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Abstract. We show how the fundamental inequality (Cauchy / Aczél)
for two vectors in a complex inde�nite inner product space depends on the
nature of the linear span of these vectors. The superadditivity is referred to
restrained norms and metrics, from which some qualitative structures dual to
topologies, and called horistologies, are re�ned.
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Introduction. The frame of this note will be the inner product spaces in the
sense of [BJ]. If such a space, say (E; (:; :)), is semi-de�nite, then the Cauchy�s
inequality holds for all x; y 2 E, namely

j(x; y)j2 � (x; x)(y; y): (1)

Nowadays it is well known that, in this case, (:; :) generates a semi-norm, a semi-
metric, and a (uniform) topology, in a standard, classical manner, i.e. (:; :) determines
the geometry as well as the analysis on E: The problem �what happens in inde�nite
spaces�is still unclassi�ed. Simple examples show that the contrary of (1), i.e.

j(x; y)j2 > (x; x)(y; y) (2)

is possible, so the �rst step is to specify conditions that allow us to choose between
(1) and (2).
When referred to�nite dimensional spaces, relation (2) is known asAcz�el0s inequality

(e.g. see [MDS]), and takes physical meaning in relativity (see [NLG], etc.), but it is
also mentioned in function spaces like the Lp with p < 1 (see the Holder�s inequal-
ities in [H-S], etc.). It is a matter of course that (2) leads to superadditivity, and
this is not suitable to topological structures, but the actual practice is to ignore it,
and to operate with less natural topologies on the inde�nite inner product spaces;
this is the case of the �complexi�ed�Minkowskian space-time in relativity, and the
�transformation�of a decomposable nondegenerate inner product space into a (pre)
Hilbert space via the fundamental symmetry J = P+ � P�: Contrary to this classi-
cal tendency, we claim that the superadditive norms and metrics generate qualitative
structures comparable to topologies, but of dual nature (called horistologies in [BT2],
[PM], etc.). Till now these structures turned out to be useful in relativity (compare
to [ZEC]), duality theory (see [CDB]), and concave programming (see [B-C]).
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1. Theorem 1. If (E; (:; :)) is a (generally complex) inner product space, and
x; y 2 E; then (2) holds i¤ F = Linfx; yg is inde�nite.

Proof. If F is semi-de�nite, that is contrary to inde�nite, then (1) holds, and this
is opposite to (2). In the other case, if F is inde�nite, it is easy to see that x and y
are linearly independent, and the trinomial Tx;y : C! R, of the form

Tx;y(�) = (x+ �y; x+ �y)

takes both strictly positive and strictly negative values. In particular, if (x; y) = 0;
then Tx;y(�) = (x; x) + j�j2 (y; y); hence Tx;y will change the sign i¤ (x; x)(y; y) < 0:
Consequently (2) holds with j(x; y)j = 0:
In the remaining case when (x; y) 6= 0; let us note (x; y) = rei'; r > 0; and

y� = ei'y: It is easy to see that (x; y�) = (y�; x) = r; and Linfx; y) = Linfx; y�g: On
the other hand G = LinRfx; y�g; endowed with (:; :) jG�G ; is a real inde�nite inner
product space. Consequently the trinomial Tx;y� jR takes the form

Tx;y� jR (�) = (x; x) + 2�r + �2(y; y);

which shows that it changes the sign i¤� = r2 � (x; x)(y; y) > 0:
Remark. a) Inequality (2) is useful only if both (x; x) and (y; y) take either

positive or negative values, otherwise it is trivial. If we note kxk+ =
p
(x; x) in the

case (x; x) > 0, and kxk� =
p
�(x; x) if (x; x) < 0; then (2) leads to

j(x; y)j > kxk� kyk� : (3)

If we intend to use this inequality in the same way as (1), i.e. to construct a norm,
we �rst have to accept restrained norms since k:k� cannot be de�ned on the whole
space. Based on relativistic interpretations like causality and proper time (see [NLG],
etc.), the order cones appear to be the most appropriate domains of the restrained
norms. Considering orders restricts us to work with real linear spaces.
b) The construction of the usual norms (based on scalar products) involves two

inequalities of the same sense, namely

Re(x; y) � j(x; y)j
(1)

� kxk � kyk :

If we want to use (2) with a similar purpose, we have to consider only real inner
product spaces again. Therefore the investigation of its consequences will be restricted
to the frame of the real linear spaces, even if (2) generally holds for the complex
ones.An immediate result in this sense is superadditivity (brie�y Sa):
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Theorem 2. Let (E; (:; :)) be a real inde�nite nondegenerate inner product space.
If e 2 E is a unit positive element, S � e? is a negative linear subspace of E, and
F = Lin(feg; S) then:

1. F is a Pontrjagin �1 space;

2. Ke;S = f(x; y) = (�e + u; �e + v) 2 F � F : � � � >
p
�(v � u; v � u)g [ � is

an order relation on F ;

3. k:k+ : Ke;S[0]! R+ , expressed by kxk+ =
p
(x; x), is superadditive, i.e.

kx+ yk+ > kxk+ + kyk+ : (4)

The proof is direct; it makes use of inequality (1)on S.
Structural consequences, in terms of [BT1], [BT2], [PM], etc.:
a) The functional k:k+ is a superadditive norm in the sense that the conditions
[San1] kxk+ = 0 i¤ x = 0 , and
[San2] k�xk+ = � kxk+ whenever � 2 R+ and x 2 Ke;S

hold besides (4)�[San3].
b) The functional d : Ke;S ! R+ , generated by k:k+ via the usual formula

d(x; y) = ky � xk+ ; is superadditive too, i.e.

d(x; y) > d(x; z) + d(z; y) for all (x; z); (z; y) 2 Ke;S : (5)

Considering d as a Sa metric means that, in addition to (5), we have d(x; y) = 0
if and only if x = y.
c) The Sa metric d induces a (uniform) horistology on (E; (:; :)): In fact, using the

so called hyperbolic perspectives of x 2 E; and of radius r > 0, de�ned by

H(x; r) = fy 2 E : d(x; y) > rg;

we may attach a set of perspectives, say �d(x); to each x 2 E; by taking

�d(x) = fV � E : 9r > 0 s:t: V � H(x; r)g:

More exactly, this means that function �d : E ! P(P(E)); satis�es the conditions:
[h1] x =2 V at any x 2 E and for all V 2 �d(x);
[h2] V 2 �d(x) and U � V imply U 2 �d(x);
[h3] U; V 2 �d(x) =) U [ V 2 �d(x);
[h4] 8 V 2 �d(x); 9U 2 �d(x) s.t. 8y 2 V and W 2 �d(y); we have W � U:
A theory similar in many respects to the point-set topology can be developed by

following [BT2], [PM], etc. This similarity is based on a duality of the basic notions:
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�lters of neighborhoods - ideals of perspectives, continuity - discreteness, convergence
- emergence, etc.
Example. Let E = R4 be the relativistic universe of events, endowed with the

inner product
(e1; e2) = c

2t1t2 � x1x2 � y1y2 � z1z2 ;
where e1 = (t1; x1; y1; z1) and e2 = (t2; x2; y2; z2): Obviously, (R4; (:; :)) is a Pontrjagin
space of index 1. Each positive event e corresponds to an inertial observer ! =
f�e : � 2 Rg; and S = e? represents the set of simultaneous events relative to !:
Independently of e, Ke;S = K is the causal relation, and the Sa metric generated
by (:; :) measures the proper time. The corresponding horistology is involved in the
analysis of some qualitative properties like the discreteness of a function (e.g. a
Lorentz transformation), the emergence of a sequence of events, etc.
Other simple examples bring forward Sa norms independent of inner products, Sa

metrics in nonlinear spaces, as well as nonuniform horistologies.
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