A(M) are named admitted events of M . In this context, a set
M 2 P(S) is considered discrete i¤M � A(M).

Remark 3.2 Before approaching the construction of horistologies by means
of admittance operators, it is useful to discuss a couple of aspects concerning
the axioms [A1] - [A4]:
(i) According to Theorem 2.4, every horistological space (S; �) is an ad-

mittance space, and the proper order K� is compatible with A. Consequently,
the concrete examples of horistological spaces, e.g. the event spaces, show
that the axioms [A1] - [A4] are not contradictory.
(ii) If the equality � = � is compatible with an operator of admittance

A, then every set is discrete. This behavior is speci�c to all orders, which
are "small" in the sense of cardinality. More exactly, if card

0

� 2 N, then
both M \

0

�[x] and �
�
M \

0

�[x]

�
are �nite, hence A

�
�

�
M \

0

�[x]

��
= S
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by virtue of [A1]. In this case, according to [A4], we obtain A(M) = S for
all M 2 P(S). Therefore M � A(M), i.e. every set M 2 P(S) is discrete.
(iii) If cardS 2 N, then A(M) = S for all M 2 P(S), hence A reduces

to a constant function. In this case each order is compatible with A.

Properties similar to [A5] - [A10] in Theorem 2.8 can be directly deduced
from [A1] - [A4], as in the following:

Lemma 3.3 If the order � is compatible with A, then:
[A5] x 2 A(M)() x 2 A (�[M ]) for all x 2 S and M �

0

�[x];

[A6] x 2 A(M)() x 2 A
�
M \

0

�[x]

�
for all M 2 P(S).

Proof. We have to show that [A5] and [A6] follow from [A4] alone. In fact,

[A5] refers to points x 2 S and sets M 2 P(S) for which M �
0

�[x]. In this

case we have M \
0

�[x] = M , so that [A4] implies [A5]. Further on, because

M \
0

�[x] �
0

�[x], from [A5] we may deduce that

x 2 A
�
M \

0

�[x]

�
() x 2 A

�
�

�
M \

0

�[x]

��
,

which proves that [A4] implies [A6].
In the sequel we will investigate how a pair (A, �), for which the axioms

[A1] - [A4] hold, de�ne a horistology.

Theorem 3.4 If (S;A;�) is an admittance space, then the function

�(A, �) : S �! P(P(S));

of values

�(A, �)(x) = fP �
0

�[x] : x 2 A(P )g, (14)

is a horistology on S. In addition, the proper order of �(A, �) is

K�(A, �) = �. (15)
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Proof. We have to show that �(A, �) ful�ls the conditions [h1] � [h4]. To

prove [h1], we may remark that in (14) we have P �
0

�[x], hence x =2 P holds
for arbitrary P 2 �(A, �)(x).
Condition [h2] is based on [A2]. Primarily, if P 2 �(A, �)(x) and Q � P ,

then Q �
0

�[x] too. The other condition follows from [A2], which states that
Q � P implies A(Q) � A(P ). Consequently, P 2 �(A, �)(x).
To prove [h3], let us chose arbitrary P;Q 2 �(A, �)(x). According to (14),

this means P �
0

�[x], Q �
0

�[x], x 2 A(P ), and x 2 A(Q). It is easy to
see that P [ Q �

0

�[x], and x 2 A(P [ Q) [A3]= A(P ) \ A(Q). To conclude,
P [Q 2 �(A, �)(x), in accordance to (14).
Before proving [h4], we prefer to establish the equality (15). As usually,

we reduce it to a double inclusion: K�(A, �) � � is a direct consequence of the
de�nitions of �(A, �) and K�(A, �) . More exactly, if (x; y) 2 K�(A, �) , x 6= y,

then there is some P 2 �(A, �)(x) such that y 2 P . From P �
0

�[x] and y 2 P

we deduce y 2
0

�[x], which means (x; y) 2
0

�. The opposite inclusion follows

from [A1]. In fact, if (x; y) 2
0

�, or equivalently y 2
0

�[x], then for P = fyg
we obviously have P �

0

�[x] and x 2 A(P ) [A1]= S. Therefore P 2 �(A, �)(x)
and y 2 P , hence (x; y) 2 K�(A, �) , and x 6= y.
The equality (15) is tacitly present in the proof of [h4]. More exactly,

based on Lemma 1.4 with K�(A, �) = �, we may prove [h
�
4] instead of [h4], i.e.

P 2 �(A, �)(x)() �[P ] 2 �(A, �)(x).

Part "=)" follows from Lemma 3.3 and the strict transitivity of �. In fact,

if P 2 �(A, �)(x), then P �
0

�[x] and x 2 A(P ). According to [A5], we obtain

x 2 A (�[P ]), which, together with �[P ] �
0

�[x] show that �[P ] 2 �(A, �)(x).
Part "(=" is based on [A1] and the re�exivity of �. In more details, if
�[P ] 2 �(A, �)(x), then �[P ] �

0

�[x], and x 2 A (�[P ]). The re�exivity of �

gives P � �[P ], so that P �
0

�[x]. On the other hand,

P � �[P ] [A2]=) A (P ) � A (�[P ]) ,

hence x 2 A(P ). Finally, P 2 �(A, �)(x).
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Corollary 3.5 Let (S; �) be a horistological space. If we brie�y note by K
the proper order K� of �, and by A the admittance operator AK in (S; �),
then K is compatible with A, and

�(A, K) = �. (16)

Proof. As mentioned in Remark 3.2(i), the compatibility of K with A is
a consequence of the property [a4] in Theorem 2.8. To prove (16), we �rst
remind that �(A, K) really is a horistology (Theorem 3.4), and its proper order
is K. The equality (16), which refers to functions on S, means that the set
equality

�(A, K)(x) = �(x)

holds at each x 2 S. As usually, we have to prove two inclusions:
"�" : According to the rule (14) of deriving a horistology from A, if

P 2 �(A, K)(x), then P �
0

K[x], and x 2 A(P ). Because A derives from

�, the condition x 2 A(P ) takes the form P \
0

K[x] 2 �(x). Furthermore,
because P \

0

K[x] = P , we have P 2 �(x), which proves that

�(A, K)(x) � �(x).

"�" : If P 2 �(x), then P �
0

K[x] follows from the de�nition of K� = K.

Therefore P \
0

K[x] = P 2 �(x), hence x 2 A(P ). Finally, using (14), we
obtain P 2 �(A, K)(x), and the proof of the relation

�(A, K)(x) � �(x)

is accomplished.

Corollary 3.6 Let (S;A;�) be an admittance space, and let �(A, �) be the
attached horistology via Theorem 3.4. If A� is the operator of admittance in
the horistological space (S; �(A, �)), then

A� = A. (17)

Proof. A� and A are functions on P(S), hence (17) means A�(M) = A(M)
at each M 2 P(S). The proof has two parts again:
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Part "�": Let us take an arbitrary x 2 A�(M). According to Theorem
3.4, the proper order of �(A, �) is �, hence M \

0

�[x] 2 �(A, �)(x) holds
by De�nition 2.1. Taking into account formula (14), which describes the

perspectives of x in the horistology �(A, �), we see that x 2 A
�
M \

0

�[x]

�
.

Now, according to [A6] in Lemma 3.3, we have x 2 A(M). Consequently,
A�(M) � A(M).

Part "�": Conversely, if x 2 A(M), then x 2 A
�
M \

0

�[x]

�
follows by

[A6]. Together withM \
0

�[x] �
0

�[x], it leads toM \
0

�[x] 2 �(A, �)(x), hence
x 2 A�(M). This proves the inclusion A�(M) � A(M).

Remark 3.7 The operators of discreteness and admittance are very closed
each other. The distinction is made by the membership of a point to the
considered set, which is asked for detachable points only. A similar situation
holds in topology relative to adherent and accumulation points.
The parallel between topology and horistology reveals new features of the

continuum - discreteness duality from a structural point of view. At least
in principle, a deeper knowledge of these mathematical structures shall con-
tribute to a better understanding of duality as a universal phenomenon.
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